
LABCAT: Locally adaptive Bayesian optimization using
principal-component-aligned trust regions

by

Emile Visser

Dissertation presented for the degree of
Doctor of Philosophy in Electronic Engineering in the Faculty of

Engineering at Stellenbosch University

Supervisors: Dr. J.C. Schoeman
Dr. Corné E. van Daalen

March 2025

Declaration

By submitting this dissertation electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the sole author thereof (save to the extent explicitly
otherwise stated), that reproduction and publication thereof by Stellenbosch University will
not infringe any third party rights and that I have not previously in its entirety or in part
submitted it for obtaining any qualification.

February 2025Date: .

Copyright © 2025 Stellenbosch University
All rights reserved.

i

https://scholar.sun.ac.za

Abstract

Bayesian optimization (BO) is a popular and well-studied technique for the optimization of
black-box objective functions, using an iteratively updated Gaussian process (GP) surrogate
model to approximate the objective function and inform the selection of the next point to
evaluate from the objective function. BO is especially renowned for a high degree of sample
efficiency, which allows it to find good solutions with relatively few objective function eval-
uations. However, this method has several notable shortcomings which hinder its use across
a broad range of optimization problems and objective functions. Specifically, BO can expe-
rience significant computational slowdown as the number of algorithm iterations increases,
which poses challenges for real-time applications. Additionally, BO may struggle with non-
stationary and ill-conditioned objective functions due to the reliance on a kernel-based GP
surrogate model that often requires manual kernel engineering to model these objective func-
tions adequately. Finally, a lack of theoretical guarantees and practical, numerical limitations
mean that BO often exhibits poor convergence characteristics.

Several algorithms have been proposed that incorporate local strategies into the BO frame-
work to mitigate these limitations, such as trust regions or domain partitioning; however, none
address all of them satisfactorily. To address these shortcomings, this dissertation presents the
locally adaptive Bayesian optimization using principal-component-aligned trust regions (LAB-
CAT) algorithm, which follows the example of other trust-region-based BO algorithms. These
algorithms incorporate an iteratively resized region, known as a trust region, that is used to
constrain the choice of the next sample point and, by extension, the region of the objective
function being approximated by the surrogate model. Using a trust region relaxes the global
focus of BO to a sequence of local optimization problems that are, ideally, easier to solve.

The proposed LABCAT algorithm extends the trust-region-based BO framework through
the addition of a novel rotation which aligns the trust region with the weighted principal
components of the observed data and an adaptive rescaling strategy based on the length-
scales of the local GP surrogate model with automatic relevance determination. These two
extensions allow better adaptation of the trust region to ill-conditioning or non-stationarity
and, when combined with approximative hyperparameter estimation and observation discard-
ing schemes, allow for improved computational and convergence performance characteristics.
Through extensive numerical experiments using a set of synthetic test functions and the well-
known COCO benchmarking software, the LABCAT algorithm is shown to outperform several
state-of-the-art BO and other black-box optimization algorithms.

ii

https://scholar.sun.ac.za

Opsomming

Bayesiese optimering (BO) is ’n gewilde en goed-bestudeerde tegniek vir die optimering van
swartboksdoelfunksies deur gebruik te maak van ’n iteratief opgedateerde Gaussiese proses (GP)
surrogaatmodel om die doelfunksie te benader en die keuse van die volgende punt in die eval-
uering van die doelfunksie te beïnvloed. BO is veral bekend vir ’n hoë mate van evaluasiedoel-
treffendheid, wat leen tot die vind van goeie oplossings met relatief min doelfunksie evaluer-
ings. Hierdie metode het wel verskeie terkortkominge wat die gebruik daarvan belemmer vir
’n wye groep van optimeringsprobleme en -doelfunksies. Eerstens kan BO aansienlike bereken-
ingsvertraging ervaar soos die aantal iterasies van die algoritme vermeerder, wat uitdagings
bied vir intydse toepassings. Bonop kan BO sukkel met doelfunksies wat nie stasionêr is nie
of wat sleg gekondisioneer is as gevolg van die afhanklikheid van ’n kernfunksiegebaseerde GP
wat dikwels handgedrewe kernfunksieverstelling benodig om hierdie tipes doelfunksies tot ’n
voldoende mate te modelleer. Uiteindelik veroorsaak ’n gebrek aan teoretiese waarborge en
praktiese, numeriese beperkings dat BO dikwels swak konvergensie-eienskappe vertoon.

Alhoewel verskeie algoritmes voorgestel is wat plaaslike strategieë kombineer met die BO
raamwerk om hierdie terkortkominge aan te spreek, soos vertroue streke of domeinondervedel-
ing, spreek geen een van hulle volledig die terkortkominge aan nie. Om die terkortkominge
aan te spreek stel hierdie proefskrif die “ locally adaptive Bayesian optimization using principal-
component-aligned trust regions (LABCAT)” algoritme voor, wat die voorbeeld volg van an-
der vetroustreeksgebaseerde algoritmes. Hierdie algoritmes inkorporeer ’n iteratief aangepasde
area, wat bekend staan as ’n vertroue streek, om die keuse van die volgende evaluasiepunt te
beperk en, deur uitbreiding, die area van die doelfunksie wat benader word deur die surrogaat-
model te beperk. Die gebruik van ’n vertroue streek verslap die globale fokus van standaard
BO na ’n reeks van lokale optimeringsprobleme wat ideaal makliker is om op te los.

Die voorgestelde LABCAT algoritme brei die vetroustreeksgebaseerde BO raamwerk uit
deur middel van ’n nuwe rotasie wat die vertroue streek belyn met die geweegde hoofkom-
ponente van die waargenome data en ’n aanpasbare herskaleeringstrategie gebaseer op die
lengteskaal van die lokale GP surrogaatmodel met automatiese relevansiebepaling. Hierdie
twee uitbeidings veroorsak beter aanpassing van die vertroue streek net die nie-stasionariteit
of swak konditionering en, gekombineer met benaderde hiperparameterskatting- en waarne-
mingsverwyderingskema, laat verbeterde berekenings- en konvergensie-eienskappe toe. Deur
gebruik te maak van omvattende numeriese experimente met ’n stel sintetiese doelfunksies
en die bekende COCO maatstafsagteware, vertoon die LABCAT algoritme beter resultate as
verskeie moderne Bayesiese- en ander swartboksoptimeringsalgoritmes.

iii

https://scholar.sun.ac.za

Acknowledgements

Firstly, I would like to extend my gratitude to the Wilhelm Frank Trust for their generous
financial support throughout this dissertation. I sincerely hope that they can continue to
provide the same opportunities to others that they have so kindly provided to me.

To my supervisors, I would like to express my gratitude for granting me the honour and priv-
ilege to make my contribution, however small, to the greatest collective endeavour mankind
has ever known. Your support and input has been invaluable, and this project would be the
lesser for want of it.

To all of my teachers, mentors and tutors, past and present: each and every one has left an
indelible mark, big and small. If, indeed, I have seen further, then it is because the shoulders
of the giants I am stood upon are giant indeed.

To my colleagues at the ESL, it has been an honour to have shared your struggle; the highs
and lows, the half-solutions and almost-but-not-quite coffees. Fortune will surely smile upon
you in all of your future ventures and I would not be surprised if our paths cross again.

To my friends and family, I hope this work can, in some way, justify your resolute support and
belief that has carried (read: dragged) me over the finish line. I could not do this without you.

iv

https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

List of Figures viii

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Research Motivation . 4
1.2 Research Aim and Objectives . 5
1.3 Solution Overview and Contributions . 6
1.4 Document Outline . 6

2 Review of Bayesian Optimization Methods with Local Focus 7
2.1 Hybrid Bayesian Optimization . 7
2.2 Domain Partitioned Bayesian Optimization . 8
2.3 Combined Local and Global Kernel Functions 8
2.4 Surrogate Assisted Evolutionary Algorithms . 8
2.5 Trust-region-based Bayesian Optimization . 9

2.5.1 SRSM . 10
2.5.2 TRIKE . 11
2.5.3 TuRBO and TRLBO . 11
2.5.4 TREGO . 12
2.5.5 BADS . 12

2.6 Evaluation of Existing Approaches . 12

3 Gaussian Processes 14
3.1 Gaussian Process Regression Model . 14
3.2 Kernel Functions . 16
3.3 Hyperparameter Selection . 18

4 Bayesian Optimization 21
4.1 Standard Bayesian Optimization . 21
4.2 Trust-region-based Bayesian Optimization . 25

v

https://scholar.sun.ac.za

CONTENTS vi

5 Principal Components 29
5.1 Standard Principal Components . 29
5.2 Weighted Principal Components . 32

6 Overview of the LABCAT Algorithm 36

7 Weighted-principal-component-based Rotation 38
7.1 Data Preprocessing In Trust-region-based Bayesian Optimization 39
7.2 Rotation Transformation Definition . 40
7.3 Illustrative Example . 44

8 Length-scale-based Rescaling 46
8.1 Rescaling Transformation Definition . 46

9 Detailed Description of the LABCAT Algorithm 51
9.1 Combined Observation Transformation . 51

9.1.1 Transformation Definition . 52
9.1.2 Iterative Transformation Parameter Calculation 53

9.2 Approximative Gaussian Process Hyperparameter Estimation 58
9.2.1 Hyperparameter Prior Distribution Selection 59
9.2.2 Jacobian and Hessian Matrix Calculation 61
9.2.3 Marginal Likelihood Maximization . 63

9.3 Fixed Trust Region Definition . 65
9.4 Observation Discarding Strategy . 66
9.5 Algorithm Initialization and Termination . 67
9.6 Algorithm Pseudocode and Discussion . 68
9.7 Computational Complexity . 70

10 Experimental Results 71
10.1 Synthetic Test Functions Benchmark . 71
10.2 COCO Black-Box Optimization Benchmark . 77
10.3 LABCAT Ablation Study with the COCO Benchmark 78
10.4 Comparison with State-Of-The-Art Derivative-Free Optimization Algorithms

using the COCO Benchmark . 82

11 Conclusion 86
11.1 Evaluation of the LABCAT Algorithm . 86
11.2 Contributions . 87
11.3 Future Work . 88

Bibliography 89

A Ideal Transformation Parameter Proofs 98

B Full Synthetic Test Function Benchmark Results 103

https://scholar.sun.ac.za

CONTENTS vii

C COCO Benchmark Results 105
C.1 LABCAT Ablation Study COCO Results . 105

C.1.1 Primary Ablation Study Results . 105
C.1.2 Secondary Ablation Study Results . 109

C.2 Full COCO Comparative Study Results . 113

https://scholar.sun.ac.za

List of Figures

2.1 Example of optimization using successive trust regions. 9
2.2 Illustration of the different types of trust region manipulations of the SRSM

algorithm . 10

3.1 Example of samples from a GP prior distribution conditioned on observations to
obtain a posterior distribution. 15

3.2 Example showing samples from the GP prior distributions for different kernel
functions. 17

3.3 Example of GPs with the squared exponential kernel for different length-scale
values conditioned on the same set of observations. 17

4.1 Demonstration of several successive iterations of Bayesian optimization with the
expected improvement acquisition function. 24

4.2 Examples of different design of experiment (DoE) strategies with the same initial
sample budgets. 25

5.1 Example showing the principal components for two sets of simulated data points. 31
5.2 Example showing the whitening transform using principal components applied to

a set of simulated data. 33
5.3 Example showing the standard principal components for a set of data points

and the weighted principal components for the same set using additional weight
information. 34

6.1 A flowchart of the LABCAT algorithm. 37

7.1 A flowchart of a general trust-region-based BO algorithm and with added data
preprocessing steps. 39

7.2 A visualization demonstrating an example of enforcing the invariant proper-
ties (i), (ii) and (iii) on a number of observations from an arbitrary function. . . . 43

7.3 Illustrative example showing a typical run of a hypothetical trust-region-based
BO algorithm applied to the 2-D Rosenbrock function without and with weighted
principal component trust region rotation . 44

8.1 A visualization demonstrating an example of enforcing the invariant properties
described by (i), (ii) and (iv) on a number of observations from an arbitrary
function. 48

viii

https://scholar.sun.ac.za

LIST OF FIGURES ix

9.1 Reduced flowchart based on the main loop of Figure 6.1 with specific focus on
the iterative transformation parameter calculation process. 54

10.1 Visualizations of the selected synthetic test functions from Table 10.1. 74
10.2 Performance of selected algorithms applied to synthetic 2-D test functions. 75
10.3 Example runtime ECDF generated by the COCO software. 78

https://scholar.sun.ac.za

List of Tables

9.1 Computational complexity of operations in the LABCAT algorithm. 70

10.1 Selected synthetic benchmark function definitions. 72
10.2 Average and standard deviations of the wall-clock times for a total of 300 inde-

pendent optimization runs per selected algorithm over the 6 selected synthetic
test functions from Table 10.2. 76

10.3 BBOB test suite objective functions. 79
10.4 ECDFs of runtimes table for the first half of the ablation study with the COCO

dataset over all functions for dimensions 2, 5 and 10. 80
10.5 ECDFs of runtimes table for the second half of the ablation study using different

weight matrices with the BBOB test suite over all functions for dimensions 2, 5
and 10. 80

10.6 Selected ECDFs of runtimes table from the COCO benchmark for comparison of
the LABCAT algorithm with various state-of-the-art optimization algorithms for
dimensions 2, 5 and 10. 83

B.1 Average and standard deviation of the minimum global regret, their statistical
comparisons according to a rank-sum test, and mean and standard deviation of
the wall-clock times for 50 independent runs on synthetic test functions f1 to f3. 104

B.2 Average and standard deviation of the minimum global regret, their statistical
comparisons according to a rank-sum test, and mean and standard deviation of
the wall-clock times for 50 independent runs on synthetic test functions f4 to f6. 104

C.1 2-D runtime ablation ECDFs table from the COCO benchmark. 106
C.2 5-D runtime ablation ECDFs table from the COCO benchmark. 107
C.3 10-D runtime ablation ECDFs table from the COCO benchmark. 108
C.4 2-D runtime secondary ablation ECDFs table from the COCO benchmark. 110
C.5 5-D runtime secondary ablation ECDFs table from the COCO benchmark. 111
C.6 10-D runtime secondary ablation ECDFs table from the COCO benchmark. . . . 112
C.7 2-D comparative study runtime ECDFs table from the COCO benchmark. 114
C.8 5-D comparative study runtime ECDFs table from the COCO benchmark. 115
C.9 10-D comparative study runtime ECDFs table from the COCO benchmark. . . . 116

x

https://scholar.sun.ac.za

Nomenclature

Acronyms and Abbreviations

ARD automatic relevance determination
BADS Bayesian adaptive direct search
BBOB black-box optimization benchmark
BO Bayesian optimization
COCO comparing continuous optimizers
DFO derivative-free optimization
DoE design of experiment
ECDF empirical cumulative distribution function
EGO efficient global optimization
EI expected improvement
GP Gaussian process
MAP maximum a posteriori
MLE maximum likelihood estimation
PCA principal component analysis
SAEA surrogate assisted evolutionary algorithm
SMBO sequential model-based optimization
SoD subset of data
SoR subset of regressors
SRSM successive response surface method
SVD singular value decomposition
TREGO trust region efficient global optimization
TRIKE trust region implementation in Kriging-based optimization with ex-

pected improvement
TRLBO trust region based local Bayesian optimization
TuRBO trust region Bayesian optimization

xi

https://scholar.sun.ac.za

NOMENCLATURE xii

Symbol Conventions

x vector
X matrix
f(x) scalar function; f : R→ R
f(x) function; f : Rm → R
x 7→ x2 anonymous function; element x maps to x2

X set
{x | y(x)} set with elements x such that predicate y(x) holds
X \ Y set difference; X \ Y = {x ∈ X |x /∈ Y }
minX minimal element of the set X
argminx∈S f(x) argument of the minimum for the function f over the domain S; {x ∈

S | f(x) ≤ f(s) ∀s ∈ S}
X → Y map; transformation from X to Y
X ↔ Y bijection; invertible transformation from X to Y
|X|, |X| determinant of matrix X or cardinality of set X
∥X∥F Frobenius norm of matrix X
X⊤ transpose of matrix X
X−1 inverse of matrix X
X

1
2 square root of matrix X

X− 1
2 inverse of matrix square root X

1
2

x′ linearly transformed scalar x; R→ R
x′ linearly transformed vector x ∈ Rm; Rm → Rm

X′ linearly transformed matrix X ∈ Rm×n; Rm×n → Rm×n

X ′ linearly transformed set X; |X| = |X ′|
ln(x) natural logarithm
exp(x) exponential function
tr(X) trace of matrix X
diag(x, y, z) diagonal matrix with elements x, y and z
p(x) probability distribution over x
p(x | y) conditional probability distribution over x given y
Ex[f(x)] expectation of f(x) with respect to x
var(x) variance of variable x
cov(x, y) covariance of variable x and y
std(x) standard deviation of variable x
:= defined as
∼ distributed according to
∝ proportional to
∈ element of
/∈ not element of
⊂ subset of
∀ for all
∃ there exists

https://scholar.sun.ac.za

NOMENCLATURE xiii

Additional Subscript Conventions

xi entry of vector x at i-th position
Xij entry of matrix X at i-th row and j-th column
xi, yi ith observed input and output
xmin, ymin minimum observed input and output
xmax, ymax maximum observed input and output
x0 value of variable x at algorithm initialization
xt−1, xt, xt+1 value of variable x at the previous, current and next algorithm itera-

tion, respectively
X⊙, X⊙ set X and matrix X centred on xmin
X œ , X œ set X and matrix X rotated according to weighted principal compo-

nents
X←→

←
→ , X←→

←
→ set X and matrix X rescaled using most likely length-scales

It is important to note that these subscripts are not necessarily mutually exclusive and, in
this dissertation, additional subscripts are separated by a comma. For example, the composite
symbol X′œ

, t−1 should be read as indicating the value of some matrix X that is under a
linear transformation (X′) rotated according to weighted principal components (X′œ) from the
previous algorithm iteration (X′œ

, t−1).

https://scholar.sun.ac.za

NOMENCLATURE xiv

Important Symbols

I identity matrix
0n, 1n vectors of zeroes and ones, respectively, of length n
R set of all real numbers
Rm set of all real vectors with m rows
Rm×n set of all real matrices with m rows and n columns
{1, . . . , n} set of natural numbers from 1 to n
[a, b]n n-ary Cartesian product of the closed, real interval [a, b], hypercube if

a = −b else hyperrectangle if a ̸= −b; [a, b]n = {(x1, x2, . . . , xn) |xi ∈
[a, b]∀i ∈ {1, . . . , n}} ⊂ Rn

δij Kronecker delta function where δij = 1 if i = j and 0 otherwise
f objective function; f : Rd → R
fmin global minimum of objective function
d dimension of objective function input space
n current number of objective function observations
Ω set of input locations of objective function that satisfies constraints
N (µ,Σ) Gaussian distribution with mean vector µ and covariance matrix Σ
GP(m(·), k(·, ·); D) Gaussian process with mean function m and kernel function k, condi-

tioned on the set of observations D
k(xi,xj) kernel function evaluated at xi and xj ; k : Rd × Rd → R
kSE squared exponential kernel
K kernel matrix; K = [k(xi,xj)]1≤i,j≤n

α(x∗; D) acquisition function evaluated at x∗ given observations D
αEI expected improvement acquisition function
m Gaussian process mean function; m : Rd → R
θ kernel function hyperparameters
θ̂ MAP estimate of kernel function hyperparameters
σ2f signal variance
σ2n noise variance
ℓ kernel length-scale
ℓ ARD kernel length-scales
ℓ̂ MAP estimate of ARD kernel length-scales
β trust region size factor
ρ cache size factor
σℓ length-scale prior standard deviation
ϕ(z), Φ(z) univariate standard normal probability density and cumulative distri-

bution functions
D set of observations as tuples; D = {(xi, yi) | i ∈ 1, . . . , n}
X set of observed inputs; X = {xi |(xi, yi) ∈ D}
Y set of observed outputs; Y = {yi |(xi, yi) ∈ D}
W sample-wise diagonal weight matrix
R rotation matrix
S diagonal scaling matrix
c offset vector

https://scholar.sun.ac.za

Chapter 1

Introduction

A beginning is the time for taking the most delicate care that the balances
are correct. This every sister of the Bene Gesserit knows.

— from “Manual of Muad’Dib” by the Princess Irulan, Dune

Optimization is a fundamental concept instinctively understood by humans and in nature.
In general, optimization can be described as a process aimed at finding a set of inputs to a
problem that achieves an outcome that is (in some sense) the most favourable, referred to as the
optimal solution. Spanning a multitude of fields, from engineering to economics, optimization
has been the subject of extensive study and widely applied. Indeed, one could argue that the
question of determining the optimal distribution of limited resources in a society has been a
driving force of history and development since the dawn of mankind.

The mathematical foundations of optimization can be found in the 17th century formal-
izations of Fermat [1] and early algorithms such as Newton’s method [2] (also known as the
Newton-Raphson method), with roots in ancient methods such as the Babylonian method
(c. 1800–1600 BC) and Heron’s method (c. 50 AD) [3]. With the advent of modern com-
puting, development in this field accelerated with the introduction of efficient and large-scale
numerical methods, shifting the field from its geometric and algebraic origins to sophisticated
mathematical theory and computational methodologies.

Using standard mathematical terminology, the mathematical construct defining the re-
lationship between the inputs and outputs of the problem to be optimized is known as the
objective function,1 with known (or observed) pairs of inputs and outputs known as candi-
date solutions. Optimization problems can generally be divided based on whether the inputs
of the objective function are discrete or continuous, with the latter being the focus of this
dissertation. These input variables (also known as decision or design variables) may also be
constrained to define a space of feasible inputs in which an optimal input point, or optimum,
must be found, with the optima often defined to be the maxima or minima of the objective
function. An optimum may also be a local optimum if it is at least as good as any nearby
inputs or a global optimum, which is at least as good as any other feasible input point.

Apart from the output of the objective function for a given input, additional information
1In various fields, the objective function is also known as the cost-, loss- or criterion function and fitness-,

utility- or reward function during minimization and maximization, respectively.

1

https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

may also be available or gleaned from an analysis of the objective function. This additional
and meta-information is often used to guide the choice of optimization algorithm. Examples
of this additional information can be found in a derivation of the objective function gradient
and Hessian, or guarantees regarding the convexity, bounds and smoothness of the objective
function. However, for a large subset of optimization problems, this additional information
is not available and, as such, no assumptions regarding the objective function can be made.
These are known as black-box problems, as the inner mechanism of the objective function is
treated as an unknown and only the output for a given input can be observed. Black-box
optimization problems often arise if the objective function lacks a closed-form expression, if
the dynamics of the objective function cannot be modelled, or are not accessible.

In addition to the lack of smoothness or convexity guarantees, black-box objective functions
are often not very well-behaved, such as being non-stationary, where the objective function
exhibits different characteristics in different regions, or ill-conditioned, where the objective
function may be orders of magnitude more sensitive to one input variable than another. In
practice, these black-box functions are also often expensive to evaluate due to the compu-
tational cost, such as during the expensive simulations for aerodynamic wing design [4] and
hyperparameter tuning for machine learning models [5, 6], or by being results of physical
experiments, such as robot gait optimization [7]. For online and real-time systems, the under-
lying dynamics of the black-box function being optimized may also change with time, further
necessitating an algorithm that finds a solution with minimal objective function evaluations.

In the most general form of an optimization algorithm, an initial input point is chosen with
new candidate solutions that are then iteratively sampled and evaluated. Ideally, this yields a
sequence of improving candidate solutions that approach an optimum of the objective function
until some termination criterion (such as a desired accuracy or maximum objective function
evaluation limit) is met, with different algorithms generating different sequences of candidate
solutions. Naturally, some optimization algorithms, or groups thereof, may be considered as
having better performance according to some metric such as accuracy, real execution time or
sample efficiency for certain types of objective functions.

One popular class of optimization methods, also often the first recourse, is known as
gradient-based optimization methods, such as the venerable BFGS [8] and SGD [9] algorithms.
These algorithms leverage gradient information of the objective function to determine optimal
step size for moving from the current candidate solution (also known as the current iterate)
to the next candidate solution, improving and converging to the optimum with subsequent
iterations. Gradient-based methods have been widely studied [10] and have proven to be very
efficient when applied to high-dimensional and constrained problems. Often, these methods
have strong convergence guarantees under certain smoothness and convexity assumptions, such
as the superlinear convergence rate of BFGS [11] and quadratic rate of Newton’s method [12,
Ch. 9], and are near optimal choices for smooth, strictly convex objective functions.

A closely related approach, that is in some sense dual to gradient-based methods, can be
found in trust-region-based optimization methods, such as the Levenberg-Marquardt [13] and
Powell’s dogleg [14] algorithms. For these methods, the gradient of the objective function is
used to construct a local, often quadratic, approximation of the objective function surrounding
the current iterate and the next input point is chosen as the optimum of this approximation,
constrained by some radius or region for which the approximation is “trusted”, hence the term
trust region. Based on the value of the next iterate, the trust region is expanded if the next
iterate is deemed to be successful and contracted if not. Similarly to gradient-based methods,

https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

trust-region-based methods often have good local convergence guarantees [15] and are often
more resistant to local optima than gradient-based methods.

Unfortunately, due to the strong dependence of these classical gradient-based and trust-
region-based methods on the gradient of the objective function, these methods may not be
the best choice for black-box objective functions. While these methods could still be applied
to these functions, often using finite-difference approximations of the gradient, they may be
slow to converge if the black-box function is expensive to evaluate or may even fail to converge
if noise is present in the outputs of the objective function, leading to unreliable gradient
information. Furthermore, due to the lack of known a priori information of black-box objective
functions stated previously, the assumptions underpinning the convergence guarantees of these
methods often cannot be verified.

Alternatively, methods from the field of derivative-free optimization (DFO) [16] can be
applied to the problem of black-box function optimization without requiring the gradient of
the objective function. This field encompasses a variety of methods that vary significantly
in their approach. Some, like random search, use simple, random sampling to explore the
solution space, while others use fixed rules and heuristics, such as Nelder-Mead [17] and pat-
tern search [18]. Others incorporate mechanisms inspired by natural processes. For instance,
particle swarm optimization (PSO) [19] is based on swarm behavior, simulated annealing [20]
mimics the annealing process in metallurgy, and covariance matrix adaptation evolution strat-
egy (CMA-ES) [21] is inspired by evolutionary processes. While these methods have proven
to be robust and effective when applied to optimization problems with inputs of high di-
mensionality, it should be noted that these DFO methods are not known to be very sample
efficient. This lack of sample efficiency may be due to the fixed strategies of random- and
direct search methods that cannot exploit local structure of the objective function or due to
the large population of candidate solutions used by particle and evolutionary methods that
are sample-intensive to fully initialize and update.

One family of DFO methods that addresses the challenge of optimizing expensive black-
box functions in a sample-efficient manner is known as sequential model-based optimization
(SMBO) [22, 23] methods. In contrast to traditional optimization techniques, SMBO attempts
to approximate the objective function with a surrogate model. Each subsequent objective
function evaluation is added to this surrogate model, refining the approximation. The next
point at which to evaluate the objective function and add to the surrogate model is then
determined by maximizing an acquisition function that combines exploration of the objective
function and exploitation of the best candidate solution. Deciding where to evaluate the
objective function according to the acquisition function, and refining the surrogate model
with this result, forms the core loop of SMBO given in Algorithm 1.

The rationale underpinning SMBO lies in constructing a (relatively) cheap surrogate model
to approximate the computationally expensive objective function, enabling indirect optimiza-
tion through computationally inexpensive evaluations of the surrogate model. In effect, this
changes the problem from optimizing an expensive objective function into the optimization
of another (approximate) objective function that has a closed form and is computationally
cheaper. This approach minimizes direct evaluations of the objective function, allowing sam-
ple efficiency and being computationally feasible for expensive black-box objective functions.

Of particular interest for this dissertation is the popular and pre-eminent SMBO technique
known as Bayesian optimization (BO) [24] with the commonly used Gaussian process (GP)
surrogate model (also known as efficient global optimization (EGO) [25] and sequential Kriging

https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

Algorithm 1 Sequential model-based optimization (SMBO)
Input: Objective function, Surrogate model, Acquisition function

1: Initialize surrogate model
2: while not convergence criterion satisfied do
3: Select next input using acquisition function
4: Evaluate selected input using objective function
5: Update surrogate model
6: end while
7: return best solution found

optimization (SKO) [26]). The distinguishing feature and advantage of BO, compared to
other SMBO methods, is the use of a probabilistic surrogate model that provides both an
approximation of the objective function as well as the uncertainty of this approximation.
This probabilistic surrogate model allows the direct use of effective acquisition functions that
balance exploration of the objective function (sampling in regions of the surrogate model with
high prediction uncertainty) and exploitation of the current candidate solution (sampling in
regions of the surrogate model predicted to be better than the current candidate). BO has also
been extensively studied [24] and applied to a wide range of real-world problems [27, App.
D] from hyperparameter optimization for machine learning models [5, 6] to materials and
chemical design [28, 29].

1.1 Research Motivation

For all of its strengths, BO is not a panacea and has shortcomings to be aware of that may
limit its applicability and performance for general black-box optimization problems. Firstly, it
is well-known that BO scales poorly as more observed points are added to the surrogate model
(typically in the order O(n3) [30, Ch. 6] with n observed points). Practically, this limits BO
to lower-dimensional problems since a large number of observed points are needed to model
high-dimensional objective functions, leading to computationally expensive calculations. Im-
portantly, this may also lead to BO slowing down significantly with longer optimization runs
as more observations are added to the surrogate model [31]. This slowdown can limit the ap-
plicability of BO for real-time problems where execution time guarantees are required. Sparse
approximations, such as the subset of data (SoD) or subset of regressors (SoR) approaches [32],
may alleviate this somewhat at the cost of surrogate model fidelity.

The second limitation of BO is that the performance of BO when applied to a specific
objective function is dependent on the chosen kernel function, which is a function that defines
the family of functions that the GP surrogate model is able to represent. This kernel function
is normally chosen through a process known as kernel engineering, which takes prior knowledge
of the objective function into account. Choosing a single, generic kernel (as is done in the
case of a black-box function where there is no prior knowledge of the function) reduces the
effectiveness of BO in most situations [33]. This is especially the case where the objective
function is non-stationary or ill-conditioned, where the generic kernel struggles to model the
wide range of behaviour and sensitivities for these functions.

Finally, the theoretical guarantees for and practical convergence characteristics of BO also

https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

leave much to be desired. While theoretical convergence for the specific case of BO using the
expected improvement acquisition function was established by Vasquez and Bect [34], explicit
convergence rates depend on strong assumptions on the objective function and exist only for
certain kernel functions using fixed hyperparameters, such as the work of Bull [35] or Srinivas
et al. [36]. Bull also showed that for BO using sequentially estimated hyperparameters (a
common approach used during BO of black-box functions), it may not converge at all. Even
when these assumptions and criteria for theoretical convergence are met, BO also exhibits
numerical limitations in practice, inhibiting its convergence characteristics. Computational
instability in the GP model construction procedure arises when there is a close proximity
between any pair of observed points in the input space, resulting in a near-singular spatial
covariance matrix K. To address this instability, a common solution is to introduce a small
“nugget” parameter δ as diagonal noise (K is replaced by K + δI [37, 38]). This reduces the
rate and limit of convergence as an artificial level of noise has been implicitly imposed on
the (possibly originally noiseless) objective function [39]. The previously noted computational
slowdown of BO may also make convergence to an arbitrary precision impractical, as it may
require many more expensive samples to reach a target ϵ.

Several modified BO methods have been proposed that attempt to address one or more of
the noted shortcomings of BO (with unmodified BO hereafter referred to as standard BO) by
integrating a measure of local focus into the standard BO loop (as discussed in Chapter 2).
One such modification consists of adding an iteratively updated trust region to constrain the
acquisition function and, by extension, constrain the selection of the next candidate solution
(hereafter referred to as trust-region-based BO). Unfortunately, none of these modified BO
methods currently fully address all of the noted shortcomings.

1.2 Research Aim and Objectives

The aim of this research is to develop a modified Bayesian optimization algorithm that solves
the noted shortcomings of standard BO for continuous, noiseless, black-box objective functions.
In other words, an algorithm that retains the sample efficiency of standard BO while also being
(i) resistant to computational slowdown, (ii) adaptable to non-stationary and ill-conditioned
functions without kernel engineering, and (iii) exhibiting good convergence characteristics.
Concretely, the following research objectives are identified:

• To investigate other existing modified BO methods and identify a broad strategy to form
the basis of the proposed algorithm.

• To derive a novel, modified BO algorithm that addresses all of the noted shortcomings
of standard BO.

• To verify the extent to which the shortcomings of BO are addressed and analyze the
relative performance of the proposed algorithm compared to state-of-the-art black-box
optimization algorithms using extensive and representative numerical benchmarks.

If successful, this would yield an algorithm that addresses the noted shortcomings of BO and,
by addressing these shortcomings that hinder the performance of BO, may be competitive
with state-of-the-art black-box optimization algorithms.

https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

1.3 Solution Overview and Contributions

This research presents two novel extensions for trust-region-based BO that are combined to
yield the proposed algorithm. Firstly, a strategy to adaptively rescale the trust region and
objective function observations is introduced. This rescaling is based on the length-scales
of the local GP surrogate model with a squared exponential kernel and automatic relevance
determination, instead of a heuristic, to allow for improved convergence characteristics. The
second extension is a novel rotation of the trust region to align with the weighted principal
components of the observed data. This rotation enables the maximum expressive power of the
automatic relevance determination kernel to model non-stationary and ill-conditioned objective
functions. These two extensions are combined in a trust-region-based BO framework with
an iterative, approximate hyperparameter estimation approach and a scheme that greedily
discards observations to mitigate computational slowdown. This novel method is denominated
as the locally adaptive Bayesian optimization using principal-component-aligned trust regions
(LABCAT) algorithm.

Using a diverse set of synthetic test functions, a comparison of the proposed LABCAT
algorithm with standard BO and a variety of trust-region-based BO algorithms shows that
the LABCAT algorithm is capable of convergence to a much higher level of precision without
encountering numerical issues or instability and without experiencing significant computa-
tional slowdown. A second comparison with a range of state-of-the-art black-box optimization
methods from the wider field of black-box optimization, performed using the COCO bench-
marking software [40], shows that the LABCAT algorithm is a strong contender in the domain
of expensive black-box function optimization, significantly outperforming standard BO for
nearly all tested scenarios and demonstrating exceptional performance compared to state-of-
the-art black-box optimization methods, particularly in the domain of unimodal- and highly
conditioned objective functions not typically associated with BO.

1.4 Document Outline

The remainder of this dissertation is structured as follows: Firstly, Bayesian optimization (BO)
methods with some mechanism of injecting local focus are reviewed (Chapter 2), with specific
interest in trust-region-based BO methods that form the basis of our proposed algorithm.
Next, the prerequisite theoretical frameworks used in the contributions of this dissertation are
presented. Specifically, an exploration of the Gaussian process (GP) surrogate model used in
BO (Chapter 3) is provided as well as an examination of the core BO loop (Chapter 4) and
the extension of BO using a trust region. Furthermore, a brief overview of the linear alge-
bra required to calculate the weighted principal components of a set of observations is given
(Chapter 5). After establishing these prerequisites, a brief overview of the proposed LABCAT
algorithm is given (Chapter 6) before separate treatments of the proposed weighted-principal-
component-based rotation (Chapter 7), length-scale-based rescaling (Chapter 8), and detailed
description of the synthesis and implementation of the LABCAT algorithm (Chapter 9). Us-
ing this proposed algorithm, extensive tests using numerical benchmarks are performed and
compared against state-of-the-art black-box optimization algorithms (Chapter 10) before final
remarks and suggestions of possible avenues of future research are provided (Chapter 11).

https://scholar.sun.ac.za

Chapter 2

Review of Bayesian Optimization
Methods with Local Focus

As a result of the recent popularity and research interest in Bayesian optimization (BO), every
part of the BO loop—building the surrogate model, maximizing the acquisition function, and
incorporating new observations—has been subject to modification. In this dissertation, we
will focus on a recent avenue of research that aims to mitigate the shortcomings of BO noted
in Section 1.1 by introducing a form of local focus, relaxing the global perspective of the
standard BO surrogate model. The goal of these methods is to allow BO to leverage global
information about the objective function to guide the search toward the optimum and then
efficiently, locally exploit this solution. Each section in this chapter outlines the approach of
one of several broad classes of modified BO methods and to what extent each of these classes
mitigate the noted shortcomings of BO from Section 1.1. Additionally, several implementations
of trust-region-based BO, the foundation chosen for the proposed LABCAT algorithm after
identifying this approach as having the most potential to address the noted shortcomings of
standard BO, are discussed and evaluated.

2.1 Hybrid Bayesian Optimization

The first class of modified algorithms consists of hybrid BO algorithms that add some mech-
anism to BO such that a switch is made to another optimization method with better conver-
gence characteristics at some point during the execution of the algorithm to exploit the best
candidate solution. This switch point may be determined using a metric such as expected
gain [31], estimated regret [39] or according to a heuristic [41]. Unfortunately, determining
the optimal switching point is an optimization problem in itself; switching too early or late
can easily magnify the noted shortcomings of BO while reducing the sample efficiency gains
of using BO in the first place. If the surrogate model of BO does not model the objective
function well, such as for non-stationary or ill-conditioned functions, the determination of the
switching point may also become misinformed, reducing performance.

7

https://scholar.sun.ac.za

CHAPTER 2. REVIEW OF BAYESIAN OPTIMIZATION METHODS WITH LOCAL FOCUS 8

2.2 Domain Partitioned Bayesian Optimization

Another class of algorithms combines BO with domain partitioning, which refers to a partition
of the full input space of the objective function into subdivisions. With these subdivisions of
the objective function, which may be ranked based on the value of the acquisition function at
the centre of the subdivision [42], promising areas can be exploited and subdivided while others
can be ignored in a branch-and-bound fashion. While these methods may have polynomial [43]
or even exponential [42] convergence guarantees due to the efficient exploitation of the current
candidate solution though the subdivision procedure, they require manual kernel engineering to
adequately model the objective function and scale poorly with more observed points, similarly
to standard BO.

2.3 Combined Local and Global Kernel Functions

A different category of methods consists of using a combined local and global kernel function
in the surrogate model. The mechanism underpinning these methods is that a local kernel (a
function defining the shape and uncertainty of the constructed surrogate model) can be used
to model local changes in the objective function while a global kernel can model the wider
structure. These kernels may be combined similarly to the piecewise-defined kernel of Waber-
sich and Toussaint [44] or the weighted linear kernel combination of Martinez-Cantin [33].
Given that standard BO is known to over-explore the search space when the kernel function
of the surrogate has a high uncertainty, this drawback can be repurposed to act as a guide
by allowing the local kernel a higher uncertainty than the global kernel. While being superior
to standard BO when applied to non-stationary problems [33], as the local and global kernels
can model differing behaviour, these combined kernel methods still scale similarly to standard
BO and suffer from the same numerical issues as standard BO, inhibiting convergence to an
arbitrary precision.

2.4 Surrogate Assisted Evolutionary Algorithms

Surrogate assisted evolutionary algorithms (SAEAs) [45] are a class of methods that have been
inspired by the well-established field of evolutionary optimization (EO). SAEAs combine a
surrogate model to approximate the objective function (also known as the fitness function in
EO literature) with the traditional EO selection, crossover [46] and mutation [47] procedures
to iteratively update a population of candidate solutions. By removing poor candidates from
the iteratively updated population, local focus is injected into the algorithm. It is important
to note that while SAEAs may not be formally considered as BO methods due to lacking an
explicit acquisition function, they may be considered as such in practice due to the similar,
iteratively updated surrogate model and the crossover and mutation EO steps being analogous
to the acquisition function found in BO. While many SAEAs have proven to be an improvement
over their standard EA counterparts [48, 49], these methods tend to have relatively large
population sizes that inhibit performance in lower dimensions, both due to the additional
computational overhead and the longer initial selection phases to initialize these populations
before more informed selections can begin.

https://scholar.sun.ac.za

CHAPTER 2. REVIEW OF BAYESIAN OPTIMIZATION METHODS WITH LOCAL FOCUS 9

2.5 Trust-region-based Bayesian Optimization

In order to encourage standard BO to exploit the local area surrounding the best candidate
solution, another class of methods utilize an adaptive trust region. This trust region acts as a
moving window to constrain the acquisition function and, by extension, limit where the next
point is sampled from the objective function. This window traverses the objective function and
is permitted to expand and contract as new points are observed, with this trust-region-based
approach shown in Figure 2.1.

It is important to note that the trust region does not directly limit the subspace of the
objective function being approximated by the Gaussian process (GP) surrogate model as
observations outside of the trust region are still allowed to be incorporated in the GP surrogate.
Rather, the trust region limits the acquisition function and, by extension, where the next point
is observed. This indirectly limits the subspace of the objective function being modelled, as
the GP is never queried outside of the trust region.

Trust region

Optimum

Starting candidate solution

1

2

3
4

Figure 2.1: Example of Bayesian optimization of an objective function using successive trust
regions, adapted from Stander and Kenneth [50]. Note the successive trust regions centred on
the minimum candidate solutions and the manner in which the trust regions shrink during the
approach to the optimum.

There are two distinguishing characteristics between the different trust-region-based BO
algorithms to note. Firstly, and most discernibly, is the rule used for changing the size of
the trust region. Some algorithms allow fine-grained control over this trust region by allowing
the size of the trust region to change in each dimension independently [51] while others do so
over all dimensions simultaneously [52, 53]. Secondly, some trust-region-based BO algorithms
incorporate a fallback step to another algorithm [53, 54] that is interleaved with the normal
BO loop and is typically taken after a certain number of steps have made no progress toward
the optimum.

Incorporating a trust region relaxes the global optimization of standard BO to be more akin
to that of robust local optimization, though in practice this local approach is sufficient for most
problems [51]. To regain a measure of global optimization performance, trust-region-based BO
methods can be paired with a complementary meta-mechanism such as alternating between a

https://scholar.sun.ac.za

CHAPTER 2. REVIEW OF BAYESIAN OPTIMIZATION METHODS WITH LOCAL FOCUS 10

local and a global approximation [53], multistarts with a multi-armed bandit strategy [51] or
restarts [52].

Due to the adaptive nature of the trust region, these trust-region-based BO methods have
proven to be more resilient to non-stationary functions when compared to other methods.
However, the standard use of a heuristic to update the size of the trust region precludes
the use of a more informed trust region update strategy based on the local geometry of the
objective function. Additionally, similar convergence characteristics as domain-partitioned
BO methods may be obtained for trust-region-based BO methods through the shrinking trust
region. However, this aspect has not been a primary focus in the development of existing
trust-region-based BO methods, and they still face the same numerical issues encountered by
standard BO methods during convergence. Similarly, the focus on the construction of a local
approximation of the objective function in the trust region may also lend it itself to addressing
the computational slowdown of standard BO by imposing a cap on the complexity of the local
model. This aspect has also not been a focus of existing trust-region-based BO methods, which
still scale similarly to standard BO methods.

The rest of this section details several prominent trust-region-based BO methods, with
particular focus on the mechanism used to update the size of the trust region in each method.

2.5.1 SRSM

The successive response surface method (SRSM) [50] can be considered as one of the earliest
trust-region-based BO methods, originally designed for use with the abstract class of response
surface models, of which Gaussian processes are a member. SRSM follows the heuristic,
illustrated in Figure 2.2, that if a new and better candidate solution is not found (in effect,
if the trust region does not move) the trust region is made smaller (“zoom”). If a better
candidate is found on the bounds of the trust region, the size of the trust region is preserved
and recentred on the new candidate solution (“pan”). In the case of partial movement (“pan
and zoom”), the trust region is also recentred and the trust region is made smaller by a factor
determined by the axis-wise distances of the new candidate from the current one.

1

2

(a) Pan

11=2

(b) Zoom

1

2

(c) Pan and zoom

Figure 2.2: Illustration of the different types of trust region manipulations of the SRSM
algorithm, adapted from Stander and Kenneth [50].

The SRSM also checks whether the most recently sampled point and the point before
that are on the same or opposite sides of the trust region in each dimension to determine an
additional contraction factor. In the case that the points are on opposite sides, it is assumed

https://scholar.sun.ac.za

CHAPTER 2. REVIEW OF BAYESIAN OPTIMIZATION METHODS WITH LOCAL FOCUS 11

that the trust region is oscillating around the optimum and the trust region is made smaller.
For the opposite case where the two points are on the same side of the trust region, it is
assumed that steady progress is being made toward the optimum and the size of the trust
region is increased. Using a trust region with side lengths that can be changed independently
can be advantageous for separable or ill-conditioned objective functions where the distance
to the optimum along each dimension may vary greatly. However, the advantages of using
independent trust region lengths depend on the surrogate model adequately approximating the
objective function. Additionally, the separability or ill-conditioning of the objective function
must align with the coordinate axes.

2.5.2 TRIKE

In contrast to the SRSM, the trust region implementation in Kriging-based optimization with
expected improvement (TRIKE) [52] method uses a simplified heuristic based on the expected
versus actual improvement of sampling a new point in the trust region, similar to the strategy
used in the classical Levenberg-Marquardt algorithm [13]. Specifically, if the ratio of the
actual improvement (the difference between the value of the next sampled point and the
current candidate solution) and the expected improvement of the next sampled point exceeds
a threshold, the side lengths of the trust region are increased by a constant factor. If no actual
progress is made and a minimum number of observed points fall within the current trust
region, the side lengths are reduced by a different constant factor. This heuristic is rather
simple and, as such, is mostly outperformed by other trust-region-based BO methods.

2.5.3 TuRBO and TRLBO

Another method with a relatively simple trust region side length update heuristic is known
as the trust region Bayesian optimization (TuRBO) method [51], as well as the subsequent
trust region based local Bayesian optimization (TRLBO) method [55] based on TuRBO. The
heuristic used by TuRBO and TRLBO doubles the trust region side length after a certain
number of consecutive successful improvements on the current minimum candidate and halves
the side length after the same number of consecutive failures.

The TuRBO and TRLBO methods also incorporate automatic relevance determination [56,
57] through an anisotropic kernel, similar to Equation 3.9 with a length-scale for each dimen-
sion. These length-scales are also used to rescale the side length of the local trust region
according to the local smoothness in each dimension determined by the fitted kernel in a
volume-preserving transformation. This rescaling expands the trust region in directions in
which the objective function is smoother and vice versa, providing a benefit when optimizing
separable objective functions. However, the automatic relevance determination employed in
these techniques is limited to directions defined solely by the coordinate axes, similarly to the
noted shortcoming of SRSM. As a result, TuRBO and TRLBO may not be able to exploit
objective functions that are separable but not along the coordinate axes, for example, the
banana-shaped valley of the Rosenbrock function [58].

Additionally, TuRBO is designed to easily be used with multiple trust regions in parallel,
with objective function samples allocated to the trust region with the highest value for the
acquisition function at each algorithm iteration, allowing the algorithm to be more resistant
to local optima.

https://scholar.sun.ac.za

CHAPTER 2. REVIEW OF BAYESIAN OPTIMIZATION METHODS WITH LOCAL FOCUS 12

2.5.4 TREGO

The trust region efficient global optimization (TREGO) algorithm [53] comprises a trust-
region-based BO algorithm interleaved with a standard BO fallback step that uses a separate
global model of the objective function. This fallback step is intended to allow the trust region
to escape local minima and allows for better global convergence guarantees than other trust-
region-based BO methods. The trust region side length update equation for TREGO is also
a success or failure heuristic that multiplies the current side lengths by constant factors. Due
to TREGO maintaining both a local and global model of the objective function, it boasts
impressive performance on multimodal objective functions and better convergence guarantees
than other trust-region-based BO methods. However, the additional cost of maintaining these
models lead to heavy computational slowdown with longer optimization runs.

2.5.5 BADS

Similar to the aforementioned dynamic alternation used by TREGO, Bayesian adaptive direct
search (BADS) [54] switches between a trust-region-based BO method and a deterministic,
model-free, direct-search fallback method. In contrast to the mixture of a local and global
model used by TREGO, both of the methods used by BADS use local models based on trust
regions. The intuition underpinning BADS is that the trust-region-based BO method can
be used to make quick progress toward the optimum and when the trust-region-based BO
method starts to slow down, a complementary, fail-safe, deterministic method can explore the
space systematically to restart the progress of the trust-region-based BO method. The specific
fallback method used by BADS is known as the mesh adaptive direct search (MADS) [59],
from which the name for the BADS algorithm originates, a deterministic method that seeks to
improve the current solution by testing points around the best candidate solution by moving
one step in each direction on a trust-region-based mesh.

In an attempt to address the computational slowdown of standard BO, BADS adopts a
subset of data (SoD) [32] observation trimming strategy to prevent the cache of observations
growing infinitely. This strategy comprises preserving a minimum of 50 observed points with
an additional 10 points per objective function dimension, based on the decay radius of the
rational quadratic kernel used by BADS. This strategy is, however, quite conservative and still
leads to the inversion of very large kernel matrices. Therefore, with longer runs, BADS still
slows down considerably.

2.6 Evaluation of Existing Approaches

Among the different schemes proposed to mitigate the three noted standard BO shortcomings
of Section 1.1 (namely experiencing computational slowdown with additional algorithm iter-
ations, not being well-suited to non-stationary and ill-conditioned functions, and exhibiting
poor convergence characteristics), none of the identified methods adequately address all of
them. The trust region extension of BO is identified, however, as having the most potential to
address all three of the noted shortcomings and is selected as the foundation of the proposed
algorithm.

For every reviewed trust-region-based BO method, the side length of the trust region are
updated using some heuristic, possibly a holdover resulting from the use of classical trust-

https://scholar.sun.ac.za

CHAPTER 2. REVIEW OF BAYESIAN OPTIMIZATION METHODS WITH LOCAL FOCUS 13

region-based methods transposed to the BO context. However, the information encoded in
the local surrogate model of the trust region could be a valuable source for a more informed
method of updating these side lengths. TuRBO and TRLBO are distinct among the identified
trust-region-based BO methods due to the use of the length-scales from the surrogate model to
adjust the size of the trust region. However, this adjustment is limited in two significant ways.
First, the methods only perform a volume-preserving rescaling of the trust region, meaning
they do not modify the trust region side lengths directly, which would change the region’s
volume. Second, the rescaling is constrained to align with the coordinate axes and does not
allow for adjustments in arbitrary directions. These limitations mean that while TuRBO and
TRLBO incorporate information from the surrogate model, their flexibility in resizing the
trust region is limited.

The BADS algorithm contains an interesting SoD approach for avoiding the computational
slowdown of standard BO by dropping observations from the cache that are more than a certain
distance from the current minimum. This method, though, is quite conservative and better
convergence characteristics may be obtained as well as the computational slowdown reduced
by using a more aggressive strategy.

Finally, none of the evaluated trust-region-based BO algorithms sufficiently address the
numerical issues encountered by standard BO during convergence. This is, therefore, a good
avenue for improvement.

https://scholar.sun.ac.za

Chapter 3

Gaussian Processes

The theory of probabilities is at bottom nothing but common sense re-
duced to calculus; it enables us to appreciate with exactness that which
accurate minds feel with a sort of instinct for which ofttimes they are
unable to account.

— Pierre-Simon Laplace, Théorie Analytique des Probabilitiés

A core component of Bayesian optimization (BO) is the surrogate model used to construct an
approximate model of the objective function using a set of observed inputs and outputs from
the objective function. A popular choice for this model is the Gaussian process (GP), which
builds a regression model for which unobserved points are modelled by Gaussian distributions
with a predicted mean and variance. The GP is also used for the trust-region-bounded local
approximation in the proposed LABCAT algorithm of Chapter 6–9. This chapter provides
a review of the mechanisms needed to construct and refine such a GP model for a set of
observed points. For further reading, the reader is directed to the seminal work of Rasmussen
and Williams [30] or the shorter introduction to GPs by MacKay [60].

3.1 Gaussian Process Regression Model

The Gaussian process (GP) can be described as an extension of a multivariate Gaussian
distribution to infinite dimensions [30, Ch. 1]. In other words, while multivariate Gaussian
distributions describe the behaviour of a finitely long vector of a number of random variables,
a GP describes the behaviour of a random function.1 This GP model, constructed using a set
of observed points D = {(xi, yi = f(xi)) | i ∈ {1, . . . , n}} with a chosen mean function m(·)
and kernel function k(·, ·), can then be used as a regression model to estimate an unknown
function f(x):

f(x) ∼ GP(m(·), k(·, ·); D) (3.1)

and infer predictions y∗ ∈ R for unobserved input points x∗ ∈ Rd. The key assumption of
GPs is that the posterior distribution (parameterized by the predicted mean µGP and variance

1A naive way to describe a function is to represent it as an infinitely long vector, with each entry specifying
the function value f(x). This analogy, while crude, is surprisingly descriptive of the mechanism of a GP.

14

https://scholar.sun.ac.za

CHAPTER 3. GAUSSIAN PROCESSES 15

σ2GP) for these unobserved points is given by the Gaussian distribution

p(y∗ |x∗,D) = N (µGP(x∗), σ
2
GP(x∗)), (3.2)

with these properties illustrated in Figure 3.1.

(a) (b) (c)

Figure 3.1: Example of samples from a GP prior conditioned on observations to obtain a
posterior distribution. First, (a) samples from the prior distribution of functions, with a
constant prior mean and variance, are shown. Next, (b) samples from the posterior distribution
of functions, conditioned on a set of observed points, are displayed, showing that the fitted
functions are forced to pass through the observed points. Finally, (c) the distribution of this
posterior (in effect, the GP) with the mean and standard deviation is plotted.

As seen in Equation 3.1, constructing a GP model requires a set of observations D, a
mean function m : Rd → R (usually set to zero), and some valid (symmetric and positive
semidefinite [30, Ch. 4]2) kernel function k : Rd × Rd → R. Using the observed inputs and
the kernel function k, a Gram matrix [61] K, known as the kernel or covariance matrix, is
constructed such that each entry satisfies Kij = k(xi,xj), or

K =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)

 . (3.3)

Using this kernel matrix and the column vectors composed using the observed outputs

y =
[
y1, y2, . . . , yn

]⊤ (3.4)

and evaluations of the mean function m(·) at the observed inputs

m =
[
m(x1),m(x2), . . . ,m(xn)

]⊤
, (3.5)

the equations for the predicted GP mean and variance can be constructed [30, Ch. 2]. Specifi-
cally, for a given test point x∗ from Equation 3.2, the equations describing the predicted mean
µGP is given by

2If this was not the case, some functions may cause the kernel matrix K to have negative eigenvalues. Since
this matrix represents a covariance matrix of a multivariate Gaussian distribution and the eigenvalues of this
matrix represent variance along a principal axis, negative eigenvalues would not be readily interpretable.

https://scholar.sun.ac.za

CHAPTER 3. GAUSSIAN PROCESSES 16

µGP(x∗) = m(x∗) + k⊤
∗ K−1(y−m) (3.6)

and the predicted variance σ2GP is given by

σ2GP(x∗) = k(x∗,x∗)− k⊤
∗ K−1k∗, (3.7)

where the test covariance vector k∗ is defined as

k∗ =
[
k(x1,x∗), k(x2,x∗), . . . , k(xn,x∗)

]⊤
. (3.8)

In the calculation of Equations 3.6 and 3.7, determining the inverse matrix K−1 tends
to dominate the computation time due to the asymptotic complexity of standard matrix
inversion using Gauss-Jordan elimination being O(n3) for an n × n matrix [30, Ch. 6]. This
is the principal reason why standard BO typically scales poorly with an increasing number of
observations n. In practical GP implementations, K−1 is rarely used directly. Instead, since K
is known to be symmetric and positive semidefinite due to the use of a valid kernel function [30,
Ch. 4], the Cholesky decomposition [62, 63] of the matrix K is often used in conjunction with
forward and backward substitution to indirectly calculate terms containing the inverse. This
decomposition is known to be numerically stable and using it in Equations 3.6 and 3.7, while
still having a complexity of O(n3), requires a third of the floating point operations [63] and,
therefore, leads to faster wall-clock time prediction performance of the GP.

3.2 Kernel Functions

As seen in the previous section, a core component of a GP is the kernel function k(·, ·), which
quantifies the notion of similarity between points, as it is a reasonable assumption that input
points that are similar (in effect, close together) will typically have similar output values. The
kernel function is defined as a map from a pair of inputs xp,xq ∈ Rd to R [64] and must be
symmetric positive semidefinite for use in a GP [30, Ch. 4]. The choice of kernel function is
also a consequential one, as it defines the family of functions that the GP can represent and,
by extension, the shape of the function that will be fitted to the observed points. For example,
a GP with a periodic kernel, such as a sinusoidal function, will fit a periodic function to the
provided data points. This property is illustrated in Figure 3.2, with samples from the prior
distributions for GPs given for three different kernel functions.

Some well-known examples of kernels used in GPs include the Matérn, rational quadratic
and squared exponential kernels [30, Ch. 4]. While the Matérn kernel is often the standard
choice for global optimization, since it is only twice differentiable versus the infinite differ-
entiability of the squared exponential kernel (a stronger assumption of smoothness that may
cause extrapolation issues) [6], the squared exponential kernel may also be a good choice. As
the intended use of the GP is to construct local approximations of the objective function,
the loss of global interpolative fidelity may be acceptable. The squared exponential kernel
also has the useful property that the characteristic length-scale parameter ℓ of this kernel is
strongly correlated with the smoothness of the locally fitted GP model. An example of a GP
constructed using a squared exponential kernel with different length-scale values is given in
Figure 3.3.

https://scholar.sun.ac.za

CHAPTER 3. GAUSSIAN PROCESSES 17

(a) k(x, x′) = exp
(

−∥x−x′∥2

2ℓ2

)
(b) k(x, x′) = min(x, x′) (c) k(x, x′) = (x⊤x′ + c)

2

Figure 3.2: Example showing samples from the GP prior distributions for different kernel func-
tions, namely the (a) squared exponential, (b) Brownian and (c) quadratic kernel functions.

(a) ℓ = 1 (b) ℓ = 0.3 (c) ℓ = 3

Figure 3.3: Example of GPs with the squared exponential kernel for different length-scale
values conditioned on the same set of observations. Note that, compared to (a) a baseline
length-scale, the shape of the predicted mean becomes (b) more erratic for a shorter length-
scale and (c) smoother for a longer length-scale.

Another technique that is often combined with the squared exponential kernel is known as
automatic relevance determination, originally proposed by MacKay [56] and Neal [57]. This
technique extends the squared exponential kernel with a length-scale parameter for each input
dimension ℓ = (ℓ1, ℓ2, . . . , ℓd), allowing the kernel to model differing amounts of variation and
smoothness in each coordinate direction, thereby improving the fidelity of the GP surrogate
used by BO to approximate the objective function. The definition of this extended kernel,
where σ2f and σ2n are the signal and noise variances respectively, is given as

kSE(xi,xj) := σ2f · exp
(
−1

2
(xi − xj)

⊤Λ−1(xi − xj)

)
+ σ2nδij , (3.9)

where Λ = diag(ℓ21, ℓ
2
2, . . . , ℓ

2
d).

In this kernel function, the signal variance σ2f defines the amplitude of variations for the
constructed GP while the noise variance σ2n defines the measurement noise associated with
each input point. The hyperparameters of the squared exponential kernel with automatic

https://scholar.sun.ac.za

CHAPTER 3. GAUSSIAN PROCESSES 18

relevance determination θ are therefore given by

θ = (σf , σn, ℓ1, ℓ2, . . . , ℓd), (3.10)

which fully describe the GP model fit to a set of observed data for the chosen kernel func-
tion. As a result, the choice of these parameters directly affect the accuracy of the model in
approximating the objective function from the observed data.

It is important to note that while automatic relevance determination enables the modelling
of differing smoothness for each coordinate direction in the objective function, it cannot do so
in arbitrary directions. One solution to this problem is the factor analysis distance proposed
by Rasmussen and Williams [30, Ch. 5], which adds a product of two low-rank r×d matrices to
the diagonal matrix Λ−1 in Equation 3.9. While having the advantage of being able to directly
infer these arbitrary directions from the observed data, this technique is often prohibitively
expensive, requiring an extra rd hyperparameters in addition to the d automatic relevance
determination length-scales to model r arbitrary directions. Another solution, presented by
Vivarelli and Williams [65], is to replace Λ with the product of two triangular matrices (es-
sentially the Cholesky decomposition of Λ). However, this method is even more expensive, as
it requires d(d+1)

2 hyperparameters to fill the triangular matrix.
A common choice for the noise variance σn is a small, fixed value (≈ 10−6), known as

a “nugget” parameter [37]. This parameter is used to enhance numerical stability, even for
deterministic objective functions, as discussed by Gramacy and Lee [37]. To achieve these
benefits, the nugget adds a small offset to the diagonal entries of the kernel matrix K, as
defined in Equation 3.3, preventing linear dependence between the rows and columns if two
input points are nearly equal. This prevents the kernel matrix from becoming singular if the
observed points become very correlated. As mentioned in Section 1.1, the addition of this
parameter reduces the rate and limit of convergence to a solution, since an artificial level of
noise has been superimposed onto the, possibly noiseless, objective function [39].

3.3 Hyperparameter Selection

Since the shape of a GP is largely determined by the choice of kernel function k(·, ·) and,
by extension, the hyperparameters of this kernel function θ, this choice has a significant
impact on the quality of the resulting regression model for a set of observed points from an
objective function. While this choice of kernel and hyperparameters may be prespecified,
Bayesian inference presents an effective approach to determine these values by treating the
“best model” (in effect, the hyperparameters of the kernel3) as a random variable that must
be inferred from the observed data.

Using Bayes’ theorem, the posterior distribution of the hyperparameters θ, given the ob-
servations X and Y , is given by

p(θ | D) = p(Y |X,θ)p(θ |X)

p(Y |X)
, (3.11)

3Note that while it is possible to perform inference over a set of kernel functions and associated hyperpa-
rameters, known as model averaging [27, Ch. 4], this dissertation will focus on inference for a single, chosen
kernel function.

https://scholar.sun.ac.za

CHAPTER 3. GAUSSIAN PROCESSES 19

where the sets X = {xi |(xi, yi) ∈ D} and Y = {yi |(xi, yi) ∈ D} are composed of the observed
inputs and outputs, respectively.

After making the assumption that the prior distribution over the hyperparameters is in-
dependent of the observed inputs (p(θ |X) = p(θ)) and noting that p(Y |X) is independent
of θ (in effect, becoming a constant factor), the equation can be simplified as

p(θ | D) ∝ p(Y |X,θ) p(θ), (3.12)

where p(θ) is the prior distribution for the hyperparameters that encodes the belief regarding
plausible hyperparameters as a probability distribution. This prior may either be informed a
priori4 or be uninformed, in which case it would be specified as p(θ) ∝ 1.

By inspecting Equation 3.12 and noting the aforementioned independence of p(θ) of the
observed data, it can be concluded that the quality of the model fit is captured by the term
p(Y |X,θ). This term is known as the marginal likelihood of the data or model evidence.
Recalling Equation 3.2, which states that predictions from a GP are described by Gaussian
distributions, the marginal likelihood for the observed data can then be described by a multi-
variate Gaussian distribution y ∼ N (m,K) and, from the logarithmic form of the likelihood
function for a multivariate Gaussian, the equation for the log marginal likelihood5 is given by

log p(Y |X,θ) = −1

2
(y−m)⊤K−1(y−m)− 1

2
log |K| − n

2
log 2π. (3.13)

This expression provides a useful measure to compare different sets of hyperparameters, as
the kernel matrix K is recalculated for different sets of hyperparameters while the rest of the
equation remains constant. While the formal Bayesian approach using this measure would be
to marginalize over the hyperparameters when making a prediction with the regression model
from Equation 3.2, or

p(y∗ |x∗,D) =
∫
p(y∗ |x∗,D,θ)p(θ | D) dθ, (3.14)

this integral is usually intractable [60] and must be integrated numerically using Monte Carlo
methods [66, 67] or approximated using the most likely set of hyperparameters6 θ̂ as

p(y∗ |x∗,D) ≈ p(y∗ |x∗,D, θ̂). (3.15)

These hyperparameters θ̂ are often chosen as the maximum of the posterior distribution,
known as the maximum a posteriori (MAP) estimate. This MAP estimate is equivalent to
maximizing the logarithm of the posterior distribution, or

θ̂ = argmax
θ

(log p(Y |X,θ) + log p(θ)). (3.16)

4As noted by Garnett [27], even a very wide prior (which should be possible to construct in practice for any
hyperparameters) offers regularization by guiding the model away from patently absurd choices.

5The logarithmic form of the likelihood is preferred for computation, since these values can be exceptionally
small with a large dynamic range [27, Ch. 4].

6This approximation can be interpreted as introducing a Dirac delta function to the marginalization integral
Equation 3.14 [27] at the most likely hyperparameters δ(θ− θ̂) and using the sifting property of this function.

https://scholar.sun.ac.za

CHAPTER 3. GAUSSIAN PROCESSES 20

In the case of an uninformative (uniform) prior distribution for the parameters θ, p(θ) would
become constant. Therefore, only the log marginal likelihood log p(Y |X,θ) would be maxi-
mized, converting this MAP estimate to a maximum likelihood estimate (MLE) [27, Ch. 4].

The optimization problem in Equation 3.16 is usually solved using existing nonlinear solvers
(e.g., BFGS [8]), derivative-free methods (e.g., Nelder-Mead [17]) or stochastic methods (e.g.,
stochastic gradient descent [9]), often with multiple restarts due to the multi-modal nature
of the likelihood function. It should be noted that evaluating Equation 3.13 for a new set
of hyperparameters also requires recalculating the inverse matrix K−1, which, as previously
mentioned, has a computational complexity of the order O(n3), where n represents the number
of observations.

Maximizing the marginal likelihood for GP hyperparameters, therefore, enables their ana-
lytical estimation from the observed data for the optimal model fit. By systematically incor-
porating prior assumptions about the data, this approach not only enhances the GP regression
model’s ability to generalize but also avoids the pitfalls of manual tuning and extensive kernel
engineering.

In summary, this chapter has provided an overview of Gaussian processes (GPs), in particular,
expounding on the fundamental components of prediction using a regression model, kernel
functions, and hyperparameter estimation and selection. Using these concepts, the Bayesian
optimization (BO) framework is constructed and presented in the next chapter. These concepts
also underpin the local GP surrogate model used in the proposed LABCAT algorithm presented
in Chapter 6–9.

https://scholar.sun.ac.za

Chapter 4

Bayesian Optimization

GUIL: And if you’d lost? If they’d come down against you, eighty-five
times, one after another, just like that?

ROS: (Dumbly) Eighty-five times in a row? Tails?
GUIL: Yes, what would you think?
ROS: (Doubtfully) Well. . . (Jocularly) Well, I’d have a good look at

your coins for a start!

— Tom Stoppard, Rosencrantz and Guildenstern Are Dead

Having established the structure of sequential model-based optimization (SMBO) methods in
Chapter 1 and the probabilistic Gaussian process (GP) surrogate model in Chapter 3, the
SMBO method with this GP surrogate, known as Bayesian optimization (BO), can now be
described. In this chapter, we review the structure of the core loop of standard BO: the
construction of a GP surrogate model described in the previous chapter, finding the next
sample point that maximizes an acquisition function, and refining the surrogate model with
the sampled point from the objective function. An overview of classical trust-region-based
optimization methods and how a trust region is incorporated into the BO loop in the general
form of trust-region-based BO algorithms is also provided. This combination of a trust region
integrated with BO forms the basis of the proposed LABCAT algorithm presented in Chapter 9
as well as the trust-region-based BO methods previously discussed in Section 2.5.

For further reading regarding the development and use of BO, the reader is directed to
the monograph of Garnett [27] and the review conducted by Shahriari et al. [24]. The work of
Conn et al. [15] is also recommended for a complete treatment of classical trust-region-based
optimization methods.

4.1 Standard Bayesian Optimization

Stated formally, the task of black-box optimization algorithms, such as sequential model-based
optimization (SMBO) methods in general and BO in particular, can be described as attempting
to find some argument xmin ∈ Ω that minimizes a bounded, black-box objective function with
continuous input parameters and a scalar output value f : Rd → R, where Ω ⊂ Rd is the set
of all possible arguments subject to some specified constraints. In this dissertation, it is also
assumed that f is observable exactly (in effect, with no noise added to the observed output

21

https://scholar.sun.ac.za

CHAPTER 4. BAYESIAN OPTIMIZATION 22

values). This optimization task can be stated as calculating

argmin
x∗∈Ω

f(x∗), (4.1)

with a standard parameterization of Ω as a hyperrectangle, using a Cartesian product with
bounding real, scalar values Ωmin

i and Ωmax
i for each dimension, given by

Ω =
d∏

i=1

[Ωmin
i ,Ωmax

i], (4.2)

with the bounding values subject to

Ωmin
i < Ωmax

i ∀i ∈ {1, . . . , d}. (4.3)

Since any minimization problem can be converted to a maximization problem with a simple
sign change in the objective function, this formulation does not suffer a loss of generality and
is a widely-used convention [51–54].

As stated in Chapter 1, BO can be considered as a subset of SMBO methods [22–24] as
outlined in Algorithm 1, both using a surrogate model to iteratively approximate the objective
function. The distinguishing factor is that the surrogate model used in BO is probabilistic,
encapsulating the prior belief regarding the objective function that is sequentially conditioned
on new observations of the objective function. While other models have been proposed, such
as random forests [22] or Parzen estimators [68], GPs are often the standard choice for the
surrogate model. GPs offer proven flexibility, performance and a strong theoretical basis
for analysis. They also directly provide both an estimate of the objective function and the
uncertainty of this estimate, given by the mean and variance of the GP prediction defined in
Equations 3.6 and 3.7.

The second core component of BO is the use of an acquisition function (also known as
an infill criterion). This function informs the selection of successive input points based on
the expected benefit, or utility, of a potential evaluation at each input point. Using a generic
utility function U defining the gain associated with a single sample according to some metric,
the general acquisition function α is defined as

α(x∗; D) := Ef(x∗) |x∗ [U(x∗, f(x∗))]. (4.4)

Using the probabilistic estimate of the objective function and associated uncertainty thereof
from the GP surrogate, the acquisition function can be constructed to formalize the trade-off
between exploitation (low predicted GP mean µGP(x∗)) and exploration (high predicted GP
variance σ2GP(x∗)). Maximizing this acquisition function would ideally provide the point that
strikes a balance for the aforementioned trade-off when sampled from the objective function
and incorporated into the GP surrogate model. This maximization can be stated as

xα = argmax
x∗∈Ω

α(x∗; D), (4.5)

with the resulting objective function sample (xα, f(xα)) added to the GP surrogate model.
Several utility functions and induced acquisition functions have been investigated for use in

BO, such as the entropy search [69] and knowledge gradient [70] acquisition function induced

https://scholar.sun.ac.za

CHAPTER 4. BAYESIAN OPTIMIZATION 23

by the information gain and global simple reward utility functions, respectively. One popular
choice of acquisition function is the expected improvement function [71]. This acquisition
function is derived from the utility function known as the improvement function that quantifies
the amount of improvement on the current best observed candidate solution (xmin, ymin) that
has been obtained from an evaluation of the objective function at the given test input. The
improvement function is defined as

I(x∗, f(x∗)) :=

{
(ymin − f(x∗)) f(x∗) < ymin

0 f(x∗) ≥ ymin.
(4.6)

Recalling from Equation 3.2 that the GP prediction for a test input x∗ is normally distributed,
the expected value of the improvement function (in effect, the amount of improvement that is
expected at the test input) can be derived analytically as

αEI(x∗; D) = Ef(x∗) |x∗ [I(x∗, f(x∗))] (4.7)

= (ymin − µGP(x∗)) Φ(z) + σGP(x∗)ϕ(z)

where

z =
ymin − µGP(x∗)

σGP(x∗)
, (4.8)

with the probability density function ϕ(z) and cumulative distribution function Φ(z) of a
univariate standard normal distribution [71].

Intuitively, this expected improvement acquisition function should be close to zero for any
regions where no improvement is expected while the first or second terms would be large where
the GP mean is lower than the current minimum (exploitation) or for high GP variances (ex-
ploration), respectively. It should be noted that these acquisition functions are often very mul-
timodal and non-convex and, as such, are often maximized using multi-start gradient-based,
direct search or evolutionary methods [27, Ch. 9]. Due to the fact that the computationally
cheaper GP surrogate model is being sampled by the acquisition function instead of the more
expensive objective function, the additional samples often required by these aforementioned
methods become computationally viable. A visual example of this process is given in Fig-
ure 4.1, with new points successively added to the GP surrogate model by finding the points
that maximize the acquisition function.

In the final step of BO, the surrogate model is updated and refined with the new observa-
tion. For BO with a GP, this typically entails the reselection of the hyperparameters of the
kernel by maximizing the new marginal likelihood of the set of observations using the methods
outlined in Section 3.3. As mentioned in Section 1.1, this reselection of the GP hyperpa-
rameters does come at the cost of theoretical convergence guarantees [35] compared to using
fixed hyperparameters, but the practical performance improvements are often worthwhile. A
notable advantage of using fixed hyperparameters is the improved computational complex-
ity, as adding or removing observations to the GP can be efficiently done using the Schur
complement [72] (if using K−1 directly) or rank-1 updates and downdates of the Cholesky
decomposition of K, both of order O(n2) [27, Ch. 9]. Reselecting the hyperparameters of the
GP would require the full recalculation of the kernel matrix K, precluding the use of these
techniques.

https://scholar.sun.ac.za

CHAPTER 4. BAYESIAN OPTIMIZATION 24

(a) n = 2

(b) n = 3

(c) n = 4

Figure 4.1: Demonstration of several successive iterations of Bayesian optimization (BO) with
the expected improvement acquisition function, adapted from [24] and [27]. Note the successive
sampled points added to the Gaussian process (GP) model that maximize the acquisition
function.

https://scholar.sun.ac.za

CHAPTER 4. BAYESIAN OPTIMIZATION 25

BO is also typically initialized with an initial set of input points before the main loop of
BO starts, known as the design of experiment (DoE). A naive approach to selecting these ini-
tial points might involve distributing them on a grid, known as full-factorial sampling [38], or
randomly. However, both methods have notable shortcomings. Full-factorial sampling, while
providing good coverage of the search space Ω, scales exponentially with the number of dimen-
sions, requiring nd points for n points along each dimension. In contrast, random sampling
scales better but lacks coverage guarantees and may result in points clustering together. More
sophisticated and better-informed alternative methods, such as Latin hypercube sampling [73]
or quasi-random methods like Halton and Sobol sampling [38], are often the typical choice and
provide good coverage guarantees while scaling better than full-factorial sampling. Although
BO is generally robust to the choice of DoE [23], care must be taken to avoid initial sets of
points that may hinder the performance of BO, such as clusters of initial input points far away
from the optimum. Examples showing full-factorial, random and Latin hypercube sampling
using the same DoE budget is shown in Figure 4.2.

(a) (b) (c)

Figure 4.2: Example of (a) full-factorial sampling, (b) random sampling and (c) Latin hyper-
cube sampling design of experiment (DoE) strategies with identical initial sample budgets.

In general, BO does not have a well-defined, standard stopping criterion, a property shared
with other derivative-free optimization methods. This is in contrast to gradient-based methods,
where the norm of the gradient can be used to ensure first-order stationarity of the solution.
As a result of the lack of a canonical termination criterion, BO is often terminated when a
maximum objective function evaluation limit is reached or a minimum decrease condition is
satisfied [27, Ch. 9].

Combining the previously discussed initialization of the DoE, construction and refinement
of the GP surrogate model, maximization of the acquisition function and termination, the
general BO loop is presented in Algorithm 2. The following section expands on this definition
of the BO loop with the addition of a trust region, yielding a modified version of this algorithm.

4.2 Trust-region-based Bayesian Optimization

As mentioned in Section 2.5, trust-region-based BO methods combine the BO loop described
in the previous section with a trust region inspired by those found in classical trust-region-
based optimization methods [27, Ch. 11]. These classical methods, also known as restricted-
step methods [74], use a linear or quadratic approximation of the objective function that is

https://scholar.sun.ac.za

CHAPTER 4. BAYESIAN OPTIMIZATION 26

Algorithm 2 Bayesian optimization
Input: Objective function f , Acquisition function α, Bounds Ω, DoE strategy

1: Select initial input points X0 according to DoE
2: D ← {(x, f(x)) |x ∈ X0} ▷ Evaluate initial input points from DoE
3: while not convergence criterion satisfied do
4: GP(m(·), k(·, ·); D) ▷ Construct GP with observed data D
5: θ̂ ← argmaxθ(log p(Y |X,θ) + log p(θ)) ▷ Determine GP hyperparameters
6: xα ← argmaxx∗∈Ω α(x∗; D) ▷ Maximize acquisition function
7: yα ← f(xα) ▷ Evaluate suggested input point
8: D ← {(xα, yα)} ∪ D ▷ Add observation to dataset
9: end while

10: return (xmin, ymin) ▷ Return minimum candidate

“trusted” for a local region surrounding the current best candidate solution [15], hence the
term trust region coined by Sorensen [75]. New points to sample are selected by finding the
optimum of this approximation of the objective function constrained by the trust region, with
the trust region (and by extension, the approximation) being expanded or contracted as the
algorithm executes, allowing for different step sizes between subsequent candidate solutions.
In some sense, these methods are the complement of line search methods (such as gradient
descent), first determining the step size and then the step direction, instead of the reverse in
line search.

While the trust regions used by these classical methods can theoretically be any shape [15,
Ch. 6], they are often spherical (defined by a radius) or hypercubic (with a side length)1 that
can be extended with independent scaling for each axis to ellipsoidal or rectangular regions,
respectively. While spherical and ellipsoidal trust regions are often preferred for classical trust-
region-based algorithms due to theoretical advantages [15, Ch. 7],2 square and rectangular trust
regions are often easier to use, as points can simply be checked axis by axis. The trust region
may also be rotated, often using the Hessian of the objective function or approximations
thereof, to allow the trust region to better adapt to the objective function [15, Ch. 6].

Generally, the distinguishing factor between different trust-region-based methods are the
strategies used to update the size of the trust region. These may be a simple improvement
heuristic that increases or decreases the size of the trust region at the current algorithm
iteration st by constant factors κ and η based on if the next sampled point is better than the
current minimum candidate

st 7→ st+1 =


1

κ
st f(xmin) > f(xα)

ηst f(xmin) < f(xα).
(4.9)

Other heuristics may be based on how well the trust region is approximating the true objective
function [15, Ch. 6], such as the heuristic in the Levenberg-Marquardt algorithm [13]. These

1These trust region shapes naturally arise from the L2 or L1 and L∞ norms, respectively [15, Ch. 6.1].
Ellipsoidal and rectangular trust regions can also be expressed using scaled versions of these norms [15, Ch. 6.7].

2Specifically, finding an optimum point using a spherical/ellipsoidal trust region with linear or quadratic
approximations requires at most polynomial time, while using a square/rectangular trust region may be an
NP-hard problem [15, Ch. 7.8].

https://scholar.sun.ac.za

CHAPTER 4. BAYESIAN OPTIMIZATION 27

heuristics check if the ratio ϱ =
∆fpred
∆factual

of the difference between the value of the current
minimum candidate solution and the value of the next point predicted by the trust region
approximation ∆fpred and the actual, measured difference ∆factual is above or below a certain
threshold

st 7→ st+1 =


1

κ
st ϱ > ϱ2

st ϱ ∈ [ϱ1, ϱ2]

ηst ϱ < ϱ1,

(4.10)

with typical values of ϱ1 = 0.25, ϱ2 = 0.75, κ = 3 and η = 2 [76]. While the factors κ and η
are typically constant, some methods allow these factors to be dynamically changed using an
additional heuristic such as dynamic values based on ϱ or the previous step size [15, Ch. 10].

As noted at the beginning of this section, trust-region-based BO methods (examples of
which were previously discussed in Section 2.5) synthesize the idea of classical trust-region-
based methods with BO and can be seen as either substituting the linear or quadratic objective
function approximations of classical trust-region-based methods with a Gaussian process sur-
rogate model or bounding the acquisition function maximization step of BO using a trust
region [27, Ch. 11]. This combination can be formalized [51–53] by adding an additional
constraint to the maximization of the acquisition function from Equation 4.5, bounding the
feasible region of this maximization using the intersection Ω ∩ ΩTR of the trust region ΩTR
and the original bounds of the objective function Ω. Including this additional constraint in
Equation 4.5 is given as

xα = argmax
x∗∈ΩTR
x∗∈Ω

α(x∗; D). (4.11)

Incorporating this trust region modification into the standard BO algorithm from Algo-
rithm 2 yields a general trust-region-based BO loop in Algorithm 3 with examples of these
methods previously discussed in Section 2.5. The primary addition in this form of trust-
region-based BO compared to the standard BO loop can be seen in the trust region ΩTR that
is initialized at the start of the algorithm (line 3), used as an additional constraint for the
acquisition function maximization (line 7), and updated at the end of each iteration (line 10).

Trust-region-based BO methods often use the information encoded in the BO loop to derive
trust region update strategies, such as the ratio of expected versus actual improvement [52],
which is similar to the ratio ϱ used in Equation 4.10. It should also be noted that, in the
trust-region-based BO context, the shape of the trust region does not matter as much as
for classical trust-region-based methods, since the advantages of spherical trust regions (as
stated in Footnote 2) no longer hold, given that maximizing the acquisition function is often
an NP-hard problem [77]. Therefore, square and rectangular trust regions are the standard
choices [50–55], as these trust regions are easier to work with.

As previously stated in Sections 2.5 and 2.6, trust-region-based BO methods have proven
to be more resilient to badly-behaved objective functions than standard BO. Compared to
classical trust-region-based optimization methods, the use of a more informed GP surrogate
model, instead of a simple linear or quadratic model, also allows for improved robustness and
sample efficiency [55]. While the trust region approach means that trust-region-based BO
methods relax the global perspective of standard BO (with the associated global optimization

https://scholar.sun.ac.za

CHAPTER 4. BAYESIAN OPTIMIZATION 28

Algorithm 3 Trust-region-based Bayesian optimization
Input: Objective function f , Acquisition function α, Bounds Ω, DoE strategy

1: Select initial input points X0 according to DoE
2: D ← {(x, f(x)) |x ∈ X0} ▷ Evaluate initial input points from DoE
3: Initialize trust region ΩTR
4: while not convergence criterion satisfied do
5: GP(m(·), k(·, ·);D) ▷ Construct GP with X and Y
6: θ̂ ← argmaxθ(log p(Y |X,θ) + log p(θ)) ▷ Determine GP hyperparameters
7: xα ← argmaxx∗∈ΩTR

x∗∈Ω
α(x∗; D) ▷ Maximize bounded acq. function

8: yα ← f(xα) ▷ Evaluate suggested input point
9: D ← {(xα, yα)} ∪ D ▷ Add observation to dataset

10: Update trust region size using (xα, yα)
11: end while
12: return (xmin, ymin) ▷ Return minimum candidate

performance) to a series of robust3 local approximations [51], this is often sufficient for many
problems in practice. Existing trust-region-based BO methods also lack a similar mechanism
to rotate the trust region, as used in several classical trust-region-based methods [13], due to
the lack of gradient and Hessian information of black-box objective functions.

Taken as a whole, the ideas presented in this chapter, namely the Bayesian optimization (BO)
framework in general and the trust-region-based BO subclass in particular, form the corner-
stone of the proposed LABCAT algorithm and the context in which this dissertation is writ-
ten. These BO methods are powerful techniques for efficiently optimizing black-box functions
by balancing exploration and exploitation through probabilistic surrogate models, with trust-
region-based methods extending this framework with an adaptive restriction of the exploration
to regions where improvement is likely. These methods form the basis for the contributions in
Chapter 6–9 as well the methods previously discussed in Section 2.5 of the literature study of
Chapter 2 and used in the comparative study in Chapter 10.

3Robust in the sense that the local GP surrogate model is more resilient to the model misspecification
encountered by classical trust-region-based methods as well as the capacity of the GP for the heterogeneous
modelling of non-stationary objective functions that can allow the method to avoid patently suboptimal local
minima.

https://scholar.sun.ac.za

Chapter 5

Principal Components

Several classical trust-region-based optimization methods, such as Levenberg-Marquardt [13],
incorporate rotation of the trust region to allow for better adaptation of the objective function
approximation model to the local geometry of the objective function [15, Ch. 6]. For example,
this may include adapting to separability found along non-coordinate axes, such as diagonal
valleys in the objective function. These trust region rotations are often based on the Hessian
of the objective function or an approximation thereof using the Jacobian, finite differences or
secant methods. Of course, in the context of black-box optimization problems, information
regarding the Jacobian and Hessian is not directly available and approximations thereof may
be computationally expensive or intractable to calculate.

To obtain the advantages associated with a rotatable trust region, a rotation at each
iteration of the LABCAT algorithm is included using weighted principal components such that
the observed data is decorrelated along the axes of the trust region (Chapter 7). Therefore, this
chapter reviews the derivation of principal components and the use thereof for a decorrelation
transform in Section 5.1, as well as the extension of principal components using per-observation
or per-dimensional weights in Section 5.2.

5.1 Standard Principal Components

Principal components are a set of directions derived from principal component analysis (PCA),
a well-studied statistical technique often used for dimensionality reduction with the earliest
generally accepted descriptions presented by Pearson [78] and Hotelling [79]. For a more
complete and authoritative taxonomy of PCA, readers are directed to the work of Jolliffe [80].

In essence, PCA identifies the orthogonal directions (in effect, the principal components)
along which the variance of a set of sampled data is maximized. The first principal compo-
nent captures the most variance, followed by the second principal component, which is also
orthogonal to the first, and so on. These principal components often capture the most im-
portant features of the data and can be thought of as “important” or “essential” directions
in the dataset, which would consist of the observed inputs of the objective function in the
optimization context of this dissertation.

The standard derivation of PCA, as presented by Hotelling [79], consists of determining the
principal components sequentially. The principal components are determined by projecting
the sampled points xi ∈ Rd ∀i ∈ {1, . . . , n}, which are collected into the columns of the data

29

https://scholar.sun.ac.za

CHAPTER 5. PRINCIPAL COMPONENTS 30

matrix X ∈ Rd×n, onto the vector u ∈ Rd×1, given by1

var(u⊤X) = cov(u⊤X,u⊤X) (5.1)

= u⊤cov(X,X)u

= u⊤CXXu,

where the sample covariance matrix CXX = 1
nXXT when X is assumed to be zero-mean. The

first principal component u1 is determined by maximizing this projected variance, where u1

is constrained to be unit length, or

Xu1 = argmax
u

u⊤CXXu (5.2)

subject to ∥u1∥ = 1.

This constrained optimization problem can be solved by incorporating the constraint using a
Lagrange multiplier [12, Ch. 5] into a Lagrangian:

L(u1, λ) = u⊤
1 CXXu1 − λ(u⊤

1 u1 − 1). (5.3)

By setting the partial derivative of this Lagrangian function to zero

∂L

∂u1
= 2CXXu1 − 2λu1 = 0 (5.4)

and rearranging terms, we obtain

CXXu1 = λu1, (5.5)

showing that u1 is an eigenvector of CXX with a corresponding eigenvalue of λ1. A similar pro-
cess is used to determine successive principal components by adding orthogonality constraints
to the Lagrangian defined in Equation 5.3, for example, adding the constraint u⊤

2 u1 = 0 when
calculating u2.

This process is equivalent to determining the eigendecomposition (also known as the spec-
tral decomposition) of the sample covariance matrix

CXX = QΛQ⊤, (5.6)

where the eigenvectors (columns of Q) are ordered according to their respective eigenvalues
(diagonal values of Λ with λ1 ≥ λ2 ≥ . . . ≥ λd), an indication of the total variance that
each eigenvector accounts for. This ordered, orthogonal matrix Q now defines the principal
components of the data matrix X with the respective diagonal values of Λ being the relative
importance of each principal component. An example showing the principal components for
two sets of simulated data in shown in Figure 5.1.

1Note that the covariance is a linear operator, implying the identity cov(a⊤X,b⊤X) = a⊤cov(X,X)b.

https://scholar.sun.ac.za

CHAPTER 5. PRINCIPAL COMPONENTS 31

(a) (b)

Figure 5.1: Example showing the principal components for two sets of simulated data points.
It is clear that the first principal component u1 captures more projected variance (in effect,
the dominant direction of the data points) than the second principal component u2 in (a)
compared to (b), where the choice of principal components seem more ambiguous due to the
lack of dominant directions in the data points.

A computationally efficient alternative to the eigendecomposition can be found in the
singular value decomposition (SVD) [81], which can be seen as an extension of the eigende-
composition to non-square matrices. Compared to the eigendecomposition, this decomposition
has increased numerical stability and is more computationally efficient without requiring the
calculation of CXX. The SVD of the data matrix X is defined as

X = UΣV⊤, (5.7)

where U ∈ Rd×d, V ∈ Rn×n and Σ is a rectangular diagonal matrix of singular values, with
the columns of these matrices also ordered according to the singular values similarly to the
ordering of Equation 5.6.2 In this decomposition, the principal components are given by the
columns of U and are equivalent to the corresponding columns of matrix Q (up to a sign
change) in the eigendecomposition from Equation 5.6. The square of the singular values are
also proportional to the eigenvalues and similarly indicates the proportion of variance in the
dataset that each principal component accounts for.

From another, equivalent perspective, the principal components can also be used to define
an optimal low-rank approximation X̃ of the original data matrix X that can be calculated
using a reduced SVD

X̃ = U[r]Σ[r]V
⊤
[r], (5.8)

where [r] indicates the upper r×r block of Σ and the first r columns of U and V, respectively.
This approximation can be proven to minimize the reconstruction error [80], in this case the
total element-wise squared difference between the matrices, parameterized by the squared
Frobenius norm and is given by

∥∥∥X− X̃
∥∥∥2
F
=

d∑
i=1

n∑
j=1

(Xij − X̃ij)
2
, (5.9)

2Note that if X is a matrix with real values, U and V are also guaranteed to be real, orthogonal matrices.

https://scholar.sun.ac.za

CHAPTER 5. PRINCIPAL COMPONENTS 32

for all matrices in Rd×n of rank r. In other words, X̃ is a least-squares optimal representation
of the original d-dimensional data in an r-dimensional subspace with monotonically decreasing
reconstruction error for an increase of r up to d.

If all principal components are retained (or, r = d), instead of dimensionality reduction, a
change of basis is performed such that the data is decorrelated. This is used in a process known
as whitening, where the data is first decorrelated and then rescaled such that the covariance
matrix is the identity matrix I. Using the eigendecomposition defined in Equation 5.6 after
calculating the covariance matrix CXX, this whitening transform is defined as3

X 7→ Λ− 1
2Q⊤X (5.10)

or, using the SVD from Equation 5.7 directly,

X 7→ 1√
n
Σ−1U⊤X. (5.11)

These whitening transforms can readily be interpreted as a linear transformation with
rotational (orthogonal Q⊤ and U⊤ matrices) and scaling components (diagonal Λ− 1

2 and Σ−1

matrices). As seen in the example in Figure 5.2, the rotational component rotates the data to
align the principal components with the coordinate axes and the scaling component rescales
the data to unit variance.

5.2 Weighted Principal Components

During the calculation of the standard principal components defined in the previous section,
all of the samples (columns of the data matrix X) are treated equally for the purposes of
determining the principal components. However, this uniform treatment may be restrictive
and is not always desirable. In the optimization context of this dissertation, where each
sample represents an observed input of the objective function with an associated output value,
it is preferable to account for the relative importance of each observation. Incorporating
this importance into the calculation of principal components would enhance the ability of
the principal components to capture the key, underlying directions of the objective function,
thereby identifying more effective search directions during the optimization process.

To address the limitations of treating all samples equally in PCA, weighted principal com-
ponent analysis (weighted PCA) is commonly employed. In weighted PCA, each sample or
dimension is assigned a weight that reflects its relative importance or relevance within the
dataset. This approach allows for a more nuanced calculation of weighted principal compo-
nents, where the chosen weights influence the determination of these components. By incorpo-
rating these weights, weighted PCA modifies the standard principal component calculations
to better capture the directions that are most significant according to the assigned weights.

We will first consider the generalized decomposition defined by Greenacre [82, App. A],
which introduces the positive-definite, symmetric weight matrices Ψ and Φ that are multiplied
with the data X. Using the SVD, this general definition is given as

3In these transforms, anonymous function notation is used to reduce symbolic overhead. Read as ‘maps
to’, the use of this arrow notation avoids the need to name these functions. For example, Equation 5.10 would
otherwise need to introduce some new symbol, such as the function g, to write g(X) = Λ− 1

2 Q⊤X.

https://scholar.sun.ac.za

CHAPTER 5. PRINCIPAL COMPONENTS 33

(a)

(b) (c)

Figure 5.2: Example showing the whitening transform using principal components applied to
a set of simulated data. The principal components of the simulated data u1 and u2 in (a) are
first rotated to align with the coordinate axes in (b) before being rescaled to unit variance in
(c). The covariance of the data is also displayed using an ellipse rescaled to a sphere.

Ψ
1
2XΦ

1
2 = UΣV⊤, (5.12)

which, after rearranging terms, can also be given by

X = Ψ− 1
2UΣV⊤Φ− 1

2 . (5.13)

In the special case where Ψ and Φ are diagonal matrices with positive diagonal elements
{ψ1 . . . ψd} and {ϕ1 . . . ϕn}, respectively, it is also shown by Greenacre that performing a
similar low-rank approximation to Equation 5.8

X̃w = Ψ− 1
2U[r]Σ[r]V

⊤
[r]Φ

− 1
2 (5.14)

minimizes

∥∥∥X− X̃w

∥∥∥2
F
=

d∑
i=1

n∑
j=1

ψiϕj(Xij − X̃ij)
2
, (5.15)

providing the best rank r approximation to X subject to Ψ and Φ, in the least squares sense.
Compared to the similar standard form of PCA from Equation 5.9, it is clear this special case

https://scholar.sun.ac.za

CHAPTER 5. PRINCIPAL COMPONENTS 34

of generalized PCA is a form of weighted PCA, where ψi assigns weights to each dimension of
the observations and ϕj assigns weights to each observation.

Using this formulation of weighted PCA, the weight matrices can be set to readily ac-
count for missing observations [83], repeated observations [84], relative observation population
sizes [85], measurement noise [83] or outliers [84]. An example of weighted PCA on a set of
simulated observations is given in Figure 5.3.

(a) (b)

Figure 5.3: Example showing (a) the standard principal components for a set of data points
(u1 and u2) and (b) the weighted principal components for the same set (w1 and w2) using
additional sample weight information (in this example, the observed output values of some
objective function). This example illustrates that, using additional weight information, differ-
ent principal components can be obtained from the same data points and that the weighted
principal components can describe the underlying structure of a set of observed data, in this
case, a diagonal ridge.

While several general choices of Ψ and Φ have been suggested, such as the linear, expo-
nential or Gaussian functions used by Krigel et al. [84], Jolliffe [80] posits that ‘in practice,
it must be rare that an obvious uniquely appropriate set of the ψi or ϕj is available, though
a general pattern may suggest itself’. This behaviour was also observed by Krigel et al. [84],
who noted that ‘it is plausible that different functions are appropriate for different underlying
causes in the data or assumptions’. While Hong et al. [86] proved that the optimal choice
of weights converges to a function of known or estimated signal and noise variances for high-
dimensional data under certain statistical assumptions, these assumptions cannot be made in
the context of black-box optimization for this dissertation. Therefore, the lack of a generally
optimal choice of these weights suggests that any method to determine the values of these
weights should generally be founded on sensible assumptions and supported empirically.

It should also be noted that the intersection of Bayesian optimization (BO) and PCA is
not completely uncharted. However, rather than the novel trust region rotation using weighted
principal components performed by the LABCAT algorithm, existing research is focused on
high-dimensional BO using low-rank principal-component-based linear embeddings [87] or non-
linear embeddings [88] to identify low-dimensional manifolds with which to perform BO inside
the high-dimensional objective function in order to reduce the effective dimensionality of the
search space.

https://scholar.sun.ac.za

CHAPTER 5. PRINCIPAL COMPONENTS 35

In summary, this chapter presents the concept of principal components (PCs) as generally used
in PCA, as well as the special case of generalized PCA with observational and dimensional
weights. The principal components from this special case of weighted PCA are used in the
proposed trust-region rotation scheme outlined in Chapter 7, with the choice of these weights
also verified empirically using numerical benchmarks in Chapter 10.

https://scholar.sun.ac.za

Chapter 6

Overview of the LABCAT Algorithm

The previous chapters have now sufficiently discussed the context, background and prerequi-
site knowledge required to mark the delineation between the prior art and novel contributions
presented in this dissertation. Building on the foundations established in the preceding chap-
ters, this chapter provides a high-level overview of the structure and motivation of the novel
black-box optimization method proposed in this dissertation (with detailed mathematical de-
scriptions thereof reserved for the subsequent chapters), which is denominated as the locally
adaptive Bayesian optimization using principal-component-aligned trust regions (LABCAT) al-
gorithm. A flowchart describing this algorithm is given in Figure 6.1, with the novel additions
to the general trust-region-based Bayesian optimization (BO) algorithm from Algorithm 3
given by the shaded components.

When inspecting Figure 6.1, it can be seen that the LABCAT algorithm enters a mod-
ified version of the standard trust-region-based BO loop after evaluating the initial set of
input points, with the main modifications consisting of transforming the observed data and
discarding observations that fall outside the trust region. At the start of the modified trust-
region-based BO loop, the current set of observed inputs are recentred on the current minimum
candidate and rotated to align the principal components of the observed input points (weighted
by the corresponding normalized observed output values) with the coordinate axes. Using this
recentred, rotated and normalized observed input and output data, a GP with a squared ex-
ponential kernel and automatic relevance determination is constructed. The MAP estimate
for the length-scales of this kernel is used to rescale the observed input data, updating the size
of the current trust region. To prevent the unbounded growth in complexity of the GP model,
an approximate model fitted to the local subset of observations inside the current trust region
is maintained by discarding observations outside of the trust region. Finally, the expected
improvement acquisition function is maximized, bounded by the trust region, to determine
the next observed point.

The LABCAT algorithm follows the example of other trust-region-based Bayesian opti-
mization (BO) algorithms, described in Algorithm 3 of Section 4.2, by incorporating a local
trust region surrounding the current minimum candidate solution to bound the acquisition
function maximization during the determination of subsequent input points in the standard
BO loop [50–55]. What distinguishes LABCAT is that the size of this local trust region is se-
lected to be directly proportional to the local length-scales of the Gaussian process (GP) fitted
to the observed data instead of according to a progress-based or sufficient decrease heuristic.

36

https://scholar.sun.ac.za

CHAPTER 6. OVERVIEW OF THE LABCAT ALGORITHM 37

Evaluate initial input
points from DoE (§ 9.5)

Yes

Rotate observed
input data (§ 7.2, 9.1)

No

Normalize observed
output data (§ 7.1, 9.1)

Construct GP with
transformed data

(§ 3.1, 3.2)

Discard observations
outside of trust
region (§ 9.4)

Maximize bounded
acquisition function

(§ 9.3)

 Return minimum
candidate

 Obtain user-defined
parameters

Start

End
Convergence

criterion
satisfied?

Determine most likely
GP length-scales (§ 9.2)

Centre observed
input data (§ 7.1, 9.1)

Rescale observed data
using bounds (§ 9.5)

Initialize
trust region (§ 9.4)

Rescale input data with
GP length-scales

(§ 8.1, 9.1)

Evaluate objective
function at new point

Figure 6.1: A flowchart of the LABCAT algorithm. The primary added components of the
LABCAT algorithm, compared to the standard trust-region-based BO described in Algo-
rithm 3, are indicated by the shaded areas and the relevant sections for each component are
indicated in brackets. A complete mathematical description of the LABCAT algorithm is
given in Chapter 9 along with Algorithm 4.

Furthermore, the trust region is also rotated to align with the weighted principal components of
the observed data, allowing the side lengths of the trust region to change independently along
arbitrary directions, not just along the coordinate axes. This novel rotation and rescaling also
constitute another distinguishing characteristic of the LABCAT algorithm: In the proposed
algorithm, the size of the trust region remains fixed while the space of observed points is re-
centred, rotated and rescaled, indirectly inducing a dynamic trust region in the original space
of the objective function. This stands in contrast to other trust-region-based methods that
manipulate the size of the trust region directly. Finally, observations that fall outside of the
local trust region as new minimum candidates are found are also greedily discarded, preventing
the unbounded growth of the surrogate model and improving the convergence characteristics
of the LABCAT algorithm. This observation discarding procedure is also in contrast to the
previously noted methods that either retain all points [50–53, 55] or employ a significant subset
of the evaluation history [54] in the surrogate model.

The following two chapters extend the trust-region-based BO framework described in Algo-
rithm 3 by incorporating a rotation based on the weighted principal components (Chapter 7)
and a length-scale-based rescaling (Chapter 8) of the observed data. Together, these exten-
sions culminate in the proposed LABCAT algorithm, the detailed mathematical description
of which is given in the subsequent chapter (Chapter 9).

https://scholar.sun.ac.za

Chapter 7

Weighted-principal-component-based
Rotation

As noted in Section 4.2, several trust-region-based Bayesian optimization (BO) methods use
automatic relevance determination to allow the side lengths of the trust region to be changed
independently for each dimension [50, 51, 55]. This mechanism allows the trust region to
expand and contract in directions for which the objective function may be smoother and vice
versa. The independent expansion and contraction of the trust region side lengths makes these
algorithms well suited to separable objective functions that can be broken down into a series
of subproblems along independent, orthogonal directions such as ellipsoidal functions, with
the main shortcoming of this approach being that the trust region resizing in these methods
is limited to the directions defined by the coordinate axes. Ideally, the trust region should be
allowed to rotate and dynamically align itself with directions of separability in the objective
function, for example, along changing valleys. This expansion of the trust region along the
directions of separability would, in turn, allow for larger step sizes between subsequent sampled
points and lead to faster convergence towards the optimum. As mentioned in Chapter 4, while
several classical trust-region-based optimization methods incorporate a rotation of the trust
region using the Hessian of the objective function (or an estimate thereof), this information is
not available or intractable to estimate for black-box objective functions.

Instead of rotating the trust region directly, this chapter introduces a preprocessing step
that involves a rotation based on the weighted principal components of the observed data
weighted according to their objective function values. By first aligning the observed data with
these weighted principal components and then using an axis-aligned trust region in conjunction
with the transformed data, this achieves the benefits of a rotatable trust region while being
computationally more efficient than methods that manipulate the trust region directly, such
as using the costly factor analysis distance [30, Ch. 5] discussed in Section 3.2.

This chapter first describes the general technique of data preprocessing as a transforma-
tion with an associated invariant property. It then covers the transformations and invariant
properties of two standard preprocessing techniques, known as min-max normalization and
centring respectively, as well as the proposed rotation. Finally, it elucidates the advantage of
this rotation within a trust-region-based BO framework through an illustrative example.

38

https://scholar.sun.ac.za

CHAPTER 7. WEIGHTED-PRINCIPAL-COMPONENT-BASED ROTATION 39

7.1 Data Preprocessing In Trust-region-based Bayesian
Optimization

Raw data is often transformed into a form that is more suitable for analysis or manipula-
tion, typically involving scaling, normalizing, or rotating the data. This step, known as data
preprocessing [89] or preconditioning, helps improve the accuracy and efficiency of models
constructed using the transformed data by addressing issues such as ill-conditioning, numeri-
cal issues, or non-standard orientations. By incorporating a preconditioning step at the start
of the algorithm or before each iteration of the trust-region-based BO framework from Al-
gorithm 3, illustrated in Figure 7.1, the performance of the algorithm may benefit from the
increased quality of the surrogate model constructed using the preprocessed, observed data.
A popular use of these techniques in trust-region-based BO methods is to scale the observed
data such that the bounds of the objective function Ω lie on a unit hypercube [51, 52, 54].

Yes

No

Construct GP surrogate
model

 Return minimum
candidate

Sample initial DoE

Start

End
Convergence

criterion
satisfied?

Determine GP
hyperparameters

Update trust region

Initialize trust region

Evaluate objective
function

Maximize bounded
acquisition function

(a)

Yes

No

Construct GP surrogate
model

 Return minimum
candidate

Sample initial DoE

Start

End
Convergence

criterion
satisfied?

Determine GP
hyperparameters

Update trust region

Initialize trust region

Evaluate objective
function

Maximize bounded
acquisition function

Preprocess data before
main loop

Preprocess data inside
main loop

(b)

Figure 7.1: A flowchart of (a) a general trust-region-based BO algorithm and (b) one with
added data preprocessing steps.

A quintessential example of data preprocessing can also be found in the technique known
as min-max normalization [89], which, when applied to the observed output values Y , can be
given by1

Y 7→
{

yi − ymin

ymax − ymin

∣∣ yi ∈ Y}
. (7.1)

This transformation ensures that the current maximum and minimum observed values (ymax

and ymin) are mapped to 1 and 0, respectively. This operation can be restated as performing a
1As in Footnote 3 of Section 5.1, anonymous function notation is used in this section to reduce symbolic

overhead by avoiding the need to explicitly name the transformation.

https://scholar.sun.ac.za

CHAPTER 7. WEIGHTED-PRINCIPAL-COMPONENT-BASED ROTATION 40

transformation such that some invariant property holds for the transformed data. For min-max
normalization, the associated invariant property of Equation 7.1 can be defined as

(i) The current minimum observed output value ymin and the maximum observed value
ymax are transformed to be equal to 0 and 1, respectively

ymin 7→ 0 and ymax 7→ 1.

Using this formulation of preprocessing as a transformation according to an invariant
property, another standard preprocessing technique, known as the centring transform, can
be restated. This transformation ensures that the current observed minimum input value xmin
(the input associated with the current observed minimum value ymin) is at the origin. This
transformation can be given by

X 7→
{
xi − xmin

∣∣xi ∈ X
}
, (7.2)

similar to the numerator found in the min-max transform in Equation 7.1, with the associated
invariant property

(ii) The minimum observed input value xmin is transformed to be at the origin

xmin 7→
[
0 . . . 0

]⊤
.

This formulation of transforming the observed data X and Y according to some invariant
properties will also be used throughout the rest of this dissertation with 4 invariant properties
enumerated as (i)–(iv). It is important to note that these invariant properties are also not
invariant in the truest sense, that is to say, that they will always be true necessarily. Rather,
they are properties that are made to be true or enforced through the transformation of the
data using the associated transforms.

7.2 Rotation Transformation Definition

As stated in the introduction of this chapter, an addition of a rotational component to the
trust region used by trust-region-based BO methods, similar to those used in several, classical
trust-region-based methods, would be desirable. Unfortunately, the problem of black-box
optimization precludes the use of the Jacobian and Hessian of the objective function (as used in
classical trust-region-based methods) to determine the directions in the objective function for
the rotation of the trust region. Another method to determine the desired arbitrary directions
in the objective function is to use the factor analysis distance proposed by Rasmussen and
Williams [30, Ch. 5], as discussed in Section 3.2. However, using the full factor analysis
distance would be prohibitively expensive due to the excessive number of hyperparameters
that need to be optimized at each algorithm iteration.

As shown previously in Section 5.2 and Figure 5.3, the weighted principal components cal-
culated using the observed inputs of the objective function (with each input weighted by the

https://scholar.sun.ac.za

CHAPTER 7. WEIGHTED-PRINCIPAL-COMPONENT-BASED ROTATION 41

corresponding observed output value) can describe the underlying structure of the objective
function. By rotating the observed data to align these weighted principal components with
the coordinate axes, the automatic relevance determination used in the Gaussian process (GP)
surrogate of the LABCAT algorithm (which is, crucially, limited to the coordinate axes) can
model the objective function more accurately, without the expensive calculation of the full
factor analysis distance. As stated in the introduction of this chapter, using a trust region in
conjunction with this rotated data can also allow the trust region to effectively expand and
contract along local axes of separability, such as diagonal valleys. With the previously estab-
lished formulation using invariant properties of the previous section, the invariant property
that describes this novel rotation can be defined as

(iii) The weighted principal components, described by the columns of the orthogonal
rotation matrix U, of the observed input data (centred on the current minimum
candidate), with more weight given to input values with a lower corresponding out-
put value, are transformed to be aligned with the coordinate axes (up to reflection)

U 7→ diag(±1, . . . ,±1).

To enforce this invariant property, the input data is rotated using the transformation

X⊙ 7→ U⊤X⊙, (7.3)

where the centred input data X⊙ is rotated using the transpose of the matrix U describing
the weighted principal components of this data. Note that, for notational convenience, in
this dissertation the set of observed inputs X (and transformed representations thereof) can
be collected into and decomposed from a matrix X ∈ Rd×n, where the ith column of X
corresponds to xi ∈ X and the subscript ⊙ is appended to input sets or associated matrices
to indicate that the input data has been centred using the minimum candidate xmin from
invariant property (ii).

The weighted principal components matrix U is calculated similarly2 to the generalized
decomposition of Greenacre [82] defined in Equation 5.13 of Section 5.2. Using the SVD, this
decomposition is given by

X⊙W = UΣV⊤, (7.4)

where the general dimensional and sample weight matrices Ψ and Φ are set to the identity
matrix and diagonal weight matrix W, respectively. In this decomposition, the columns of
the matrix U correspond to the weighted principal components and, given that X⊙ and W
are matrices with real entries, this rotation matrix is also guaranteed to be orthogonal.

Proof. We must prove that, using Equation 7.3, the resulting transformed, centred input
data U⊤X⊙ of the transformation from Equation 7.3 satisfies invariant property (iii). That
is to say, the weighted principal components of the resulting transformed data are aligned
with the coordinate axes. Starting with the observed input data X, the data can be centred

2Note the subtle distinction in the calculation of these weighted principal components which uses data
centred on the minimum candidate solution instead of the mean of the observed input values that would often
be used in traditional PCA.

https://scholar.sun.ac.za

CHAPTER 7. WEIGHTED-PRINCIPAL-COMPONENT-BASED ROTATION 42

using the current minimum candidate xmin using a matrix-based form of Equation 7.2, or

X⊙ = X− xmin1⊤
n . (7.5)

The weighted principal components of the observed input data U is obtained using the SVD
from Equation 7.4, given by

X⊙W = UΣV⊤ (7.6)

Substituting the transformed value of X⊙ (i.e., U⊤X⊙) into the SVD of X⊙W, noting that
the rotation matrix U obtained through the SVD is orthogonal (U−1 = U⊤) given that X⊙
and W are real matrices, simplifying yields

∴ U⊤X⊙W = U⊤X⊙W (7.7)

= U⊤UΣV⊤

= IΣV⊤.

This statement is essentially the definition of the SVD for the matrix product U⊤X⊙W.
Since U⊤X⊙ is the transformed, centred input data, this implies that the weighted principal
components of the transformed, centred input data are equal to the identity matrix I. This
satisfies invariant property (iii), since

I ∈ diag(±1, . . . ,±1). (7.8)

In other words, the weighted principal components of the transformed, centred input data
U⊤X⊙ are aligned with the coordinate axes, concluding the proof.

While the choice of weights for the sample-wise weight matrix W is arbitrary, as noted in
Section 5.2, sensible values for these weights for the purpose of optimization can be determined
using the observed values Y . Assuming that the observed output values have been min-max
normalized using Equation 7.1, weights that are biased toward lower output values3 can easily
be calculated by subtracting each element of Y from 1 and aggregating into a diagonal matrix

W = diag(1− y1, 1− y2, . . . , 1− yn). (7.9)

When comparing the weight matrix W to the general sample-wise matrix Φ
1
2 of Equa-

tions 5.13 and 5.15, it is clear that this choice of weights implies that each observation is
weighted by the square of the diagonal values of W instead of linearly (as would be the case
if the diagonal values of W are equal to

√
1− yi), adding additional bias to smaller output

values. Ideally, this additional bias towards observations with lower output values, which
would therefore have higher weights and a larger influence on the weighted principal compo-
nents, assists in uncovering promising search directions in the objective function (in effect, the
weighted principal components). This choice of weights is also verified experimentally in the
ablation study performed in Chapter 10.

3Weights are biased toward lower output values as this dissertation is focused on minimization. In the
context of maximization, the normalized values of Y could be used as weights directly.

https://scholar.sun.ac.za

CHAPTER 7. WEIGHTED-PRINCIPAL-COMPONENT-BASED ROTATION 43

This novel rotation transformation is also superficially similar to the whitening transform
defined in Equation 5.11 (minus the rescaling by the singular values), with the weighted
observed inputs now also decorrelated. An example demonstrating this novel rotation using
sample data drawn from an arbitrary, ellipsoidal function is given in Figure 7.2.

(a) (b)

(c) (d)

Figure 7.2: A visualization demonstrating an example of enforcing the invariant proper-
ties (i), (ii) and (iii) on (a) a number of observations from an arbitrary function, where the
observed output values are represented using a colour map. The data is (b) centred on the
minimum candidate (marked with a +), the output values are min-max normalized and (c) the
weighted principal components w1 and w2 are shown. Using these principal components, (d)
the input data is rotated such that these principal components are aligned with the coordinate
axes, with all of the invariant properties now enforced.

It is also important to note that this transform, as well as the min-max and centring
transforms, is invertible, meaning that the original data can be recovered from the transformed
data (such as for the centred data X⊙ ↔ X) or that conversions can be performed between
the original and transformed space for new points.

https://scholar.sun.ac.za

CHAPTER 7. WEIGHTED-PRINCIPAL-COMPONENT-BASED ROTATION 44

7.3 Illustrative Example

To illustrate the advantage of this rotation strategy compared to other trust-region-based BO
methods, consider the optimization of the Rosenbrock function [58], a well-known test function
with a narrow, banana-shaped valley leading towards the global optimum. The starting point
for the optimization run is chosen at the end of this valley, typically a very challenging starting
point for most optimization algorithms. To visualize the intuition underpinning the trust
region rotation and provide a conceptual motivation for this strategy, this optimization scenario
is presented in Figure 7.3. Note that this is not meant to be understood as a quantitative or
qualitative result, but rather as an illustration of expected and desired behaviour.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
d1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

d
2

(a) No rotation

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
d1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

d
2

(b) Rotation included

Figure 7.3: Illustrative example showing a typical run of a hypothetical trust-region-based BO
algorithm (with independent side lengths) applied to the 2-D Rosenbrock function (a) without
and (b) with weighted-principal-component-based trust region rotation. A subset of trust
regions (indicated in black) centred on the respective minimum candidate solutions (indicated
in red) are given, the global optimum is indicated by the magenta cross at (1.0, 1.0) and
observations other than the minimum candidate are not indicated to maintain visual clarity.

Firstly, consider a hypothetical trust-region-based BO algorithm, as described in Algo-
rithm 3 and the flowchart of Figure 7.1 (a), with some trust region update strategy that can
independently update the trust region side lengths and without the weighted principal compo-
nent rotation, given in Figure 7.3 (a). This algorithm is expected to behave similarly to other
trust-region-based algorithms, with the trust region recentred on new minimum candidates
and moving along the valley. In the areas of the valley aligned with the coordinate axis, such
as near the origin, the trust region is allowed to expand along the valley. However, the nar-
rowness of the valley near the minimum that is not aligned with the coordinate axes forces the
trust region to shrink rapidly. Due to the constraint placed on the acquisition function that
the objective function may only be evaluated at subsequent points inside this trust region,
this premature contraction slows progress towards the optimum considerably.

https://scholar.sun.ac.za

CHAPTER 7. WEIGHTED-PRINCIPAL-COMPONENT-BASED ROTATION 45

Next, consider the same hypothetical trust-region-based BO algorithm with the addition
of the weighted-principal-component-based rotation at the beginning of each algorithm (in
effect, performing the first algorithm in the sequentially updated space of the transformed
data), similar to Figure 7.1 (b). By inspecting Figure 7.3 (b), it is clear that this rotation
yields a clear improvement. The rotation aligns the major axis of the rectangular trust region
along the valley of the Rosenbrock function as the trust region moves through the valley. The
trust region can now exploit the local separability of the valley by expanding and contracting
along the major and minor axes of the trust region. This version of the algorithm finds the
optimum more efficiently than in Figure 7.3 (a), demonstrating the potential value of the
principal component rotation.

In summary, this chapter has presented the novel preprocessing step of a weighted-principal-
component-based rotation in a trust-region-based BO framework to allow the trust region to
adapt to local separability in the objective function, such as curved or diagonal valleys. The
description of this data preprocessing step as a transformation of the observed data with an
associated invariant property will also be used in the following chapter describing a length-
scale-based rescaling of the observed data.

https://scholar.sun.ac.za

Chapter 8

Length-scale-based Rescaling

During the course of any trust-region-based Bayesian optimization (BO) algorithm (as dis-
cussed in Section 4.2), the size of the trust region necessarily shrinks as the algorithm converges
to a solution. This shrinking trust region may lead to observations being clustered together
or ill-conditioned, causing the spatial covariance matrix K to become near singular, as noted
in Section 1.1. To prevent this, a transformation is proposed that transforms the observations
using a novel, local-length-scale-based rescaling. Using the transformed representation of the
observed input data, subsequent actions (such as determining the next point to sample) are
performed that work well for a much smaller range of objective function values compared to
the original space. In this transformed space, the observations ideally remain well-conditioned
and -distributed, even if the corresponding points in the objective function space are not. This
transformation, in turn, also induces a trust region update strategy based on the local length-
scales, allowing superior performance for separable and ill-conditioned objective functions.

Using the form established in the previous chapter of a transformation applied to the
observed data with an associated invariant property enforced on the transformed data, this
chapter defines the novel rescaling of the observed input values using the most likely length-
scales, specifically for the case of a Gaussian process (GP) fitted to the observed data using a
squared exponential kernel with automatic relevance determination.

8.1 Rescaling Transformation Definition

As described in Algorithm 3 and illustrated in Figure 7.1, the main loop of trust-region-
based BO consists of constructing a GP surrogate to approximate the objective function using
previously observed values and selecting the next point to observe by using the GP to maximize
an acquisition function bounded by a trust region. In the previous chapter, it was also shown
that the observed data can be preprocessed at the start of the loop before the GP is constructed
in order to improve the accuracy of the resulting surrogate model. However, even though this
preprocessing may allow the GP to better model the objective function (for example, by using
the weighted principal component rotation of the previous chapter), problems may still arise
when trying to maximize an acquisition function with this surrogate model. This is especially
the case for ill-conditioned objective functions, where the acquisition function can exhibit
high sensitivity in specific directions. Additionally, as the trust region shrinks or observations
become clustered, numerical instability can arise in the GP due to a nearly singular spatial

46

https://scholar.sun.ac.za

CHAPTER 8. LENGTH-SCALE-BASED RESCALING 47

covariance matrix K, as noted in Section 1.1.
To address these challenges, the observed inputs are rescaled according to the local smooth-

ness (in effect, the sensitivity) of the GP surrogate for each dimension in order to achieve a
more uniform smoothness (sensitivity) in each dimension. As described in Section 3.2, an ele-
gant measure of the local smoothness of the GP can be found in the length-scale parameter ℓ
of the squared exponential kernel function, with automatic relevance determination extending
this parameter to individual, independent values for each dimension ℓ = (ℓ1, ℓ2, . . . , ℓd). This
length-scale parameter can be estimated from the observed data (i.e., ℓ̂) by maximizing the
log marginal likelihood (Equation 3.13) and can therefore be considered as the inferred local
smoothness of the objective function and be used in the rescaling process. In essence, this
rescaling reduces the risk of the acquisition function becoming overly sensitive to local fluctu-
ations or ill-conditioning, thereby enhancing the stability and reliability of the optimization
process.

While this rescaling cannot be considered as a preprocessing step for the GP (as it is
performed after the GP is constructed and the length-scales are inferred), it can be considered
as an additional data preprocessing step for the maximization of the acquisition function. As
such, the description of data preprocessing from Section 7.1 as a transformation applied to
the observed data with an associated invariant property can be used. For the desired length-
scale-based rescaling, the invariant property can be given by

(iv) The most likely length-scales ℓ̂ for a GP that has been constructed with the observed
inputs, using a squared exponential kernel with automatic relevance determination,
are rescaled to unity, or

ℓ̂ 7→ (1, 1, . . . , 1).

Using this invariant property, the transformation applied to the observed inputs X, using the
most likely length-scales of a GP using a squared exponential kernel with automatic relevance
determination ℓ̂ calculated using Equation 3.16, is given by

X 7→ L̂−1X, (8.1)

where the most likely length-scales are collected into a diagonal scaling matrix

L̂−1 = diag(ℓ̂1, ℓ̂2, . . . , ℓ̂n)
−1
. (8.2)

An example of this length-scale-based rescaling can be seen in Figure 8.1.
Note that, for the new GP surrogate (if using the squared exponential kernel) with the

transformed data and unit length-scales, there is no need to recalculate the kernel matrix K of
the GP constructed using the original input data, as both the observed inputs and length-scales
have been scaled by the same factor.

Proof. Given a GP constructed using a set of observed inputs X and the most likely length-
scales ℓ̂, we must prove that this is equivalent to another GP constructed with the rescaled
input values L̂−1X and unit length-scales. Given that the set of observed outputs remain
unchanged, the GPs can be parameterized by their respective kernel matrices K, the entries

https://scholar.sun.ac.za

CHAPTER 8. LENGTH-SCALE-BASED RESCALING 48

(a) (b)

(c) (d)

Figure 8.1: A visualization demonstrating an example of enforcing the invariant properties
described by (i), (ii), and (iv) on (a) a number of observations from an arbitrary, mildly ill-
conditioned and separable function, where the observed output values are represented using a
colour map. The data is first (b) centred on the minimum candidate (marked with a +), the
output values are normalized and (c) the most likely length-scales (ℓ̂1, ℓ̂2) for a GP fitted to
the data are shown. Using these length-scales, the observed input data is (d) rescaled such
that these length-scales equal unity, with all invariant properties now preserved.

of which are, in turn, defined by the respective kernel functions. For the given GP using
X and ℓ̂, the kernel function (chosen as the squared exponential function with automatic
relevance determination from Equation 3.9 in this dissertation) is given by

kSE(xi,xj ; ℓ̂) = σ2f · exp
(
−1

2
(xi − xj)

⊤Λ̂
−1

(xi − xj)

)
+ σ2nδij (8.3)

where Λ̂ = diag(ℓ̂21, ℓ̂
2
2, . . . , ℓ̂

2
d).

The diagonal factor Λ̂ in this kernel (i.e., the axis-aligned length-scales of the automatic

https://scholar.sun.ac.za

CHAPTER 8. LENGTH-SCALE-BASED RESCALING 49

relevance determination) can be factorized as

Λ̂
−1

= (L̂ L̂)
−1

(8.4)

= L̂−1L̂−1

where L̂ = diag(ℓ̂1, ℓ̂2, . . . , ℓ̂d)

and simplifying the kernel with this factorization yields

∴∴ kSE(xi,xj ; ℓ̂) = σ2f · exp
(
−1

2
(xi − xj)

⊤L̂−1L̂−1(xi − xj)

)
+ σ2nδij (8.5)

= σ2f · exp
(
−1

2
(L̂−1xi − L̂−1xj)

⊤
I−1(L̂−1xi − L̂−1xj)

)
+ σ2nδij .

It is clear that this rescaled kernel is now equivalent to a squared exponential kernel using
the rescaled input data L̂−1X with unit length-scales

∴ kSE(xi,xj ; ℓ̂) ⇐⇒ kSE(L̂
−1xi, L̂

−1xj ;1d). (8.6)

Therefore, GPs constructed using these kernel functions would be equivalent, since entries
defining the kernel matrix K would be equal, or

K = [kSE(xi,xj ; ℓ̂)]1≤i,j≤n = [kSE(L̂
−1xi, L̂

−1xj ;1d)]1≤i,j≤n, (8.7)

concluding the proof.

Next, to see the influence of the length-scale-based rescaling on the use of a trust region
in a trust-region-based BO framework, it is important to restate the observations that (a) the
inferred length-scale parameter ℓ̂ of the squared exponential kernel function in a Gaussian
process (GP) with automatic relevance determination is roughly proportional to the smooth-
ness of the objective function in each dimension, and that (b) the inferred length-scales for
a cluster of observations tend to be smaller as a cluster of observations becomes smaller. By
rescaling the observed inputs using these inferred local length-scales while keeping a trust
region with a fixed size, the size of an inferred trust region in the original objective function
space can be manipulated to account for the local smoothness of the objective function. This
rescaling can, therefore, form the basis of a trust region update strategy by expanding the
space of observations in regions of the objective function with longer length-scales (in other
words, smoother regions of the objective function) and vice versa.

It is important to note that using this length-scale-based rescaling in isolation, without dis-
carding observations or using a subset of observations to keep the cluster small, would simply
lead to rescaling by the global length-scales of the objective function (in effect, the underlying
global smoothness). While this would essentially be a form of dynamic preconditioning with-
out prior knowledge of the input sensitivities and may be advantageous for the maximization of
the acquisition function for separable, ill-conditioned objective functions, eventually the same
numerical issues as standard BO will be encountered that would inhibit convergence. Keep-
ing the active cluster of observations small would encourage the length-scales to be smaller,

https://scholar.sun.ac.za

CHAPTER 8. LENGTH-SCALE-BASED RESCALING 50

allowing convergence to a solution through the repeated rescaling using the length-scales of
the shrinking clusters as the algorithm progresses.

In summary, by performing the length-scale-based rescaling at each algorithm iteration in
a traditional trust-region-based BO framework, this transformation can allow for improved
convergence characteristics and better performance on select separable or ill-conditioned func-
tions, as seen in the ablation study of Chapter 10. However, the full potential of the rescaling
is harnessed when combined with the trust-region rotation of the previous chapter, extending
the improved performance to more general objective functions. This combination is used by
the LABCAT algorithm, detailed in the next chapter.

https://scholar.sun.ac.za

Chapter 9

Detailed Description of the LABCAT
Algorithm

ἄλγος \ál.gos\: I. pain of body, Il., Soph.
2. pain of mind, grief, distress, Hom.

II. anything that causes pain, Bion., Anth.

— H. G. Lidell & R. Scott, A Greek-English Lexicon

This chapter presents a detailed, mathematical description of the components of the pro-
posed LABCAT algorithm, as outlined in Chapter 6. This chapter begins by presenting a
combined observation transformation using the transforms defined in Chapter 7 and 8. Fur-
thermore, the iterative calculation of the parameters of this combined transformation and
the approximative estimation of the most-likely Gaussian process (GP) hyperparameters for
the transformed data are also given. Additionally, this chapter describes the specific imple-
mentation of the trust region, observation discarding strategy, algorithm initialization and
termination used in the LABCAT algorithm. The chapter concludes with a detailed mathe-
matical description and computational complexity analysis of the algorithm, synthesizing the
work previously discussed.

9.1 Combined Observation Transformation

In the flowchart of Figure 6.1 describing the different steps of the LABCAT algorithm, it
can be seen that the main loop of the algorithm contains several steps to transform the
observed data from the objective function. Specifically, the observed outputs are min-max
normalized and the observed inputs are then recentred, rotated about the current minimum
using the weighted principal components and finally rescaled using the most likely length-
scales. As stated in Chapters 7 and 8, these preprocessing steps can each be described by some
transformation applied to the observed data with an associated invariant property. In order to
combine the effects of each of these transformations, the LABCAT algorithm maintains both
the original observations and a transformed representation thereof which ensures that all of the
invariant properties (i)–(iv) hold, leveraging the combined advantages of the transformations
as previously described in the respective sections.

51

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 52

In order to facilitate the transformation of new points between the original space of the
objective function and the space of the transformed observations, an explicit mapping is de-
fined between the original and transformed observations using an affine transformation. The
parameters of this transformation encode the relationship between the two sets of observations
and allow representations of a new point in one to be calculated for the other. The remain-
der of this section firstly defines the combined transform and the associated transformation
parameters before defining functions to iteratively update the transformation without a full
recalculation of the transformation parameters.

Note that, in a slight abuse of notation to ensure readability, for the rest of this chapter a
tuple of an observed input set X and an output set Y (or transformations thereof) is used to
indicate a dataset (X,Y) = D = {(xi, yi) | i ∈ {1, . . . , n}} in order to simplify the construction
of a GP and associated acquisition function, in addition to the continued use of X ∈ Rd×n

and y ∈ Rd (and transformed representations thereof) to indicate the matrix composed of the
set of observed inputs X and vector composed of the set of observed outputs Y .

9.1.1 Transformation Definition

The combined, full-rank affine transformation is constructed from the translational, rotational
and scaling components of the centering, weighted-principal-component rotation and length-
scale-based rescaling transforms, respectively, defined in Equations 7.2, 7.3 and 8.1. This
combined transformation defined in terms of the transformed representations of the observed
inputs, indicated using the primed counterpart of a variable, is given by

xi = RSx′
i + c ∀i ∈ {1, . . . , n}, (9.1)

which can also be expressed using the matrices

X = RSX′ + c1⊤
n , (9.2)

with the offset vector c, rotation matrix R and scaling matrix S calculated to ensure that the
invariant properties (ii), (iii) and (iv), respectively, hold for the transformed observed inputs
X ′.1 Similarly, a second mapping is defined between the original and transformed observed
output values, given by

yi = ay′i + b ∀i ∈ {1, . . . , n}, (9.3)

which can also be expressed using the vectors

y = ay′ + b1⊤
n , (9.4)

where the two scalar transformation parameters a and b are calculated such that Y ′ is min-
max normalized (invariant property (i)). This transformed representation can be visualized
by following the operations performed on a set of data from an arbitrary, ellipsoidal function
in Figure 7.2 with the rescaling performed in Figure 8.1 (c) and (d).

1For mathematical convenience, the relationship between X and X ′ is defined in terms of a transformation
applied to the transformed points. Since the transformation is invertible, the relationship can equivalently be
stated as the transformation applied to the original points X′ = S−1R⊤(X − c1⊤

n).

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 53

In general, the transformation parameters of these two transformations may not be unique
(such as the rotation of invariant property (iii) defined up to reflection). By inspecting the indi-
vidual transforms applied to the observed input data associated with invariant properties (ii)–
(iv) from Equations 7.2, 7.3 and 8.1, it is clear that these equations are purely translational,
rotational, and scaling operations, respectively. As such, a naïve choice for the rotational
component R, scaling component S and translational component c, based on these equations
and the observed values X, can be given by

R = U, S = L̂, and c = xmin, (9.5)

Similarly, choices for the scaling and offset components of the transformation applied to the
observed output data a and b, based on the min-max normalization of Equation 7.1, can be
given by

a = ymax − ymin and b = ymin. (9.6)

While these choices are sufficient2 for the ideal, mathematical case with infinite precision,
the implementation may be precluded by the finite-precision of real-world computing machines.
Specifically, calculating these values in practice requires operations involving the original input
points X, which, as established in the previous chapters, may become clustered during the
course of a BO algorithm. This may lead to numerical issues due to the ill-conditioning of
this matrix and cause values such as the weighted principal components U to be impossible to
calculate directly. As such, the next section defines the transformation parameters in terms of
recurrence relationships using the transformed representations of the observed data and the
values of the transformation parameters from the previous algorithm iteration, avoiding the
use of the original data directly.

9.1.2 Iterative Transformation Parameter Calculation

During the execution of the LABCAT algorithm, it is not necessary to perform a full recalcu-
lation of X ′ and Y ′ from the current values of X and Y (with the respective transformation
parameters defined in the input and output transformation definitions from Equations 9.2
and 9.3) at each algorithm iteration. Instead, to calculate the values for the current iteration,
indicated by the subscript t, the transformed representations obtained from the preceding al-
gorithm iteration, denoted as X ′

t−1 and Y ′
t−1, are leveraged for this calculation. Moreover, the

associated transformation parameters of the previous algorithm iteration are also retained, also
indicated by the subscript t− 1. To provide further context for this process in the LABCAT
algorithm and introduce the necessary notation, a reduced form of the flowchart describing
the overall LABCAT algorithm is given in Figure 9.1.

As seen in Figures 6.1 and 9.1, the sets of observed data at the end of an algorithm iteration
X̃ ′

t−1 and Ỹ ′
t−1 may incorporate or remove observations such that the invariant properties (i)–

(iv) no longer hold for the previously calculated transformed representations X ′
t−1 and Y ′

t−1 at
the start of the algorithm iteration. To efficiently restore the invariant properties for X ′

t and
Y ′
t , these values, with the associated transformation parameters, are calculated in terms of the

2Proofs showing that these choices of transformations parameters ensure that the invariant properties (i)–
(iv) hold for X ′ and Y ′ can optionally be found in Appendix A, as these choices do not form part of the
iterative scheme of the next section.

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 54

Rotate observed
input data (T⟳)

Normalize observed
output data (Tmin-max)

Determine most likely
GP length-scales

Centre observed
input data (T⊙)

Construct GP with
transformed data

Rescale input data with
GP length-scales (T✣)

⟳

✣

Possible addition and
removal of observations

Figure 9.1: Reduced flowchart based on the main loop of Figure 6.1 with specific focus on the
iterative transformation parameter calculation process.

transformation defined in the previous algorithm iteration and the sets of observed values at
the end of the previous algorithm iteration. Note that, to define a proper recurrence relation,
the initial values X̃ ′

0 and Ỹ ′
0 used by the LABCAT algorithm, with associated transformation

parameters, are calculated using a modified version of the transformations from Equations 9.1
and 9.3 based on the bounds of the objective function Ω and is given in Section 9.5.

As shown in the flowchart of Figure 9.1, the transformed outputs of the end of the previous
iteration Ỹ ′

t−1 are firstly renormalized using the minimum and maximum values of this set,
ỹ′min, t−1 and ỹ′max, t−1, to ensure that invariant property (i) holds, given by

Y ′
t = T↕, t(Ỹ

′
t−1) :=

{
ỹ′i, t−1 − ỹ′min, t−1

ỹ′max, t−1 − ỹ′min, t−1

∣∣∣∣ ỹ′i, t−1 ∈ Ỹ ′
t−1

}
(9.7)

and the transformation parameters in the output transformation from Equation 9.3 are up-
dated by

at = at−1 · (ỹ′max, t−1 − y′min, t−1), (9.8)

bt = bt−1 + at−1 · ỹ′min, t−1. (9.9)

Proof. At the start of some algorithm iteration t − 1 > 0, the transformation from the
observed outputs Yt−1 to the transformed outputs Y ′

t−1 is given by

yi, t−1 = at−1 · y′i, t−1 + bt−1, (9.10)

with at−1 and bt−1 calculated such that invariant property (i) holds. Between the calculation
of these values and the end of the algorithm iteration, observations may be added to or
removed from Y ′

t−1 such that the invariant property may no longer hold for the transform

ỹi, t−1 = at−1 · ỹ′i, t−1 + bt−1, (9.11)

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 55

using the observed values at the end of the algorithm iteration Ỹt−1.
For the next algorithm iteration t, we must prove that

yi, t = at · y′i, t + bt (9.12)

expresses a new transformation, calculated using Ỹ ′
t−1, at−1 and bt−1, such that invariant

property (i) holds.
Substituting the updated values of Yt, at and bt from Equations 9.7, 9.8, and 9.9, respec-

tively, into the definition of the transformation at algorithm iteration t from Equation 9.12,
simplifying yields

yi, t = at−1 · (ỹ′max, t−1 − ỹ′min, t−1) ·
(

ỹ′i, t−1 − ỹ′min, t−1

ỹ′max, t−1 − ỹ′min, t−1

)
+ bt−1 + at−1 · ỹ′min, t−1

= at−1 · (ỹ′i, t−1 − ỹ′min, t−1) + bt−1 + at−1 · ỹ′min, t−1

= at−1 · ỹ′i, t−1 + bt−1 − at−1 · ỹ′min, t−1 + at−1 · ỹ′min, t−1

= at−1 · ỹ′i, t−1 + bt−1.

This result implies that

∴ Yt = Ỹt−1, (9.13)

which must be true, given that the set of untransformed output observations does not
change between the end of the previous algorithm iteration and the calculation of the new
transformation parameters at the start of the current algorithm iteration.

Therefore, Equation 9.12 implies a mapping using the same original output points from
Equation 9.11 expressed using the new, transformed output values Y ′

t and transformation
parameters at and bt such that invariant property (i) holds, concluding the proof.

Having reestablished invariant property (i) for the observed output data, we now turn to
the task of reestablishing invariant properties (ii)–(iv) for the observed input data in order.
Firstly, invariant property (ii) is preserved by recentring X̃ ′

t−1 on the (possibly new) minimum
candidate x̃′

min, t−1 (the minimum candidate solution of (X̃ ′
t−1, Ỹ

′
t−1)) with

X′
⊙, t = T⊙, t(X̃

′
t−1) := X̃

′
t−1 − x̃′

min, t−11
⊤
n , (9.14)

with the offset vector ct updated using the value of the previous iteration and the (possibly
new and non-zero) minimum candidate

ct = ct−1 + Rt−1St−1x̃
′
min, t−1. (9.15)

Next, to restore invariant property (iii), it can be seen by inspecting the transform defined
in Equation 9.2 that multiplying the transformed input data X′ by the scaling matrix S yields
a representation of the data in an intermediate (rotated and translated), affine space of the
original input space of X. The weighted principal components Uaffine, t, with the weights Wt

calculated using Y ′
t according to Equation 7.9, can be calculated in this intermediate space as

St−1X
′
⊙, tWt = Uaffine, tΣaffine, tV

⊤
affine, t. (9.16)

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 56

This rotation matrix Uaffine, after a change of basis using St−1 from the intermediate space,
can be used to rotate X′

⊙, t using the transform

X′œ

, t = T œ

, t(X
′
⊙, t) := S−1

t−1U
⊤
affine, tSt−1X

′
⊙, t (9.17)

and calculate the transformation parameter Rt in terms of the value from the previous iteration

Rt = Rt−1Uaffine, t, (9.18)

essentially updating the rotational component of the transformation defined in Equation 9.1
without requiring the full transformation of X ′ back to X, which would require additional
matrix multiplications.

Finally, similarly to the rescaling performed in Equation 8.1, the most likely length-scales
ℓ̂ for a GP fitted to X′œ

, t and Y ′
t with an automatic relevance determination kernel (collected

into diagonal matrix L̂t) are used to rescale X′œ

, t according to

X′
←→

←
→ , t

= T←→

←
→ , t(X

′œ
, t) := L̂−1

t X′œ

, t (9.19)

and recalculate the parameter St in terms of the value from the previous iteration

St = L̂tSt−1, (9.20)

also essentially updating the scaling component of the transformation defined in Equation 9.1,
enforcing invariant property (iv) without requiring the full transformation of X ′ back to X.

By composing the update formulae defined in Equations 9.14, 9.17 and 9.19, a new trans-
formation is implied with an updated representation of the transformed input data and trans-
formation parameters that ensure that invariant properties (ii)–(iv) hold, or

∴ X ′
t = T←→

←
→ , t(T œ

, t(T⊙, t(X̃
′
t−1))) (9.21)

=⇒ Xt = RtStX
′
t + ct1

⊤
n .

Proof. At the start of some algorithm iteration t − 1 > 0, the transformation from the
observed inputs Xt−1 to the transformed inputs X′

t−1 is given by

Xt−1 = Rt−1St−1X
′
t−1 + ct−11

⊤
n , (9.22)

with Rt−1, St−1 and ct−1 calculated such that the invariant properties (ii)–(iv) hold. Be-
tween the calculation of these values and the end of the algorithm iteration, observations
may be added to or removed from X ′

t−1 such that the invariant properties may no longer
hold for the transform

X̃t−1 = Rt−1St−1X̃
′
t−1 + ct−11

⊤
n , (9.23)

using the observed values at the end of the algorithm iteration X̃t−1.
For the next algorithm iteration t, we must prove that

Xt = RtStX′
t + ct1

⊤
n , (9.24)

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 57

expresses a new transformation using new transformation parameters, calculated using
Equation 9.21 such that the invariant properties (ii)–(iv) hold for the new set of trans-
formed inputs X′

t.
Substituting the updated values of X′

←→

←
→ , t

and St from Equations 9.19 and 9.20 into the
definition of the transformation at algorithm iteration t from Equation 9.24, given that both
S and L̂−1 are diagonal scaling matrices and that multiplication of diagonal matrices are
commutative, simplifying yields

∴ Xt = RtStX′
←→

←
→ , t

+ ct1
⊤
n

= Rt(L̂tSt−1)(L̂
−1
t X′œ

, t) + ct1
⊤
n

= RtSt−1L̂tL̂
−1
t X′œ

, t + ct1
⊤
n

= RtSt−1X′œ

, t + ct1
⊤
n .

Substituting the updated values of X′œ

, t and Rt from Equations 9.17 and 9.18 into this
transform, recalling that the matrix U obtained from the SVD is orthogonal (U−1 = U⊤),
and simplifying yields

∴ Xt = RtSt−1X
′œ
, t + ct1

⊤
n

= (Rt−1Uaffine, t)St−1(S
−1
t−1U

⊤
affine, tSt−1X

′
⊙, t) + ct1

⊤
n

= Rt−1Uaffine, tU
⊤
affine, tSt−1X

′
⊙ + ct1

⊤
n

= Rt−1St−1X
′
⊙, t + ct1

⊤
n .

Substituting the updated values of X′
⊙, t and ct from Equations 9.14 and 9.15 and simpli-

fying, using the fact that matrix multiplication is left- and right distributive, yields

∴ Xt = Rt−1St−1X
′
⊙, t + ct1

⊤
n

= Rt−1St−1(X̃
′
t−1 − x̃′

min, t−11
⊤
n) + (ct−1 + Rt−1St−1x̃

′
min, t−1)1

⊤
n

= Rt−1St−1X̃
′
t−1 + ct−11

⊤
n −Rt−1St−1x̃

′
min, t−11

⊤
n + Rt−1St−1x̃

′
min, t−11

⊤
n

= Rt−1St−1X̃
′
t−1 + ct−11

⊤
n

= X̃t−1,

which must be true, given that the set of untransformed input observations does not change
between the end of the previous algorithm iteration and the calculation of the new trans-
formation parameters of the next algorithm iteration.

Therefore, Equation 9.24 implies a mapping using the same original input points from
Equation 9.23 expressed using the new, transformed input values X ′

t and transformation
parameters Rt, St and ct such that the invariant properties (ii)–(iv) hold, concluding the
proof.

This iterative technique ensures that all of the invariant properties (i)–(iv) expected of X ′

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 58

and Y ′ are efficiently ensured at each algorithm iteration as the current set of observations D
changes, as these changes may cause invariant properties to no longer hold for the transfor-
mations defined in the previous algorithm iteration. Using this approach avoids the need to
explicitly store or manipulate the observed data in the original objective function space X and
Y . This is important, as this space can become ill-conditioned or face numerical issues, espe-
cially when data points are very close together, which can occur as the algorithm converges
to a very small distance from the desired solution.

In summary, this cyclical process of recentring, rescaling and rotation ensures that the
transformed X ′ and Y ′ remain well-conditioned at each algorithm iteration, even if the corre-
sponding observations in the original objective function space X and Y become ill-conditioned
or clustered closely together. The rotation performed in Equation 9.17 also ensures that the
automatic relevance determination kernel, as defined in Equation 3.9, can effectively leverage
local separability within the objective function during the rescaling in Equation 9.19, aligning
the axes of each length-scale of the automatic relevance determination kernel with the axes of
local separability, as seen in Figure 7.3.

9.2 Approximative Gaussian Process Hyperparameter
Estimation

In the previous section that describes the transformation from the original observations X
and Y to transformed representations X ′ and Y ′, the length-scale invariant property (iv) is
preserved in Equation 9.19 by calculating the most likely length-scale hyperparameters ℓ̂ for a
GP fitted to the recentred and rotated observed inputs X ′œ from Equation 9.17 and normalized
output values Y ′ from Equation 9.7. This fitted GP is also used to determine the next input
point to sample from the objective function by maximizing the acquisition function based
on this GP. Therefore, a set of optimal or near-optimal kernel hyperparameters need to be
determined at each algorithm iteration to ensure efficient length-scale-based rescaling and a
sufficiently accurate surrogate GP model of the objective function.

Instead of the conventional approach of a full re-estimation of the kernel hyperparame-
ters θ̂ using the MAP estimate of the marginal likelihood for a given set of hyperparameters
from Equation 3.16 at each algorithm iteration (or once per some fixed number of algorithm
iterations), an approximative scheme is adopted. In this approach, the approximate hyperpa-
rameters for the local GP model are calculated at each algorithm iteration using a small, fixed
number of optimization steps, which are expected to tend towards the exact hyperparameters
with subsequent algorithm iterations, not with additional optimization steps per algorithm it-
eration. Using a fixed number of optimization steps, instead of executing as many optimization
steps as necessary for convergence of the hyperparameters, results in computational advan-
tages by setting a fixed cap to the number of expensive operations with a complexity of O(n3)
(recalculating the K−1 matrix from Section 3.1) performed during each algorithm iteration.

The rest of this section is structured as follows: Firstly, the choices and prior distributions
of the hyperparameters are defined that influence the shape of the log marginal likelihood for
a given set of hyperparameters, and, by extension, the Jacobian and Hessian matrices thereof.
Next, the operations necessary to calculate the Jacobian and Hessian matrices are presented
and several symmetries in these matrices are discussed that ease the computational cost of
these calculations. Finally, the approximate maximization of the log marginal likelihood using

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 59

a single Newton or gradient ascent step, using the previously calculated Jacobian and Hessian
matrices, combined with backtracking line search is given.

9.2.1 Hyperparameter Prior Distribution Selection

Recalling the definition of the squared exponential kernel function with automatic relevance
determination from Section 3.2, the hyperparameters of this kernel consists of the signal and
noise variances (σf and σn) and length-scales for each dimension (ℓ = (ℓ1, ℓ2, . . . , ℓd)) in
addition to the mean function m(·) of the GP. In the LABCAT algorithm, the length-scales
are optimized using the log marginal likelihood from Equation 3.16 while the rest of these
hyperparameters are calculated from the observed data directly at each algorithm iteration.

Firstly, the prior mean function m(·) of the GP is set to a constant to prevent excessive
exploration, defined by the mean of the transformed output data Y ′

m(·) = 1

n

n∑
i=1

y′i, (9.25)

and the noise variance in the chosen kernel function from Equation 3.9 is chosen to be set to
a small value to function as a small “nugget” term for increased numerical stability [37], with
the fixed3 value of

σn = 10−6. (9.26)

Furthermore, while the standard approach is to optimize the value of the signal variance
parameter σf directly using the marginal likelihood, the value of this parameter is set to a
fixed value of the standard deviation of Y ′ (similar to the choice of prior distribution in the
BADS [54] algorithm) at each algorithm iteration

σf = std(Y ′), (9.27)

with the algorithm not very sensitive to this choice due to the continuous rescaling of the
outputs described in Equation 9.7.

Next, the logarithm of the length-scales is optimized. The reasons for this choice is twofold:
Firstly, this modification ensures that the length-scales remain strictly positive, as negative
length-scales have no geometric interpretation and length-scales of zero would lead to a rank-
deficient (and, therefore, singular) transformation in Equation 9.19. Secondly, since the in-
ferred length-scales essentially function as trust-region expansion or contraction factors as
mentioned in Section 8.1, the trust-region contraction would be very sensitive to length-scales
smaller than one and vice versa. In other words, while inferred length-scales of, say, 0.1 and
10 are equivalent to contracting or expanding the trust region by a factor of 10, the distance
from unity differs greatly. Finding the optimum length-scales with respect to the logarithm
solves both of these problems, as the logarithm is strictly positive by definition and 0.1 and
10 are equidistant from 1 in logarithmic space.

It is also reasonable to assume, in the context of trust-region-based BO and the rescaling
performed in the previous section, that the most likely length-scales for a GP fitted to a

3Since the values of Y ′ are min-max normalized at each algorithm, the fixed value of σn will always remain
small relative to the observed outputs, even if the original observations Y become very small during convergence.

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 60

trust region typically exhibit mostly gradual changes as the trust region shifts. Thus, if the
most likely length-scales are calculated for a GP fitted to a locally constrained window and
a new potential minimum is determined, causing a slight shift in the window’s location, the
hyperparameters for the new window are expected to be similar to the previous values. To
incorporate this assumption, a Gaussian prior is placed over the logarithm of the length-
scales (e.g., [66, 67, 90]). This augmentation effectively restrains the GP from making abrupt
changes in hyperparameters, reinforcing the stability of the algorithm. Given the invariant
property (iv), the value of the length-scale for a new algorithm iteration should be close to
unity, therefore, the Gaussian prior is chosen to be centred on one. Therefore, the Gaussian
prior (now centred on 0 in logarithmic space) is defined as

ln ℓi ∼ N (0, σ2ℓ) ∀i ∈ {1, . . . d}. (9.28)

For the standard deviation of this prior σℓ, a default value of approximately 0.1 is suggested,
such that, by the three-sigma rule of thumb,4 the side lengths of the local trust region is
unlikely to change by more than 30% per algorithm, as the length-scales can be expected to
fall in the range 0.7 < ℓ̂d < 1.3. In the proposed, iterative hyperparameter estimation scheme
of the LABCAT algorithm, this prior distribution provides both regularization and damping
to the process of approaching the true hyperparameters with subsequent algorithm iterations
by preventing absurd choices for the length-scales.

With these design choices, the hyperparameters to be optimized are reduced to the length-
scales ℓ of the squared exponential kernel with automatic relevance determination for the GP
fitted in the transformed space of X ′œ and Y ′. Using an adapted form of Equation 3.16, this
problem is stated as

ℓ̂ = argmax
ℓ

(log p(Y ′ |X ′œ ,θ) + log p(ln ℓ |σℓ)) (9.29)

with the prior distribution term now being log-normally distributed

log p(ln ℓ |σℓ) = log
(
N (0, σ2ℓI)

)
. (9.30)

The derivatives of the log marginal likelihood surface from Equation 3.13 (without a prior
distribution for θ), with respect to the logarithm of the length-scales ℓ [91], are given by the
Jacobian defined as

Jℓ = ∇ln ℓ log p(Y
′ |X ′œ ,θ) =

[
∂ log p(Y ′ |X ′œ ,θ)

∂ ln ℓi

]
1≤i≤d

∈ Rd×1 (9.31)

and Hessian

Hℓ = ∇2
ln ℓ log p(Y

′ |X ′œ ,θ) =

[
∂2 log p(Y ′ |X ′œ ,θ)

∂ ln ℓi ∂ ln ℓj

]
1≤i,j≤d

∈ Rd×d, (9.32)

4A value sampled three standard deviations from the mean of a Gaussian distribution would be a part
of the tail of the distribution and, as a result, be quite small. As the Gaussian prior is multiplied with the
marginal likelihood (both strictly positive), the resulting marginal likelihood three standard deviations away
from the mean of the Gaussian prior would also be quite small and very unlikely to be the MAP estimate of
the resulting posterior likelihood.

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 61

where the partial derivatives ∂ log p(Y ′ |X′œ ,θ)
∂ ln ℓi

and ∂2 log p(Y ′ |X′œ ,θ)
∂ ln ℓi ∂ ln ℓj

for the squared exponential
kernel with automatic relevance determination from Equation 3.9 are given in the next section.

Incorporating the prior distribution over the length-scales from Equation 9.30, the log
marginal likelihood maximized in Equation 9.29 (derived from Equations 3.13 and 3.16) is
augmented with this prior distribution (using the logarithm of the multivariate Gaussian and
ignoring normalization constants) and is given by

log p(Y ′ |X ′œ ,θ;σℓ) = log p(Y ′ |X ′œ ,θ) + log p(ln ℓ |σℓ) (9.33)

= log p(Y ′ |X ′œ ,θ)− (ln ℓ⊤)(ln ℓ)

2σ2ℓ
,

with the Jacobian defined in Equation 9.31 augmented as

Jℓ |σℓ
= ∇ln ℓ log p(Y

′ |X ′œ ,θ;σℓ) = Jℓ −
1

σ2ℓ
ln ℓ (9.34)

and the Hessian defined in Equation 9.32 augmented as

Hℓ |σℓ
= ∇2

ln ℓ log p(Y
′ |X ′œ ,θ;σℓ) = Hℓ −

1

σ2ℓ
I. (9.35)

9.2.2 Jacobian and Hessian Matrix Calculation

During the optimization of the length-scales in the previous subsection, first and second deriva-
tives of the log marginal likelihood for a GP constructed using the observations X ′œ and Y ′

(derived from Equation 3.13), with respect to the logarithm of the length-scales from kernel
function defined in Equation 3.9, are calculated. This subsection provides the definitions of the
partial derivatives that define the entries of these Jacobian Jℓ and Hessian Hℓ matrices, as well
as present several symmetries in these partial derivatives that reduce the memory footprints
and computational overhead needed for these calculations.

Using the results as derived by Moore et al. [91], Zhang and Leithead [92], and Ras-
mussen [30, Ch. 5],5 the partial derivatives that define the entries of the matrices in Equa-
tions 9.31 and 9.32 are given for the Jacobian by

∂ log p(Y ′ |X ′œ ,θ)

∂ ln ℓi
=

1

2
(y′ −m′)

⊤K−1 ∂K
∂ ln ℓi

K−1(y′ −m′) (9.36)

− 1

2
tr

(
K−1 ∂K

∂ ln ℓi

)
∀i ∈ {1, . . . , d},

and for the Hessian by
5As stated by Zhang and Leithead [92] and Rasmussen [30, Ch. 5], directly calculating the matrix-matrix

products in Equations 9.31 and 9.32 should be avoided as far as possible. Instead, the products K−1 ∂K
∂ℓi

should
be cached, matrix-vector products should be prioritized and only the products needed for the trace terms
should be calculated.

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 62

∂2 log p(Y ′ |X ′œ ,θ)

∂ ln ℓi ∂ ln ℓj
=

1

2
tr

(
K−1 ∂2K

∂ ln ℓi ∂ ln ℓj

)
− 1

2
tr

(
K−1 ∂K

∂ ln ℓj
K−1 ∂K

∂ ln ℓi

)
(9.37)

+ (y′ −m′)
⊤K−1 ∂K

∂ ln ℓj
K−1 ∂K

∂ ln ℓi
K−1(y′ −m′)

− 1

2
(y′ −m′)

⊤K−1 ∂2K
∂ ln ℓi ∂ ln ℓj

K−1(y′ −m′) ∀i, j ∈ {1, . . . , d},

where the vectors y′ and m′ are constructed similarly to Equations 3.4 and 3.5, respectively,
using the transformed observed outputs Y ′ with the chosen, constant mean function defined
in Equation 9.25 of the previous section.

The derivative factors in Equations 9.36 and 9.37 are specifically calculated with respect
to the logarithm of the length-scales by transforming the derivatives of the kernel matrix K
from Equation 3.3 according to

∂K
∂ ln ℓi

=
∂K
∂ℓi

∂ℓi
∂ ln ℓi

, (9.38)

accomplished by multiplying the derivative of the length-scale with respect to its logarithm,
derived using the dummy variable vi as

vi = ln ℓi =⇒ ℓi = evi

∴
∂ℓi
∂ ln ℓi

=
∂evi

∂vi
= evi = ℓi. (9.39)

The kernel matrix derivative, with respect to the logarithm of the length-scales, now becomes

∂K
∂ ln ℓi

=


∂k(x1,x1)
∂ ln ℓi

∂k(x1,x2)
∂ ln ℓi

. . . ∂k(x1,xn)
∂ ln ℓi

∂k(x2,x1)
∂ ln ℓi

∂k(x2,x1)
∂ ln ℓi

. . . ∂k(x2,xn)
∂ ln ℓi

...
...

. . .
...

∂k(xn,x1)
∂ ln ℓi

∂k(xn,x2)
∂ ln ℓi

. . . ∂k(xn,xn)
∂ ln ℓi

 . (9.40)

Note that, since the SE kernel is symmetric (i.e., k(xp,xq) = k(xq,xp)), the derivative of the
kernel matrix is also symmetric

∂K
∂ ln ℓi

=

(
∂K
∂ ln ℓi

)⊤
, (9.41)

allowing the kernel matrix derivatives to be fully described by only calculating the upper or
lower triangular portions of the matrix.

Calculating the entries of Equation 9.40 simply involve taking the derivative of Equation 3.9
with respect to ℓi

∂k(xp,xq)

∂ℓi
= k(xp,xq) ·

(xpi − xqi)
2

ℓ3i
(9.42)

and multiplying by ℓi to obtain the derivative with respect to the logarithm of ℓi

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 63

∂k(xp,xq)

∂ ln ℓi
=
∂k(xp,xq)

∂ℓi

∂ℓi
∂ ln ℓi

= k(xp,xq) ·
(xpi − xqi)

2

ℓ2i
. (9.43)

Using these results, the partial second derivatives of the kernel matrix, with respect to the
length-scales ∂2K

∂ ln ℓi ∂ ln ℓj
, can be determined. The entries of these matrices, for the case that

i ̸= j, are given as

∂2k(xp,xq)

∂ ln ℓj ∂ ln ℓi
=
∂k(xp,xq)

∂ ln ℓj
· (xpi − xqi)

2

ℓ2i
. (9.44)

Expanding and rearranging terms in this formula yields

∂2k(xp,xq)

∂ ln ℓj ∂ ln ℓi
= k(xp,xq) ·

(xpj − xqj)
2

ℓ2j
· (xpi − xqi)

2

ℓ2i

= k(xp,xq) ·
(xpi − xqi)

2

ℓ2i
·
(xpj − xqj)

2

ℓ2j

=
∂k(xp,xq)

∂ ln ℓi
·
(xpj − xqj)

2

ℓ2j

=
∂2k(xp,xq)

∂ ln ℓi ∂ ln ℓj
, (9.45)

implying the following symmetry in the log marginal likelihood Hessian matrix Hℓ

∂2K
∂ ln ℓi ∂ ln ℓj

=

(
∂2K

∂ ln ℓi ∂ ln ℓj

)⊤
. (9.46)

Lastly, for the case where i = j (the main diagonal of Hℓ from Equation 9.32), the
derivative is determined to be

∂2k(xp,xq)

∂2 ln ℓi
=
∂k(xp,xq)

∂ ln ℓi

(
(xpi − xqi)

2

ℓ2i
− 2

)
. (9.47)

The identified symmetries in the kernel matrix partial derivatives reduce the computational
overhead needed to calculate as well as the memory footprints of the Jacobian and Hessian
from Equations 9.36 and 9.37, which are of the order O(n2d) and O(n3d) for general set of d
hyperparameters, respectively [91, 92].

9.2.3 Marginal Likelihood Maximization

After the calculation of the Jacobian and Hessian matrices Hℓ |σℓ
and Jℓ |σℓ

from Equa-
tions 9.34 and 9.35 of the log marginal likelihood defined in Equation 9.33, it is now possible
to partially maximize this marginal likelihood defined by the calculated matrices to deter-
mine the approximate MAP estimate for the most likely length-scales ℓ̂. This maximization
is performed using a single Newton or gradient step (based on the local geometry of the log

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 64

marginal likelihood) per algorithm iteration from the centre of the multivariate Gaussian prior
distribution for the length-scales from Equation 9.30.

If Hℓ |σℓ
is negative definite,6 it can be concluded that the current hyperparameters are

in a concave region of the likelihood space. Consequently, a single second-order Newton step
from the starting point of the centre of the chosen multivariate normal prior distribution (or,
a vector of zeroes 0 for the starting log length-scales) from Equation 9.30, with step size factor
γ, can be effectively employed. This second-order Newton step is given by

ln ℓ̂ = 0− γH−1
ℓ |σℓ

Jℓ |σℓ
. (9.48)

If Hℓ |σℓ
is not negative definite (in effect, the current hyperparameters are not in a concave

region of the log marginal likelihood space) a simple gradient ascent step is used, given by

ln ℓ̂ = 0 + γJℓ |σℓ
. (9.49)

For both of the second-order Newton- and gradient descent step, the step size factor γ is
selected using a backtracking line search [95] defined by the recurrence relation

γi = τγi−1, i ∈ {2, . . . , 5},

with the initial value

γ1 = 1. (9.50)

In other words, the step size γ is reduced from 1 by a factor of τ until the marginal likelihood
improves compared to the marginal likelihood of using length-scales of all unity or for a max-
imum of 5 iterations, a relaxed stopping condition compared to the more stringent sufficient
decrease criterion of the Armijo-Goldstein condition [95]. Similarly to values suggested by
Armijo, the value of τ = 1

2 is set for the second-order Newton step in Equation 9.48 and is set
to τ = 1

10 for the gradient descent in Equation 9.49, due to the lack of preconditioning of the
gradient step. Formally, this backtracking line search step to refine the approximation to the
MAP estimate of the length-scales ℓ̂ can be given as

ℓ̂ = min{i ∈ {1, . . . , 5} | Lθ(ℓ̂i) ≥ Lθ(1d)}, (9.51)

where the symbol ℓ̂i denotes the length-scales obtained from using a step size of γi for the
Newton or gradient step from Equations 9.48 and 9.49 and Lθ is a function that evaluates
the log marginal likelihood from Equation 9.33 at the specified length-scales ℓ̂i or using unit
length-scales.

Considering the rescaling of the input data performed in Equation 9.19, the calculation of
the most likely length-scales during each algorithm iteration can be interpreted as an indication

6The naïve method to determine negative definiteness would be to check if all eigenvalues of Hℓ |σℓ
are

negative after an eigendecomposition from Equation 5.6 with a complexity of O(d3). A more efficient method
would be to check if the matrix can be successfully decomposed using a Cholesky decomposition [62] or if every
Gershgorin disc [93] of the matrix is strictly negative (similarly, checking the minimum diagonal dominance
using the modified Gershgorin method of Deville [94] with better bounds for real, symmetric matrices), with
these methods of the order O(1

3
d3) and O(d2), respectively. In most practical applications of the LABCAT

algorithm, however, the number of observations are much larger than the objective function dimension (n ≫ d)
and the operations of the order O(n3) should dominate.

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 65

to expand or contract each of the dimensions of the transformed input data X ′. If X ′ is never
recentred, it is also reasonable to expect that additional observations could allow the GP to
construct a more accurate model of the objective function and the length-scales of this better
GP model would tend to unity.

9.3 Fixed Trust Region Definition

As previously stated in Section 4.2, a key mechanism of trust-region-based BO is limiting
the region of the acquisition function around the best candidate solution in which the next
point is observed by means of a trust region. In effect, finding this constrained maximum of
the acquisition function determines the next point to be observed from the objective function
and, therefore, the trust region is a key mechanism in the creation of the local GP surrogate
model. In the LABCAT algorithm, after the set of observations X is transformed to X ′

according to the invariant properties (i)–(iv) — specifically noting invariant property (ii)
and (iv) which state that the observed inputs are centred on the current minimum candidate
(x′

min =
[
0 . . . 0

]⊤ ∈ X ′) and the most likely length-scales of the kernel are rescaled to
unity (ℓ̂ 7→ (1, 1, . . . , 1)) — a trust region Ω′

TR is constructed in the space of X ′ as a closed,
compact d-cube with a side length of 2β and the constrained maximum of the acquisition
function is found using this trust region. Using the Cartesian product, this fixed trust region
is defined as the hypercube

Ω′
TR = [−β, β]d, (9.52)

where β is a tunable parameter that captures the trade-off between the exploration of the ob-
jective function and the exploitation of the region surrounding the current minimum candidate
solution. Small values for β strongly encourage local exploitation of the minimum candidate
solution, but may lead to small step sizes between successive candidate solutions. In the case
where β tends to infinity, the algorithm will search for the next point in an unconstrained
manner and revert to the global optimization of standard BO. For this parameter, values in
the interval 0.1 ≤ β ≤ 1 are recommended according to the rough heuristic β ≈ 1

d . From
practical experience, this range of values provides a good balance between exploration of the
objective function and encouraging convergence to a local optimum.

It is important to reiterate the difference between the trust region used by LABCAT and
those used by other, more classical methods such as those described in Section 2.5 and 4.2.
Instead of the size of the trust region being directly modified inside the fixed space of the
original observations X, in the LABCAT algorithm the size of the trust region is fixed in the
transformed space of observations X ′ and it is this transformed space that is scaled, rotated
and translated. In effect, this induces a trust region in the original objective function space of
X without requiring the transformation of X ′ back to X.

The acquisition function bounded by the trust region, chosen as the expected improvement
function (Section 4.1),7 is maximized using 10d random samples uniformly distributed across
the fixed trust region Ω′

TR. This technique is similar to the one used by the TRLBO algo-
rithm [55] and with the similar justification that the expected acquisition function optimization

7Note that many alternative acquisition functions have been proposed [69, 70, 96] and while we have chosen
expected improvement for simplicity and due to popularity, other acquisition functions could potentially be
substituted for expected improvement in the proposed algorithm.

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 66

error from using random search (compared to the standard approach of a more intensive multi-
start optimization procedure) will become smaller and smaller as the trust region shrinks. The
results obtained from this maximization are also validated against the original constraints of
the objective function Ω using rejection sampling after transforming the points back into the
original objective function space using the transform defined in Equation 9.1. In other words,
the point x′

α is found, similarly to Equation 4.5, by maximizing the expected improvement
over the intersection of Ω and Ω′

TR,8 or

x′
α = argmax

x′
∗∈Ω′

TR
x∗∈Ω

αEI(x
′
∗; (X

′, Y ′)). (9.53)

To sample the objective function using this input point, calculated in the transformed space,
the point is transformed to xα in the original objective function space using the transform
defined in Equation 9.1. This input point is then sampled from the objective function (f(xα) =
yα) and, after transforming the observed output value to yα using Equation 9.3, added to the
set of observed data.

9.4 Observation Discarding Strategy

Apart from limiting the region from which the next observation should be chosen, the trust
region Ω′

TR is also used to determine which observed points from X ′ and Y ′ should be pre-
served at each algorithm iteration. Observations outside this trust region are assumed to no
longer contribute significant information and, therefore, are discarded. This keeps the number
of observations in the GP surrogate model and, by extension, the computation time per algo-
rithm iteration relatively constant across the runtime of the algorithm, alleviating the noted
computational slowdown of standard BO (Section 3.1).9

A minimum number of observations are preserved at each algorithm iteration, even if some
fall outside the trust region, as there may be cases where discarding too many observations
may cause the observation set to become rank-deficient, an occurrence that may lead the GP
to make explosive changes to the most likely length-scales. This cache size factor is denoted
by ρ, such that the minimum number of preserved observations is the cache size factor ρ
multiplied by the objective function dimensionality d. The operation applied to X ′, removing
the observations in the set X ′

/∈Ω′
TR

if the size of X ′ is larger than ρd, is defined as

T/∈Ω′
TR

(X ′, Y ′) :=

{
(X ′, Y ′) |X ′| ≤ ρd
(X ′ \X ′

/∈Ω′
TR
, Y ′ \ {y′i |x′

i ∈ X ′
/∈Ω′

TR
}) |X ′| > ρd.

(9.54)

8While not explicitly handled as part of the expected improvement maximization, nonlinear or non-bound
constraints can theoretically be incorporated during the rejection sampling or by adding a barrier function to
the objective function.

9It is also not necessary to recalculate the kernel matrix of the GP, and the inverse or Cholesky decomposition
thereof, for the reduced set of observations. As noted in Section 4.1, for a GP with fixed hyperparameters (as
in this case before maximizing the acquisition function), the corresponding rows and columns of the elements
in X ′

/∈Ω′
TR

can be removed from K while K−1 can be updated efficiently in terms of the Schur complement [72]
or rank-1 downdates of the Cholesky decomposition of K, both of the order O(n2) [27, Ch. 9] for each removed
observation.

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 67

The set of input observations to be discardedX ′
/∈Ω′

TR
are chosen, prioritizing older observations,

to be those that fall outside the current trust region (∀x′ ∈ X ′
/∈Ω′

TR
, x′ /∈ Ω′

TR) until the size of
X ′ reaches the ρd threshold.10 The corresponding elements from Y ′ are also removed to ensure
that X ′ and Y ′ retain a one-to-one correspondence. Note that in this operation, the current
minimum candidate solution x′

min is guaranteed to be preserved due to invariant property (ii),
which guarantees that this candidate is moved to the origin, an element of Ω′

TR by definition.
The cache size factor ρ is a user-specified parameter and a poor choice thereof may lead to

suboptimal performance. For instance, if ρ is set too low, the model GP constructed using X ′

and Y ′ may have too few observations to model the objective function adequately. Conversely,
if ρ is set too high, the algorithm may become sluggish as it struggles to discard old, non-
informative observations (that slow down the O(n3) matrix operations and possibly misinform
the local GP surrogate model) quickly enough to keep up with the moving trust region. Bearing
these remarks in mind, a value in the interval 5 ≤ ρ ≤ 10 is recommended.

9.5 Algorithm Initialization and Termination

During the initialization of the LABCAT algorithm, similarly to standard BO discussed in
Section 4.1, a set of initial points are chosen to be evaluated before the main loop begins, with
this selection strategy known as the design of experiment (DoE). Using the provided input
domain Ω, the DoE for the initial GP surrogate model X0 is distributed according to a Latin
hypercube design [73] with 2d + 1 points to ensure full rank. Latin hypercube sampling is a
popular choice as the DoE for trust-region-based BO methods [50–52, 55] to avoid clustering of
the initial points, which might occur with random sampling, and to capture as much projected
coverage along the objective function’s coordinate axes as possible.

After observing these initial input points X0 from the objective function to obtain the
initial observed outputs Y0, the upper and lower bounds placed on the objective function used
to define Ω in Equation 4.1 are used to initialize the respective transformed representations X̃ ′

0

and Ỹ ′
0 . To determine the initialized transformed representations, we adapt the mechanisms

used to enforce the invariant properties (i), (ii) and (iv) for this initialization. The modi-
fications of this adapted mechanism are that X̃ ′

0 is centred on the midpoint of the bounds,
no rotation is performed, and the bounds are rescaled to lie on the hypercube [−1, 1]d (in
other words, unit length from the origin in each dimension), similarly to the domain rescaling
performed by several other trust-region-based BO methods [51, 52, 54]. These modifications
ensure that initial observations from the DoE are well-conditioned, but it should also be noted
that the invariant properties (i)–(iv) temporarily do not hold until the first algorithm iteration
completes. The modified transformation to calculate the initial X̃ ′

0 and Ỹ ′
0 is given by

(X̃ ′
0, Ỹ

′
0) = TΩ(X0, Y0,Ω) :=

{(
S−1
0 (xi, 0 − c0),

yi, 0 − ymin, 0

ymax, 0 − ymin, 0

) ∣∣∣ i ∈ {1, . . . , n}} (9.55)

In addition to the initial values of the transformed inputs and outputs, the input transforma-
tion parameters S0, R0 and c0 from Equation 9.1 are initialized using Ω according to

10It was also considered to score the observed points by their relative importance using the compression
metric based on Bayesian quadrature developed by Visser et al. [97]. However, it was found that the algorithm
would become too hesitant to discard old observations that still have a large influence on the shape of the
surrogate model and most likely length-scales, inhibiting performance and preventing convergence.

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 68

S−1
0 = diag

(
|Ωmax

1 − Ωmin
1 |

2
, . . . ,

|Ωmax
d − Ωmin

d |
2

)−1

,

R0 = I,

and c0 =
[
Ωmax
1 +Ωmin

1

2
. . .

Ωmax
d +Ωmin

d

2

]⊤
(9.56)

with the output transformation parameters a0 and b0 from Equation 9.3 initialized as

a0 = ymax, 0 − ymin, 0 and b0 = ymin, 0. (9.57)

As previously discussed with standard BO (Section 4.1), the LABCAT algorithm also has
no specific convergence criterion and may terminate as specified by the user if either (i) the
current candidate minimum observed output ymin is less than some target value, (ii) if the
range of output values in Y (captured by the variable a) falls below some tolerance or (iii) the
maximum objective function evaluation budget is reached.

9.6 Algorithm Pseudocode and Discussion

Synthesizing the detailed descriptions given in this chapter of the constituent components of
the LABCAT algorithm, as seen in Figure 6.1, a description of the LABCAT algorithm is
given in Algorithm 4.

The modified trust-region-based BO loop from Algorithm 3 is visible (lines 5 − 17), with
the additions of the transformation of the observed data (lines 3, 6− 8 and 11), determining
the optimal length-scales (line 10) and the discarding of observations (line 12).

The mechanisms though which the objectives of this dissertation (from Section 1.2) are
addressed can now be identified, with these objectives being to develop a trust-region-based
BO method that (i) is resistant to computational slowdown, (ii) is adaptable to non-stationary
and ill-conditioned functions without kernel engineering, and (iii) exhibits good convergence
characteristics. Firstly, using the greedy data discarding strategy defined in Section 9.3 (line
12), the number of observations used to construct the local GP surrogate is kept relatively
constant at each algorithm iteration. This avoids the computational slowdown of standard
BO with more observations noted in Section 3.1. Secondly, the use of a local trust region
based on the local length-scales of GP surrogate (line 13) allows the algorithm to adapt to the
local shape of a non-stationary objective function. The rotation of the trust region using the
weighted principal components (line 8) also allows the trust region to adapt to ill-conditioning
or separability of the objective function in arbitrary directions. Lastly, the use of a transformed
representation of the observed data X ′ and Y ′ that is forced to be well-conditioned allows the
LABCAT algorithm to converge much closer to a solution before encountering the numerical
issues found in standard BO.

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 69

Algorithm 4 LABCAT
Input: Objective function f , Bounds Ω, Trust region size factor β, Observation cache size

factor ρ, Length-scale prior standard deviation σℓ

1: Select initial input points X0 using Latin hypercube sampling over Ω

2: Y0 ← {f(x) |x ∈ X0} ▷ Evaluate objective function at initial input points
3: (X̃ ′

0, Ỹ
′
0) ← TΩ(X0, Y0,Ω) ▷ Initialize transformed representation

of observed data (see Eq. 9.55)
4: Ω′

TR ← [−β, β]d ▷ Construct fixed trust region hypercube (see Sec. 9.3)
5: while not converged do
6: Y ′

t ← T↕, t(Ỹ
′
t−1) ▷ Normalize observed output values (see Eq. 9.7)

7: X ′
⊙, t ← T⊙, t(X̃

′
t−1) ▷ Centre observed inputs using current mini-

mum candidate (see Eq. 9.14)
8: X ′œ

, t ← T œ

, t(X
′
⊙, t) ▷ Rotate observed inputs using weighted

principal components (see Eq. 9.17)
9: GP(m(·), kSE(·, ·); (X ′œ

, t, Y
′
t)) ▷ Construct GP with an SE kernel with ARD

to X ′œ and Y ′ (see Ch. 3)
10: ℓ̂← argmaxℓ(log p(Y

′
t |X ′œ

, t, ℓ) + log p(ℓ |σℓ)) ▷ Find most likely length-scales
(see Sec. 9.2)

11: X ′
t ← T←→

←
→ , t(X

′œ

, t) ▷ Rescale obs. inputs with most likely length-
scales (see Eq. 9.19)

12: (X ′
t, Y

′
t) ← T/∈Ω′

TR, t(X
′
t, Y

′
t) ▷ Discard observations if over ρd

threshold (see Eq. 9.54)
13: x′

α, t ← argmax
x′
∗∈Ω′

TR
x∗∈Ω

αEI(x
′
∗; (X

′
t, Y

′
t)) ▷ Maximize EI acquisition function over

trust region and bounds using 10d ran-
dom samples (see Eq. 4.7)

14: yα, t ← f(xα, t) ▷ Evaluate selected input point from objective
function, transformed according to Eq. 9.1

15: (X̃ ′
t, Ỹ

′
t) ← {(x′

α, y
′
α)} ∪ (X ′

t, Y
′
t) ▷ Append observation, with output value

transformed according to Eq. 9.3
16: end while
17: return (xmin, ymin) ▷ Return minimum observed candidate solution

https://scholar.sun.ac.za

CHAPTER 9. DETAILED DESCRIPTION OF THE LABCAT ALGORITHM 70

9.7 Computational Complexity

To analyze computational complexity of the LABCAT algorithm, the operations that pre-
dominantly influence the asymptotic complexity of a single algorithm iteration are listed with
the respective complexities in Table 9.1 in terms of the current number of observations n and
dimensionality of the objective function d.

Operation Example equation Computational complexity

Marginal likelihood Hessian (9.32) O(n3d)
Kernel matrix inversion (3.3) O(n3)
Marginal likelihood Jacobian (9.31) O(n2d)
SVD (9.16) O(n2d)
Rotation matrix multiplication (9.17) O(nd2)
Scaling matrix multiplication (9.19) O(nd)
Matrix-vector addition/subtraction (9.55) O(nd)

Table 9.1: Computational complexity of operations that predominantly influence the com-
plexity of the LABCAT algorithm with example equations where the respective operations are
applied. Operations are ordered by noting that, in almost all cases, n≫ d.

From this table, it can be concluded that the asymptotic complexity of the LABCAT
algorithm, performed for a total of N iterations, to be O(Nn3d). At each algorithm iteration,
due to the user-specified observation cache factor ρ limiting the number of stored observations,
the number of observations at each algorithm iteration is expected to remain relatively constant
n ≈ ρd. By substituting this value of n in O(Nn3d), the complexity of a single instance of
the LABCAT algorithm would, therefore, be approximately O(Nρ3d4) which can be further
simplified to O(N) (in effect, linear in terms of the number of iterations), since the values of
ρ and d are fixed at the start of the algorithm instance.

In this chapter, the proposed LABCAT algorithm has been presented as a synthesis of the
length-scale-based rescaling of Chapter 8 and the weighted-principal-component-based rota-
tion of Chapter 7 with the trust-region-based BO framework reviewed in Chapter 4. A detailed
description of the algorithm as well as the mechanisms used to achieve the aims of this dis-
sertation have been outlined and it is this form of the algorithm that is used for a comparison
with other state-of-the-art optimization algorithms, performed in the next chapter.

https://scholar.sun.ac.za

Chapter 10

Experimental Results

This chapter presents the results of a numerical performance analysis of the proposed LABCAT
algorithm, which is based on two computational experiments. The first experiment, discussed
in Section 10.1, compares the LABCAT algorithm with existing trust-region-based BO algo-
rithms by applying them to several well-known, synthetic optimization test functions selected
to encompass a range of objective function characteristics. These test functions are used to
analyze the rate and limit of convergence as well as the computational slowdown of the tested
algorithms, both known and identified shortcomings of standard BO. The second experiment
applies the LABCAT algorithm and trust-region-based BO algorithms, as well as algorithms
from the wider field of derivative-free optimization, to the BBOB test suite using the com-
paring continuous optimizers (COCO) benchmarking software [40], presented in Section 10.2.
This extensive test suite is designed to be a representative sample of the more difficult problem
distribution that can be expected in practical continuous-domain optimization. An ablation
study is also performed on the LABCAT algorithm using this benchmark to determine the
contribution of each significant element of the algorithm to overall performance. Using the
results from these benchmarks, the performance of LABCAT relative to other algorithms and
when applied to certain function groups with shared characteristics are discussed. All results
in this dissertation were obtained using an 11th generation Intel i7–11700 CPU @ 2.5 GHz,
with the exception of those extracted from the COCO archive.

10.1 Synthetic Test Functions Benchmark

As outlined in Section 1.1, standard BO has several shortcomings, the addressing of which
forms the motivation for this research. This section will focus on two of these shortcomings,
namely the poor convergence characteristics (such as the inability to converge arbitrarily close
to a solution) and the tendency of standard BO to slow down computationally due to poor
scaling with additional algorithm iterations. To investigate to what extent the shortcomings
of standard BO are inherited or addressed, the proposed LABCAT algorithm and existing
trust-region-based BO algorithms, previously discussed in the literature study of Chapter 2,
are applied to a set of well-known, synthetic 2-D test functions with a range of objective
function characteristics.

The set of selected synthetic test functions are chosen as the sphere [98], quartic [99],

71

https://scholar.sun.ac.za

CHAPTER 10. EXPERIMENTAL RESULTS 72

Booth [100], Branin-Hoo [101], Rosenbrock [58] and Levy [102] functions,1 with the respective
definitions of these function provided in Table 10.1 and visualizations of each function given
in Figure 10.1. These synthetic functions are each designed with certain properties and have
been selected to cover a large range of problem characteristics: The sphere, quartic, Booth
and Rosenbrock functions are unimodal, with the Booth and Rosenbrock functions being
badly conditioned and the optimum of the Rosenbrock function being in a curved valley,
making convergence to an arbitrary precision difficult. The Branin-Hoo and Levy functions are
multimodal, with the Branin-Hoo function having several global minima and the Levy function
having several local minima. The sphere, quartic and Booth functions are also separable, with
the first two being separable along the coordinate axes while the latter is not. Note that, while
these functions have closed-form definitions and, therefore, may have well-defined gradients,
for the purposes of this analysis they are treated as black-box objective functions to simulate
the problem of black-box optimization.

Function Definition Domain fmin

Sphere [98] f(x) =
∑d

i=1 x
2
i xi ∈ [−5.12, 5.12] f(xmin) = 0,

xmin = (0, . . . , 0)

Quartic [99] f(x) =
∑d

i=1 ix
4
i xi ∈ [−1.28, 1.28] f(xmin) = 0,

xmin = (0, . . . , 0)

Booth [100] f(x) = (x1 + 2x2 − 7)
2

+ (2x1 + x2 − 5)
2

x1, x2 ∈ [−10, 10] f(xmin) = 0,
xmin = (1, 3)

Rosenbrock [58] f(x) =
∑d−1

i=1 [100(xi+1 − x2i)
2

+ (xi − 1)
2
]

xi ∈ [−5, 10] f(xmin) = 0,
xmin = (1, . . . , 1)

Branin-
Hoo [101]

f(x) = (x2 − 5.1
4π2x

2
1 +

5
πx1 − 6)

2

+ 10(1− 1
8π) cos(x1) + 10

x1 ∈ [−5, 10],
x2 ∈ [0, 15]

f(xmin) = 0.397887,
xmin = (−π, 12.275),
(π, 2.275), and
(9.42478, 2.475)

Levy [102] f(x) =
∑d−1

i=1 (wi − 1)
2
[1 + 10 sin2(πwi + 1)]

+ sin2(πw1)

+ (wd − 1)
2
[1 + sin2(2πwd)],

where wi = 1 + xi−1
4 ∀i = {1, . . . , d}

xi ∈ [−10, 10] f(xmin) = 0,
xmin = (1, . . . , 1)

Table 10.1: Selected synthetic benchmark function definitions.

This experiment has been performed using a Python framework and the LABCAT algo-
rithm has been implemented using Rust and tested using the included Python interface with
the source code available in the labcat library.2 For the other selected trust-region-based BO
algorithms from Chapter 2, the SRSM implementation from the Python bayesian-optimization3

library is used as well as the Python interfaces provided by the authors of the TuRBO, TRLBO,
BADS and TREGO algorithms from the turbo,4 trlbo,5 pybads6 and trieste7 libraries, re-
spectively. A purely random search (implemented using Python) as well as standard BO, also
from the bayesian-optimization package, is also included as a performance baseline.

1The sphere, Rosenbrock and quartic functions are also known as the first, second and fourth De Jong
functions [98].

2https://github.com/esl-sun/LABCAT
3https://github.com/bayesian-optimization/BayesianOptimization
4https://github.com/uber-research/TuRBO
5https://github.com/agier9/TRLBO
6https://github.com/acerbilab/pybads
7https://github.com/secondmind-labs/trieste

https://scholar.sun.ac.za

https://github.com/esl-sun/LABCAT
https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/uber-research/TuRBO
https://github.com/agier9/TRLBO
https://github.com/acerbilab/pybads
https://github.com/secondmind-labs/trieste

CHAPTER 10. EXPERIMENTAL RESULTS 73

The parameters of the LABCAT algorithm are set within the recommended ranges (β =
0.5, ρ = 7 and σℓ = 0.1) with the recommended starting design of experiment (DoE) budget
(2d + 1). Each of the additional algorithms used in the comparison are also initialized with
default parameters and a DoE budget of 2d+1. The TuRBO algorithm is also used in the two
configurations of the original paper: a single trust region (“TuRBO-1”) and five parallel trust
regions (“TuRBO-5”). Using these selected algorithms, 50 independent optimization runs are
performed for each benchmark function per algorithm with a sampling budget of 150 objective
function evaluations. The results of this comparison are given in Figure 10.2 with a statistical
significance analysis of these results given in Table 10.2 and Appendix B.

The noted convergence shortcomings of standard BO, namely that BO struggles to converge
to an arbitrary precision, is clearly visible. This deficiency is also inherited by the SRSM,
TuRBO and TRLBO algorithms, clearly making very slow progress after 150 objective function
samples. The BADS algorithm exhibits better convergence characteristics for the Branin-Hoo
and Levy before flattening out, possibly due to the deterministic mesh adaptive direct search
(MADS) fallback step incorporated in this algorithm. It is clear that the LABCAT algorithm is
not only capable of consistent convergence to a much higher level of precision for a wide range
of objective function characteristics, but also does so at a faster overall rate than comparable
trust-region-based BO and BO algorithms. It should be noted, however, that for several
functions, the BADS and SRSM algorithms make faster initial progress for roughly the first
40 samples before being overtaken by the LABCAT algorithm.

To compare the real execution time needed and computational slowdown for a single run
of each of the compared algorithms, the total wall-clock times for each of the algorithms are
recorded and summarized in Table 10.2 and given for each function in Tables B.1 and B.2.
To remove a potential source of bias, the time required to sample the objective function is not
included in these measurements.

While the LABCAT algorithm exhibits the best average wall-clock time of the compared
algorithms (Table 10.2), this should be interpreted as an indication of relative performance as
these times do not account for differing implementations, use of multithreading and levels of
code optimization for each algorithm. For example, use of a compiled language (Rust) versus
an interpreted language (Python) could easily account for an order of magnitude difference in
performance due to the additional code optimizations performed by the compiler.

For a more like-to-like comparison, the relative slowdown of each algorithm is measured as
the difference between the average iteration time over the entire 150 sample iterations and the
average iteration time over the last 30 iterations (representing the final 20% of the run). This
difference is calculated for each optimization run, and the average values of the 300 runs are
reported in Table 10.2. These results clearly indicate a significant slowdown in the standard
BO algorithm, a shortcoming that is observed to a lesser extent in the other tested TR-BO
algorithms. Notably, LABCAT is the only algorithm which does not exhibit statistically
significant8 slowdown compared to random sampling, indicating that this shortcoming is not
inherited by the LABCAT algorithm.

8Comparisons are considered to be statistically different from the results of the random sampling algorithm
if the p-value obtained using Welch’s t-test [103] is less than 0.05, adjusted using a Bonferroni correction [104]
by the number of comparisons performed 0.05

8
= 0.00625 to reduce the false positive error rate.

https://scholar.sun.ac.za

C
H

A
P

T
E

R
10.

E
X

P
E

R
IM

E
N

T
A

L
R

E
SU

LT
S

74

(a) Sphere (b) Quartic (c) Booth

(d) Rosenbrock (e) Branin-Hoo (f) Levy

Figure 10.1: Visualizations of the selected synthetic test functions from Table 10.1.

https://scholar.sun.ac.za

C
H

A
P

T
E

R
10.

E
X

P
E

R
IM

E
N

T
A

L
R

E
SU

LT
S

75

0 20 40 60 80 100 120 140
Number of samples

14

12

10

8

6

4

2

0

2

lo
g 1

0
(y

m
in

f m
in

)

(a) Sphere

0 20 40 60 80 100 120 140
Number of samples

20

15

10

5

0

lo
g 1

0
(y

m
in

f m
in

)

(b) Quartic

0 20 40 60 80 100 120 140
Number of samples

14

12

10

8

6

4

2

0

2

lo
g 1

0
(y

m
in

f m
in

)

BO
LABCAT
BADS
SRSM
TREGO
TRLBO
TuRBO-1
TuRBO-5
Random

(c) Booth

0 20 40 60 80 100 120 140
Number of samples

10

8

6

4

2

0

2

lo
g 1

0
(y

m
in

f m
in

)

(d) Rosenbrock

0 20 40 60 80 100 120 140
Number of samples

14

12

10

8

6

4

2

0

2
lo

g 1
0
(y

m
in

f m
in

)

(e) Branin-Hoo

0 20 40 60 80 100 120 140
Number of samples

14

12

10

8

6

4

2

0

2

lo
g 1

0
(y

m
in

f m
in

)

(f) Levy

Figure 10.2: Performance of selected algorithms applied to synthetic 2-D test functions. The mean and standard deviation, indicated
by the shaded regions, of the logarithmic global regret, which is the log-difference between the best candidate solution ymin at each
sampling iteration of the objective function and the global minimum fmin, are reported. The definition and domain of each objective
function is given in Table 10.1.

https://scholar.sun.ac.za

C
H

A
P

T
E

R
10.

E
X

P
E

R
IM

E
N

T
A

L
R

E
SU

LT
S

76

Algorithm Execution time Iteration time (t100%) Iteration time (t20%) Change in average iteration times ↑/≈/↓

BO 25.645± (1.239) 1.721e−01± (8.257e−03) 2.055e−01± (1.350e−02) +19.544%± (5.596%) ↑

LABCAT 0.062 ± (0.022) 4.131e−04 ± (1.459e−04) 3.971e−04 ± (1.296e−04) −0.225% ± (15.003%) ≈

BADS 5.696± (0.764) 3.798e−02± (5.094e−03) 4.323e−02± (1.171e−02) +12.923%± (23.749%) ↑

SRSM 34.381± (1.958) 2.292e−01± (1.305e−02) 2.514e−01± (1.510e−02) +10.545%± (6.499%) ↑

TREGO 110.821± (4.127) 7.388e−01± (2.751e−02) 7.830e−01± (4.826e−02) +6.033%± (6.254%) ↑

TRLBO 1.380± (0.076) 9.200e−03± (5.091e−04) 9.615e−03± (1.098e−03) +4.279%± (8.051%) ↑

TuRBO-1 1.448± (0.141) 9.654e−03± (9.387e−04) 1.035e−02± (3.037e−03) +5.738%± (24.190%) ↑

TuRBO-5 3.936± (0.396) 2.624e−02± (2.640e−03) 2.956e−02± (5.857e−03) +11.923%± (17.258%) ↑

Random 0.011± (0.004) 7.378e−05± (2.579e−05) 7.291e−05± (3.227e−05) −0.959%± (14.035%) N/A

Table 10.2: Average and standard deviations of the wall-clock times (in seconds) for a total of 300 independent optimization runs
per selected algorithm over the 6 selected synthetic test functions from Table 10.2. The first column reports the total execution
times. The second and third columns report the average time to complete a single algorithm iteration with the average measured
over the entire optimization run (t100%) and the final 20% of the optimization run (t20%), respectively. The results in the final two
columns indicate the observed difference in the average iteration times (calculated per optimization with the result averaged over
all of the optimization runs) and whether this difference is statistically significantly8 greater than, similar to, or less than (indicated
using “↑”, “≈” and “↓”, respectively) the difference observed for the random sampling algorithm.

https://scholar.sun.ac.za

CHAPTER 10. EXPERIMENTAL RESULTS 77

10.2 COCO Black-Box Optimization Benchmark

To further investigate the performance of the proposed LABCAT algorithm across a wider set
of objective functions, the second experiment is performed using the comparing continuous
optimizers (COCO) benchmarking software [40]. In this dissertation, the noiseless BBOB test
suite [105] is used, which comprises 24 black-box objective functions to optimize, given in
Table 10.3. The functions in this test suite are collected into 5 groups, each with the following
shared characteristics: (i) separable, (ii) unimodal with moderate conditioning, (iii) unimodal
with high conditioning, (iv) multimodal with adequate global structure, and (v) multimodal
with weak global structure. In all, the results in this dissertation from the COCO software
represent several weeks of combined CPU time on the previously mentioned hardware.

To evaluate the performance (as defined by the COCO software) of a single optimization
algorithm on this suite, 15 instances of each function are generated, with each instance corre-
sponding to a randomized modification of the function by a random translation of the optimum
and a random rotation of the coordinate system. For each instance, an array of problems is
also generated. Each of these problems are defined as a tuple comprising a function instance
and a target precision to reach. To set these targets and give a good performance reference,
COCO defines a composite algorithm known as best2009, an algorithm composed of the best
performing optimization algorithm for each function from the BBOB-2009 workshop [106].9

Using the COCO experimental setup for expensive objective functions (e.g., [48, 53, 54]), the
targets for each instance are set to the values reached by best2009 after a certain number
of objective function evaluations. Specifically, this number of function evaluations is set to
50 values [0.5, . . . , 100]× d, uniformly distributed in logarithmic space with the width of this
distribution proportional to the objective function dimensionality d. For the analysis in this
dissertation, all of the algorithms tested are provided with a total sampling budget of 200d
objective function evaluations per function instance to reach the targets defined by best2009.
If an algorithm terminates before exhausting the sampling budget, unless otherwise specified,
an independent restart is performed with the remaining sampling budget.

With the recorded performance of an optimization algorithm applied to these problems,
results known as runtime empirical cumulative distribution functions (runtime ECDFs) are
compiled by the COCO software [40], which aggregates the proportion of problems solved by
the algorithm for a given budget of objective function evaluations. Note that, similarly to the
benchmarks in the previous section, a purely random search is also included in the analysis
to serve as a rough lower bound for performance. An example of such a runtime ECDF
generated by the COCO software is given in Figure 10.3, specifically for the performance
of the LABCAT, best2009 and random algorithms applied to the 2-D Rosenbrock function
(f8 from Table 10.3). In this example figure, the traces of each tested algorithm show the
proportion of previously defined, best2009-based optimization targets achieved (vertical axis)
against the number of objective function evaluations (horizontal axis). Since targets cannot
be unreached, the traces are monotonic. As such, an algorithm that reaches the targets faster
using fewer evaluations will have a larger area under its curve. Therefore, both the area under
the curve and the final proportion of targets achieved are valuable for assessing the relative
performance of the algorithms, as the area under the curve reflects the rate at which the
optimization targets are achieved, while the final value indicates how closely the algorithm

9Note that, due to being composed of the best performing algorithms for each function, outperforming
best2009 is quite a difficult task.

https://scholar.sun.ac.za

CHAPTER 10. EXPERIMENTAL RESULTS 78

Figure 10.3: Example runtime empirical cumulative distribution function (ECDF) generated
by the COCO software.

has approached the optimum. Also note that the horizontal axis is given as the logarithm
of the number of objective function evaluations normalized by the problem dimensionality, in
order to promote readability and ease of comparison between different problem dimensions.

10.3 LABCAT Ablation Study with the COCO Benchmark

During the development of the LABCAT algorithm, several design choices have been made,
such as the choice of weights during the calculation of the weighted principal components
(Section 7.2) or the choice of prior distribution during the determination of the most likely
length-scales (Section 9.2.1). As such, it is necessary to verify these choices experimentally.
Therefore, an ablation study is performed on the LABCAT algorithm to verify these design
choices made during the development of the algorithm as well as to assess the contribution
and significance of each component of the LABCAT algorithm on overall performance. In this
analysis, a single component of the LABCAT algorithm is removed or modified in some way to
either hamper or magnify its effect on the total performance of the algorithm. This ablation
study is divided into two parts, where the first contains most of the ablated versions of the
LABCAT algorithm and the second part investigates the choice of weight matrix W.

For the first half of the analysis, the unablated, baseline algorithm is set as the full LAB-
CAT algorithm with a set of parameters within the recommended ranges (β = 1

d , ρ = 7
and σℓ = 0.1), denoted as “LABCAT”, and compared against instances of LABCAT with
(a) no principal component rotation (“LABCAT noPC”), (b) more passive discarding of ob-
servations by doubling the maximum recommended value for ρ to 20 (“LABCAT p20”), (c) a
uniform length-scale prior distribution instead of a multivariate Gaussian distribution (“LAB-
CAT ULSP”), (d) an increased number of Newton or gradient steps during hyperparameter
optimization from 1 to 10 (“LABCAT n10”), and (e) more rigorous acquisition function max-
imization using a more computationally intensive, multistart approach with the L-BFGS-B
algorithm [8] with 10d starting points across the trust region (“LABCAT BFGS”). The results
obtained by applying each of the ablated versions of LABCAT on the BBOB test suite is
summarized for all test functions in Figure 10.4, with the full results for function groups with
shared characteristics given in Appendix C.1.1.

https://scholar.sun.ac.za

CHAPTER 10. EXPERIMENTAL RESULTS 79

Function name Notes

(i) Separable functions

f1 Sphere

f2 Ellipsoidal Conditioning ≈ 106

f3 Rastrigin 10d local minima with regular structure

f4 Büche-Rastrigin Asymmetric transform applied to f3

f5 Linear Slope Linear function with solution on domain boundary

(ii) Unimodal functions with low or moderate
conditioning

f6 Attractive Sector Highly asymmetric

f7 Step Ellipsoidal Similar to f2, consisting of many plateaus

f8 Rosenbrock Curved n− 1 dimensional valley

f9 Rotated Rosenbrock Rotated f8

(iii) Unimodal functions with high conditioning

f10 Ellipsoidal Rotated f2

f11 Discus Single search direction 1000 times more sensitive than all others

f12 Bent Cigar Non-quadratic valley must be followed to optimum

f13 Sharp Ridge Similar to f12, non-differentiable valley floor

f14 Different Powers Input variable sensitivities change approaching optimum

(iv) Multimodal functions with adequate global
structure

f15 Rastrigin Non-separable f3

f16 Weierstrass Non-unique optimum, highly rugged and moderately repetitive
landscape

f17 Schaffers F7 Highly multimodal with varying frequency and amplitude of mod-
ulation

f18 Schaffers F7, Moderately ill-conditioned Moderately ill-conditioned f17

f19 Composite Griewank-Rosenbrock Resembles f8 in a highly multimodal way

(v) Multimodal functions with weak global
structure

f20 Schwefel 2d prominent local minima in corners of unpenalized, rectangular
search area

f21 Gallagher’s Gaussian 101-me Peaks 101 optima with random heights and positions

f22 Gallagher’s Gaussian 21-hi Peaks 21 optima with random heights and positions, higher conditioning
(1000) vs. f21 (30)

f23 Katsuura 10d global optima, highly rugged and repetitive

f24 Lunacek bi-Rastrigin Highly multimodal with 2 funnels, one leading to a local minimum
that covers 70% of the search space

Table 10.3: BBOB test suite objective functions. Notes regarding each objective function are
given by the authors of the original test suite specification document by Hansen et al. [105].

https://scholar.sun.ac.za

C
H

A
P

T
E

R
10.

E
X

P
E

R
IM

E
N

T
A

L
R

E
SU

LT
S

80

d = 2 d = 5 d = 10
A

ll
Fu

nc
ti

on
s

Figure 10.4: Empirical cumulative distribution functions (ECDFs) of runtimes table for the first half of the ablation study with the
COCO dataset over all functions for dimensions 2, 5 and 10.

d = 2 d = 5 d = 10

A
ll

Fu
nc

ti
on

s

Figure 10.5: Empirical cumulative distribution functions (ECDFs) of runtimes table for the second half of the ablation study using
different weight matrices with the BBOB test suite over all functions for dimensions 2, 5 and 10.

https://scholar.sun.ac.za

CHAPTER 10. EXPERIMENTAL RESULTS 81

It is clear that the principal component rotation contributes significantly to the overall
LABCAT algorithm performance, with the resulting performance decrease due to the removal
thereof (“LABCAT noPC”) especially visible in lower dimensions and for unimodal functions
in groups (ii) and (iii). This aligns with the behaviour observed in the illustrative example
of Figure 7.3, as several of the unimodal functions are characterized by valleys with changes
in direction, similar to the Rosenbrock function, for which the principal components align
the trust region with the direction of the valleys. A similar contribution can be seen by the
observation discarding strategy (“LABCAT p20”), with a more pronounced difference in 5 and
10 dimensions. Severe performance degradation is observed when the Gaussian prior placed
over the kernel length-scales in Equation 9.33 is replaced by a uniform distribution (“LABCAT
ULSP”). While not indicated by the COCO-generated runtime ECDF graphs, a significant in-
crease in the number of restarts was observed when using this uniform distribution, indicating
instability in the ablated LABCAT algorithm. As opposed to the two previous modifications
that may yield performance gains for certain function groups, replacing the length-scale prior
is also a strict downgrade, with no performance gains in any function group. Additional
Newton or gradient steps during the optimization of the length scales (“LABCAT n10”) yield
little to no significant performance increases, therefore a single Newton or gradient step seems
to be sufficient, with all of the associated computational savings. Similarly, maximizing the
expected improvement acquisition function using the more intensive multistart method (“LAB-
CAT BFGS”) also does not provide noticeable performance improvements and the method of
using random sampling to maximize the expected improvement is deemed to be sufficient.

Inspecting Section C.1.1, it is interesting to note that removal of the principal component
rotation and slower observation removal yields modest improvements when applied to the
multimodal function groups (iv) and (v). This may be due to the slower convergence of these
modified versions of the LABCAT algorithm, leading to more exploration of the objective
function space and finding slightly better, hard to reach solutions for these functions. In
practice, if meta-information regarding the objective function is available that indicates a
multimodal structure and the additional computational cost can be spared, the observation
cache multiplier ρ could be increased for better performance.

In summary, from the results of the first half of the ablation study, each of the constituent
components of LABCAT contribute significantly to overall performance and the assumptions
made in Section 9.2 and 9.3 are shown to be well-founded.

Having analyzed the relative contributions of several components of the LABCAT algo-
rithm, the second half of the ablation study is performed to determine the effect of the choice
of weights W applied to each observed input for the determination of weighted principal com-
ponents in Section 7.2 and 9.1. As these weights determine the relative contribution of each
observation to the “important directions” identified in the observed data (in effect, the princi-
pal components) with no proven, universally optimal choice for these weights, it is prudent to
investigate if the principal components determined using one set of weights leads to improved
performance compared using another. Therefore, for this half of the ablation study, instances
of LABCAT are tested using (a) uniform weights, Wii = 1 (“LABCAT wUni”), (b) quadratic
weights with offset to ensure weight of ymax is nonzero, Wii = 0.9(1 − yi) + 0.1 (“LABCAT
wOff”), (c) linear weights, Wii =

√
1− yi (“LABCAT wLin”), (d) inverse weights, Wii = yi

(“LABCAT wInv”) as well as including the default “LABCAT” and “LABCAT noPC” as de-
fined in the previous experiment. The results obtained by applying each of the versions of
LABCAT with different weight values on the BBOB test suite is summarized in Figure 10.5

https://scholar.sun.ac.za

CHAPTER 10. EXPERIMENTAL RESULTS 82

with the full results provided in Section C.1.2.
From Figure 10.5, it is clear that the performance of the LABCAT algorithm does improve

when incorporating the output-based sample-wise weights when compared to uniform weights,
although not as much as compared to no principal-component-based rotation whatsoever. The
algorithm does not seem very sensitive to the exact choice of method to calculate W, suggesting
that a sufficient requirement may be to have higher relative weight to lower observations.
Interestingly, using a rotation with inverse weights (assigning higher weights to observations
with larger output values) also yields improved performance compared to using no rotation
at all. This may be due to this rotation aligning the trust region with directions orthogonal
to the local axes of separability, which, due to the rectangular shape of the trust region, may
somewhat align secondary axes of the trust region with the separability axes.

10.4 Comparison with State-Of-The-Art Derivative-Free
Optimization Algorithms using the COCO Benchmark

To compare the proposed LABCAT algorithm to algorithms from the wider field of derivative-
free optimization when applied to the problem of black-box optimization, the set of algo-
rithms included in the comparison from Section 10.1 is expanded with the state-of-the-art
DTS-CMA-ES, AutoSAEA, MCS, NEWUOA and SMAC algorithms, similar to the compar-
isons performed by Acerbi and Ma [54] and Diouane et al. [53]. The DTS-CMA-ES [48] and
AutoSAEA [49] algorithms use a surrogate-assisted evolutionary strategy based on a combina-
tion of the evolutionary algorithm and GP surrogates, known to be well-suited to multimodal
problems. SMAC [22] is a variation of standard BO using an isotropic GP kernel and a
locally biased stochastic search to optimize the expected improvement acquisition function.
MCS [107] balances a global search based on the DIRECT [108] algorithm and a local search
using a local quadratic interpolation. NEWUOA [109] also uses a quadratic interpolation, but
combines it with a classical trust-region-based approach.

Results for DTS-CMA-ES, MCS, NEWUOA and SMAC were obtained from the COCO
database (see the respective publications [110–113]). The results obtained by applying each
of the functions on the BBOB test suite are shown in Figure 10.6, presenting results for 2,
3 and 5 dimensions across all functions and from the two most difficult function groups: (iii)
unimodal functions with high conditioning and (v) multimodal functions with weak global
structure, respectively. Complete results that include the other function groups can be found
in Section C.2. Note that wall-clock times are not reported for this analysis, as this information
is not recorded by the COCO software.

The results obtained from applying the selected algorithms to the BBOB test suite reveal
several important findings. Firstly, the LABCAT algorithm emerges as the top performer
when considering all of the tested functions, having, from inspection, the largest area under the
curve for any single algorithm for all dimensions (excluding the composite best2009 algorithm).
Additionally, the algorithm excels particularly well when applied to unimodal functions with
high conditioning from group (iii), even surpassing best2009 for this function group that is not
traditionally considered to be well-suited for BO and trust-region-based BO methods (a fact
also reflected in the results of these algorithms applied to this function group). Furthermore,
the LABCAT algorithm proves to be highly proficient for 2-D and 5-D, for which it achieves the
best performance of all of the BO-based algorithms, with a smaller performance gap for 10-D

https://scholar.sun.ac.za

C
H

A
P

T
E

R
10.

E
X

P
E

R
IM

E
N

T
A

L
R

E
SU

LT
S

83

Dim. All Functions (iii) Unimodal, High Conditioning (v) Multimodal, Weak Structure

d
=

2
d
=

5
d
=

10

Figure 10.6: Selected empirical cumulative distribution functions (ECDFs) of runtimes table from the COCO benchmark for com-
parison of the LABCAT algorithm with various state-of-the-art optimization algorithms for dimensions 2, 5 and 10.

https://scholar.sun.ac.za

CHAPTER 10. EXPERIMENTAL RESULTS 84

between the LABCAT and BADS algorithms. Upon inspection of the results in Section C.2,
the performance of the LABCAT algorithm is also observed to be slightly lower than those
of other trust-region-based BO algorithms (BADS, SRSM, TuRBO, TREGO) when applied
to multimodal functions with weak global structure from function group (iv), probably due
to LABCAT heavily favouring local exploration of the objective function and, by extension,
being unable to model the underlying global structure of these functions as well as the other
algorithms. This reduction in performance, however, can be mostly remedied by increasing
the observation cache size factor ρ, as noted in the ablation study of the previous section.

The closest competitor from the compared trust-region-based BO algorithms, when con-
sidering all functions, is the BADS algorithm. The BADS algorithm is, however, not very
resistant to highly conditioned functions from group (iii), being consistently outperformed by
the LABCAT algorithm. It is unclear how much of the performance of the BADS algorithm
can be ascribed to its deterministic MADS fallback step, although some information may be
gleaned by comparing this performance to another trust-region-based BO method without this
fallback step, such as TuRBO. In this comparison, similar performance is observed for multi-
modal functions, while BADS performs better for separable and unimodal functions. This may
imply that the MADS fallback step incorporated into the BADS algorithm allows for increased
local exploitation when compared to other, “purer” trust-region-based BO algorithms.

Considering the full set of tested algorithms, the only algorithm that approaches the per-
formance of the LABCAT algorithm, and slightly outperforms it for 10-D, for all functions
is the DTS-CMA-ES algorithm. This algorithm ends essentially tied with LABCAT for 2-D
and slightly ahead for 10-D, although the LABCAT algorithm still has a larger area under the
curve in both of these cases, indicating that the LABCAT algorithm achieved the required op-
timization targets earlier. Although the DTS-CMA-ES algorithm exhibits a somewhat slower
start, it makes significant progress in subsequent iterations. From Section C.2, DTS-CMA-ES
also performs noticeably better than the rest of the algorithms for multimodal functions with
adequate global structure from group (iv), with this performance gap growing with dimension.
This implies that DTS-CMA-ES is the algorithm that can leverage the underlying structure
the most to ignore local minima.

Other observations of note include that SMAC seems to have an advantage for a very
limited number of objective function evaluations before being overtaken, presumably due to
SMAC being able to start optimizing before other algorithms have finished sampling their
respective initial DoEs. The MCS algorithm performs notably well for separable functions,
possibly due to the deterministic nature of the search that is aligned with the separability
axes. The AutoSAEA algorithm makes significant progress after a slower start, similar to
DTS-CMA-ES, due to the need for sampling the larger initial population required for the
evolutionary framework.

In summary, the extent to which the proposed LABCAT algorithm addresses the noted short-
comings of standard BO has been presented in this chapter. Firstly, using a set of synthetic
test functions, the LABCAT algorithm is shown to be able to converge to an arbitrary pre-
cision without experiencing computational slowdown, in contrast to standard BO and, to a
lesser extent, trust-region-based BO methods. Secondly, using the COCO software and BBOB
test suite, the LABCAT algorithm is shown to be a leading contender in the field of expensive
black-box function optimization, performing better than all of the considered BO and trust-
region-based BO methods when considering all of the BBOB functions, with the exception of

https://scholar.sun.ac.za

CHAPTER 10. EXPERIMENTAL RESULTS 85

being tied for 10-D with the BADS algorithm. The LABCAT algorithm also performs notably
well for unimodal and highly conditioned functions, functions not normally associated with
standard BO.

https://scholar.sun.ac.za

Chapter 11

Conclusion

Standard Bayesian optimization (BO) is a popular and well-studied technique for the optimiza-
tion of black-box objective functions, especially renowned for a high degree of sample efficiency,
which allows it to find good solutions with relatively few objective function evaluations. Un-
fortunately, this method has several notable shortcomings which hinder its use across a broad
range of optimization problems and objective functions. Specifically, it can experience signif-
icant computational slowdown as the number of algorithm iterations increases, which poses
challenges for real-time applications. Additionally, BO may struggle with non-stationary and
ill-conditioned objective functions due to the reliance on a kernel-based Gaussian process (GP)
surrogate model that often requires manual kernel engineering to model these objective func-
tions adequately. Finally, BO can exhibit poor convergence characteristics, due to a lack of
theoretical guarantees and practical, numerical limitations.

This chapter contains an evaluation of the LABCAT algorithm in the context of the re-
search aims and objectives outlined in Chapter 1. Additionally, the key contributions of this
dissertation are highlighted and discussed, which seek to address the noted shortcomings of
standard BO. Finally, possible future avenues for research are outlined.

11.1 Evaluation of the LABCAT Algorithm

To address the noted shortcomings of standard BO, a set of research objectives were defined
in Section 1.2: (1) to investigate other existing modified BO methods to identify a broad
strategy of the proposed algorithm, (2) to derive a novel algorithm that addresses the noted
shortcomings of standard BO, and (3) to test this proposed algorithm using extensive and
representative numerical benchmarks.

Firstly, several approaches that have been proposed to address these shortcomings of stan-
dard BO by incorporating some measure of local focus were investigated, with the broad
outlines of these approaches discussed in Chapter 2. Of these approaches, trust-region-
based Bayesian optimization (BO) algorithms were identified as partially addressing these
shortcomings by constraining the selection of the next point to be sampled from the objective
function and incorporated into the Gaussian process (GP) surrogate model using an iteratively
updated trust region. This constraint ensures that the algorithm focuses its sampling efforts
within a local area where the surrogate model may be more accurate, improving performance.
By iteratively updating the trust region based on successive observations, trust-region-based

86

https://scholar.sun.ac.za

CHAPTER 11. CONCLUSION 87

BO algorithms offer a more targeted optimization strategy, potentially mitigating issues re-
lated to computational slowdown and convergence performance.

Building on the trust-region-based BO approach, the LABCAT algorithm was derived
and presented in Chapter 6–9. This proposed algorithm extends trust-region-based BO with
the addition of an adaptive observation and trust-region rescaling strategy, based on the
length-scales of the local GP surrogate, and rotation strategy, based on the weighted principal
components of the observations. Combined with a greedy observation discarding strategy and
approximative hyperparameter estimation, these components allow the LABCAT algorithm
to address the noted shortcomings of BO.

To verify the extent to which the shortcomings of BO are addressed, a set of numerical
benchmarks were performed in Chapter 10. Using a set of diverse synthetic test functions,
a comparison of the proposed LABCAT algorithm with standard BO and a variety of state-
of-the-art trust-region-based BO algorithms shows that the LABCAT algorithm is capable
of convergence to a much higher level of precision without encountering numerical issues or
instability. An analysis of the execution times for these synthetic test functions also show that
the LABCAT algorithm does not inherit the computational slowdown of standard BO.

A second comparison with a range of state-of-the-art black-box optimization methods from
the wider field of black-box optimization, performed using the COCO benchmarking software
and BBOB test suite, shows that the LABCAT algorithm is a strong contender in the domain
of expensive black-box function optimization, significantly outperforming standard BO for
nearly all tested scenarios and demonstrating exceptional performance compared to state-of-
the-art black-box optimization methods, particularly in the domain of unimodal and highly
conditioned objective functions not typically associated with BO. A small performance gap
remains for higher-dimensional, multimodal functions with global structure, possibly due to
the increased emphasis of the LABCAT algorithm on local exploitation and a lack of a global
surrogate model. While this can be remedied to an extent by setting the observation cache size
factor ρ to a larger value, it is important to note that the structure of the LABCAT algorithm
does not preclude the use of existing techniques such as multiple parallel trust regions [51] or
maintaining both a local and global surrogate model [53]. The potential of these techniques
when applied to the LABCAT algorithm, however, remains to be explored.

11.2 Contributions

Specifically, the following original contributions made in this dissertation are enumerated as:

1. The LABCAT algorithm: a combination of two novel extensions of trust-region-based
BO with a greedy observation discarding strategy and an approximative hyperparameter
estimation scheme in a trust-region-based BO framework. Through extensive numerical
experiments using a set of synthetic test functions and the well-known COCO bench-
marking software, the LABCAT algorithm is shown to outperform several state-of-the-art
BO and other black-box optimization algorithms.

2. An extension of trust-region-based BO which utilizes a novel rotation of the trust region,
based on the weighted principal components of the observed input values: This rotation
allows dynamic alignment of the trust region with local axes of separability in arbitrary
directions, not just limited to the directions defined by the coordinate axes as previously

https://scholar.sun.ac.za

CHAPTER 11. CONCLUSION 88

used by Eriksson et al. [51] and Li et al. [55]. This rotation is also in contrast to those
found in classical trust-region-based, which are based on the Hessian of the objective
function, information not available for black-box problems. As illustrated in Section 7.3
and observed in the results of Section 10.2, aligning the trust region with these local
axes of separability allows for the expansion and contraction of the trust region along
these directions, improving performance and allowing adaptation to large, ill-conditioned
valleys that often hinder other BO and trust-region-based BO methods.

3. A second extension of trust-region-based BO using a novel length-scale-based rescaling
of the observed inputs: This rescaling induces a dynamic trust region update strategy
based on the local landscape of the objective function, captured by the value of the
inferred length-scales, that can readily adapt to non-stationary and ill-conditioned func-
tions which have proven to be difficult for standard BO methods. This dynamic trust
region update strategy stands in contrast to existing trust-region-based BO methods
that use fixed heuristics to update the trust region. Combined with the discarding of
observations outside of the trust region, this rescaling also allows for convergence much
closer to a solution before encountering the numerical issues faced by standard BO.

In summary, these contributions address the noted shortcomings of BO, allowing for the appli-
cation of this algorithm to a broader class of objective functions and optimization problems,
while maintaining the sample efficiency of standard BO.

11.3 Future Work

While the focus of this research has been the optimization of objective functions that are
(i) black-box functions with (ii) continuous input parameters and (iii) that are observable
exactly (i.e., with no noise), an important avenue for future work may include extending the
LABCAT algorithm for use with a more general class of objective functions.

For example, to be applied to noisy objective functions with unknown noise profiles (of-
ten found in real-world sensor data), some way to estimate the noise variance would be re-
quired, possibly based on a normality test such as the Shapiro-Wilk test [114]. Categorical-
and integer-valued input values (commonly encountered in the hyperparameters of machine
learning models or when comparing a set of models) could be incorporated using the kernel
modification technique proposed by Garrido-Merchán and Hernández-Lobato [115]. The GP
used in the LABCAT algorithm could also be augmented with gradient observations [30, Ch. 9]
to improve the quality of the surrogate model and speed of convergence, possibly allowing for
competitive performance when applied to non-black-box optimization problems.

The potential of the LABCAT framework for use in high-dimensional problems also remains
to be explored, possibly through the substitution of the GP surrogate model for computation-
ally cheaper (but less accurate) surrogate models such as random forests [22] or tree-structured
Parzen estimators [68]. The use of the weighted principal components to align the trust region
with important search directions may also be of use to prioritize sampling efforts in these di-
rections or simplify the trust region update strategy to these directions. As stated previously,
since the LABCAT algorithm is a local optimizer (and can be aggressively so by setting the
trust region size factor β to a small value), the use of multistarts or parallel surrogate mod-
els (such as those used by Eriksson et al. [51]) for optimizing high-dimensional, multimodal
problems also remain to be investigated.

https://scholar.sun.ac.za

Bibliography

[1] P. de Fermat, “Methodus ad disquirendam maximam et minimam,” in Varia opera math-
ematica D. Petri de Fermat, senatoris Tolosani, pp. 63–73, Johannes Pech, 1679.

[2] J. Wallis, “A treatise of algebra, both historical and practical,” Philosophical Transac-
tions of the Royal Society of London, vol. 15, no. 173, pp. 1095–1106, 1685.

[3] D. Fowler and E. Robson, “Square root approximations in old Babylonian mathematics:
YBC 7289 in context,” Historia Mathematica, vol. 25, no. 4, pp. 366–378, 1998.

[4] R. Priem, H. Gagnon, I. Chittick, S. Dufresne, Y. Diouane, and N. Bartoli, “An effi-
cient application of Bayesian optimization to an industrial MDO framework for aircraft
design,” in AIAA AVIATION 2020 Forum, Jun 2020.

[5] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng, “Hyperparameter
optimization for machine learning models based on Bayesian optimization,” Journal of
Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, 2019.

[6] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization of machine
learning algorithms,” Advances in neural information processing systems, vol. 25, 2012.

[7] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans, “Automatic gait optimization
with Gaussian process regression,” in Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, IJCAI’07, (San Francisco, CA, USA), pp. 944–949,
Morgan Kaufmann Publishers Inc., 2007.

[8] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound
constrained optimization,” SIAM J. Sci. Comput., vol. 16, pp. 1190–1208, 1995.

[9] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of Math-
ematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[10] G. Venter, Review of Optimization Techniques. John Wiley & Sons, Ltd, 2010.

[11] A. Rodomanov and Y. Nesterov, “Rates of superlinear convergence for classical quasi-
Newton methods,” Mathematical Programming, vol. 194, pp. 159–190, Jul 2022.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[13] K. Levenberg, “A method for the solution of certain non-linear problems in least squares,”
Quarterly of Applied Mathematics, vol. 2, no. 2, pp. 164–168, 1944.

89

https://scholar.sun.ac.za

BIBLIOGRAPHY 90

[14] M. J. D. Powell, “A hybrid method for nonlinear equations,” Numerical Methods for
Nonlinear Algebraic Equations, pp. 87–161, 1970.

[15] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods. Society for Industrial
and Applied Mathematics, 2000.

[16] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Opti-
mization. Society for Industrial and Applied Mathematics, 2009.

[17] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The Computer
Journal, vol. 7, pp. 308–313, Jan 1965.

[18] R. Hooke and T. A. Jeeves, “"Direct Search" solution of numerical and statistical prob-
lems,” Journal of the ACM, vol. 8, pp. 212–229, Apr 1961.

[19] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95
- International Conference on Neural Networks, vol. 4, pp. 1942–1948 vol.4, 1995.

[20] M. Pincus, “A Monte Carlo method for the approximate solution of certain types of
constrained optimization problems,” Operations Research, vol. 18, no. 6, pp. 1225–1228,
1970.

[21] N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution
strategies,” Evolutionary Computation, vol. 9, no. 2, pp. 159–195, 2001.

[22] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization
for general algorithm configuration,” in Learning and Intelligent Optimization (C. A. C.
Coello, ed.), (Berlin, Heidelberg), pp. 507–523, Springer Berlin Heidelberg, 2011.

[23] J. Bossek, C. Doerr, and P. Kerschke, “Initial design strategies and their effects on
sequential model-based optimization: an exploratory case study based on BBOB,” in
Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO
’20, (New York, NY, USA), pp. 778–786, Association for Computing Machinery, 2020.

[24] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the human
out of the loop: A review of Bayesian optimization,” Proceedings of the IEEE, vol. 104,
pp. 148–175, 2016.

[25] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive
black-box functions,” Journal of Global Optimization, vol. 13, pp. 455–492, 1998.

[26] D. Huang, T. Allen, W. Notz, and N. Zeng, “Global optimization of stochastic black-box
systems via sequential Kriging meta-models,” Journal of Global Optimization, vol. 34,
pp. 441–466, Mar 2006.

[27] R. Garnett, Bayesian Optimization. Cambridge University Press, 2023.

[28] R. Couperthwaite, A. Molkeri, D. Khatamsaz, A. Srivastava, D. Allaire, and R. Arròyave,
“Materials design through batch Bayesian optimization with multisource information
fusion,” JOM, vol. 72, pp. 4431–4443, Dec 2020.

https://scholar.sun.ac.za

BIBLIOGRAPHY 91

[29] K. Wang and A. W. Dowling, “Bayesian optimization for chemical products and func-
tional materials,” Current Opinion in Chemical Engineering, vol. 36, p. 100728, 2022.

[30] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning series, MIT Press, 2005.

[31] G. Lan, J. M. Tomczak, D. M. Roijers, and A. Eiben, “Time efficiency in optimization
with a Bayesian-evolutionary algorithm,” Swarm and Evolutionary Computation, vol. 69,
p. 100970, 2022.

[32] J. Quiñonero-Candela, C. E. Rasmussen, and C. K. I. Williams, “Approximation methods
for Gaussian process regression,” in Large-Scale Kernel Machines, pp. 203–224, MIT
Press, 08 2007.

[33] R. Martinez-Cantin, “Funneled Bayesian optimization for design, tuning and control of
autonomous systems,” IEEE Transactions on Cybernetics, vol. 49, pp. 1489–1500, Apr
2019.

[34] E. Vazquez and J. Bect, “Convergence properties of the expected improvement algorithm
with fixed mean and covariance functions,” Journal of Statistical Planning and Inference,
vol. 140, no. 11, pp. 3088–3095, 2010.

[35] A. D. Bull, “Convergence rates of efficient global optimization algorithms.,” Journal of
Machine Learning Research, vol. 12, no. 10, 2011.

[36] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process optimization in the
bandit setting: No regret and experimental design,” in Proceedings of the 27th Interna-
tional Conference on Machine Learning, ICML’10, (Madison, WI, USA), pp. 1015–1022,
Omnipress, 2010.

[37] R. B. Gramacy and H. K. H. Lee, “Cases for the nugget in modeling computer experi-
ments,” Statistics and Computing, vol. 22, pp. 713–722, 2010.

[38] T. Santner, B. Williams, and W. Notz, The Design and Analysis of Computer Experi-
ments. Springer Series in Statistics, New York, NY: Springer, Jan 2018.

[39] M. McLeod, S. Roberts, and M. A. Osborne, “Optimization, fast and slow: optimally
switching between local and Bayesian optimization,” in International Conference on
Machine Learning, pp. 3443–3452, PMLR, 2018.

[40] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff, “COCO:
A platform for comparing continuous optimizers in a black-box setting,” Optimization
Methods and Software, vol. 36, pp. 114–144, 2021.

[41] H. Mohammadi, R. Le Riche, and E. Touboul, “Making EGO and CMA-ES complemen-
tary for global optimization,” in Learning and Intelligent Optimization (C. Dhaenens,
L. Jourdan, and M.-E. Marmion, eds.), (Cham), pp. 287–292, Springer International
Publishing, 2015.

https://scholar.sun.ac.za

BIBLIOGRAPHY 92

[42] K. Kawaguchi, L. P. Kaelbling, and T. Lozano-Perez, “Bayesian optimization with ex-
ponential convergence,” in Proceedings of the 28th International Conference on Neural
Information Processing Systems, vol. 2 of NIPS’15, (Cambridge, MA, USA), pp. 2809–
2817, MIT Press, 2015.

[43] Z. Wang, B. Shakibi, L. Jin, and N. de Freitas, “Bayesian multi-scale optimistic opti-
mization,” in Artificial Intelligence and Statistics, pp. 1005–1014, PMLR, 2014.

[44] K. P. Wabersich and M. Toussaint, “Advancing Bayesian optimization: The mixed-
global-local (MGL) kernel and length-scale cool down,” in Workshop on Bayesian Opti-
mization, Neural Information Processing Systems, 2016.

[45] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances and future chal-
lenges,” Swarm and Evolutionary Computation, vol. 1, no. 2, pp. 61–70, 2011.

[46] K. S. Anderson and Y. Hsu, “Genetic crossover strategy using an approximation con-
cept,” in Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999,
Washington, DC, USA July 6-9, 1999, pp. 527–533, IEEE, 1999.

[47] K. Abboud and M. Schoenauer, “Surrogate deterministic mutation: Preliminary results,”
in Artificial Evolution (P. Collet, C. Fonlupt, J.-K. Hao, E. Lutton, and M. Schoenauer,
eds.), (Berlin, Heidelberg), pp. 104–116, Springer Berlin Heidelberg, 2002.

[48] L. Bajer, Z. Pitra, J. Repický, and M. Holeňa, “Gaussian process surrogate models for
the CMA evolution strategy,” Evolutionary Computation, vol. 27, pp. 665–697, Dec 2019.

[49] L. Xie, G. Li, Z. Wang, L. Cui, and M. Gong, “Surrogate-assisted evolutionary algorithm
with model and infill criterion auto-configuration,” IEEE Transactions on Evolutionary
Computation, vol. 28, pp. 1114–1126, Jul 2023.

[50] N. Stander and K. Craig, “On the robustness of a simple domain reduction scheme for
simulation-based optimization,” International Journal for Computer-Aided Engineering
and Software (Engineering Computations), vol. 19, pp. 431–450, Jun 2002.

[51] D. Eriksson, M. Pearce, J. R. Gardner, R. Turner, and M. Poloczek, “Scalable global
optimization via local Bayesian optimization,” in Proceedings of the 33rd International
Conference on Neural Information Processing Systems, (Red Hook, NY, USA), pp. 5496–
5507, Curran Associates Inc., 2019.

[52] R. G. Regis, “Trust regions in Kriging-based optimization with expected improvement,”
Engineering Optimization, vol. 48, no. 6, pp. 1037–1059, 2016.

[53] Y. Diouane, V. Picheny, R. L. Riche, and A. S. D. Perrotolo, “TREGO: a trust-region
framework for efficient global optimization,” Journal of Global Optimization, vol. 86,
pp. 1–23, 2021.

[54] L. Acerbi and W. J. Ma, “Practical Bayesian optimization for model fitting with Bayesian
adaptive direct search,” Advances in Neural Information Processing Systems, vol. 30,
pp. 1834–1844, 2017.

https://scholar.sun.ac.za

BIBLIOGRAPHY 93

[55] Q. Li, A. Fu, W. Wei, and Y. Zhang, “A trust region based local Bayesian optimiza-
tion without exhausted optimization of acquisition function,” Evolving Systems, vol. 14,
pp. 839–858, Oct 2023.

[56] D. J. C. MacKay, “Bayesian methods for backpropagation networks,” in Models of Neural
Networks III: Association, Generalization, and Representation, pp. 211–254, New York,
NY: Springer New York, 1996.

[57] R. M. Neal, Bayesian Learning for Neural Networks. Lecture Notes in Statistics, New
York, NY: Springer, 1996.

[58] H. H. Rosenbrock, “An automatic method for finding the greatest or least value of a
function,” The Computer Journal, vol. 3, pp. 175–184, Jan 1960.

[59] C. Audet and J. E. Dennis, “Mesh adaptive direct search algorithms for constrained
optimization,” SIAM Journal on Optimization, vol. 17, no. 1, pp. 188–217, 2006.

[60] D. J. C. MacKay, “Introduction to Gaussian processes,” NATO ASI series. Series F:
computer and system sciences, pp. 133–165, 1998.

[61] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 2nd ed.,
2012.

[62] Benoit, “Note sur une méthode de résolution des équations normales provenant de
l’application de la méthode des moindres carrés a un système d’équations linéaires en
nombre inférieur a celui des inconnues (procédé du commandant Cholesky),” Bulletin
Géodésique, vol. 2, pp. 67–77, Apr 1924.

[63] C. N. Haddad, “Cholesky factorization,” in Encyclopedia of Optimization (C. A. Floudas
and P. M. Pardalos, eds.), pp. 374–377, Boston, MA: Springer US, 2009.

[64] J. Mercer, “Functions of positive and negative type, and their connection with the theory
of integral equations,” Philosophical Transactions of the Royal Society of London. Series
A, Containing Papers of a Mathematical or Physical Character, vol. 209, pp. 415–446,
1909.

[65] F. Vivarelli and C. Williams, “Discovering hidden features with Gaussian processes re-
gression,” in Advances in Neural Information Processing Systems (M. Kearns, S. Solla,
and D. Cohn, eds.), vol. 11, MIT Press, 1998.

[66] C. Williams and C. Rasmussen, “Gaussian processes for regression,” in Advances in
Neural Information Processing Systems (D. Touretzky, M. Mozer, and M. Hasselmo,
eds.), vol. 8, MIT Press, 1995.

[67] R. M. Neal, “Monte Carlo implementation of Gaussian process models for Bayesian
regression and classification,” Tech. Rep. GR-G-9702, University of Toronto, 1997.

[68] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
optimization,” in Proceedings of the 24th International Conference on Neural Information
Processing Systems, NIPS’11, (Red Hook, NY, USA), pp. 2546–2554, Curran Associates
Inc., 2011.

https://scholar.sun.ac.za

BIBLIOGRAPHY 94

[69] P. Hennig and C. J. Schuler, “Entropy search for information-efficient global optimiza-
tion,” Journal of Machine Learning Research, vol. 13, pp. 1809–1837, Jun 2012.

[70] P. I. Frazier, W. B. Powell, and S. Dayanik, “A knowledge-gradient policy for sequential
information collection,” SIAM Journal on Control and Optimization, vol. 47, no. 5,
pp. 2410–2439, 2008.

[71] D. Zhan and H. Xing, “Expected improvement for expensive optimization: a review,”
Journal of Global Optimization, vol. 78, pp. 507–544, Nov 2020.

[72] F. Zhang, The Schur complement and its applications. Numerical Methods and Algo-
rithms, Springer, 2005.

[73] M. D. McKay, R. Beckman, and W. Conover, “A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code,”
Technometrics, vol. 21, pp. 239–245, May 1979.

[74] R. Fletcher, “Restricted step methods,” in Practical Methods of Optimization, ch. 5,
pp. 95–109, John Wiley & Sons, Ltd, 2nd ed., 1981.

[75] D. C. Sorensen, “Newton’s method with a model trust region modification,” SIAM Jour-
nal on Numerical Analysis, vol. 19, no. 2, pp. 409–426, 1982.

[76] H. Nielsen, “Damping parameter in Marquardt’s method,” Tech. Rep. IMM-REP-1999-
05, Informatics and Mathematical Modelling, Technical University of Denmark, DTU,
1999.

[77] D. Calandriello, L. Carratino, A. Lazaric, M. Valko, and L. Rosasco, “Scaling Gaussian
process optimization by evaluating a few unique candidates multiple times,” in Interna-
tional Conference on Machine Learning, pp. 2523–2541, PMLR, 2022.

[78] K. Pearson, “On lines and planes of closest fit to systems of points in space,” The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2, no. 11,
pp. 559–572, 1901.

[79] H. Hotelling, “Analysis of a complex of statistical variables into principal components,”
Journal of Educational Psychology, vol. 24, pp. 498–520, 1933.

[80] I. T. Jolliffe, Principal Component Analysis. Springer Series in Statistics, New York:
Springer-Verlag, 2 ed., 2002.

[81] G. W. Stewart, “On the early history of the singular value decomposition,” SIAM Review,
vol. 35, no. 4, pp. 551–566, 1993.

[82] M. Greenacre, Theory and Applications of Correspondence Analysis. Academic Press,
1984.

[83] S. Bailey, “Principal component analysis with noisy and/or missing data,” Publications
of the Astronomical Society of the Pacific, vol. 124, no. 919, p. 1015, 2012.

https://scholar.sun.ac.za

BIBLIOGRAPHY 95

[84] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “A general framework for increasing
the robustness of PCA-based correlation clustering algorithms,” in Scientific and Statis-
tical Database Management (B. Ludäscher and N. Mamoulis, eds.), (Berlin, Heidelberg),
pp. 418–435, Springer Berlin Heidelberg, 2008.

[85] C. D. Lloyd, “Analysing population characteristics using geographically weighted prin-
cipal components analysis: A case study of Northern Ireland in 2001,” Computers, En-
vironment and Urban Systems, vol. 34, no. 5, pp. 389–399, 2010.

[86] D. Hong, F. Yang, J. A. Fessler, and L. Balzano, “Optimally weighted PCA for high-
dimensional heteroscedastic data,” SIAM Journal on Mathematics of Data Science,
vol. 5, no. 1, pp. 222–250, 2023.

[87] E. Raponi, H. Wang, M. Bujny, S. Boria, and C. Doerr, “High dimensional Bayesian
optimization assisted by principal component analysis,” in Parallel Problem Solving from
Nature – PPSN XVI (T. Bäck, M. Preuss, A. Deutz, H. Wang, C. Doerr, M. Emmerich,
and H. Trautmann, eds.), pp. 169–183, Springer International Publishing, 2020.

[88] K. Antonov, E. Raponi, H. Wang, and C. Doerr, “High dimensional Bayesian optimiza-
tion with kernel principal component analysis,” in Parallel Problem Solving from Nature
– PPSN XVII (G. Rudolph, A. V. Kononova, H. Aguirre, P. Kerschke, G. Ochoa, and
T. Tušar, eds.), pp. 118–131, Springer International Publishing, 2022.

[89] J. Han, M. Kamber, and J. Pei, “3 - Data preprocessing,” in Data Mining (Third Edi-
tion) (J. Han, M. Kamber, and J. Pei, eds.), The Morgan Kaufmann Series in Data
Management Systems, pp. 83–124, Boston: Morgan Kaufmann, 3rd ed., 2012.

[90] M. Frean and P. Boyle, “Using Gaussian processes to optimize expensive functions,” in
AI 2008: Advances in Artificial Intelligence (W. Wobcke and M. Zhang, eds.), (Berlin,
Heidelberg), pp. 258–267, Springer, Dec 2008.

[91] C. Moore, A. Chua, C. Berry, and J. Gair, “Fast methods for training Gaussian processes
on large data sets,” Royal Society Open Science, vol. 3, May 2016.

[92] Y. Zhang and W. Leithead, “Exploiting Hessian matrix and trust-region algorithm in hy-
perparameters estimation of Gaussian process,” Applied Mathematics and Computation,
vol. 171, no. 2, pp. 1264–1281, 2005.

[93] S. Geršgorin, “Über die abgrenzung der eigenwerte einer matrix,” Bulletin de l’Académie
des Sciences de l’URSS. Classe des sciences mathématiques et na, vol. 6, pp. 749–754,
1931.

[94] L. DeVille, “Optimizing Gershgorin for symmetric matrices,” Linear Algebra and its
Applications, vol. 577, pp. 360–383, 2019.

[95] L. Armijo, “Minimization of functions having Lipschitz continuous first partial deriva-
tives,” Pacific Journal of Mathematics, vol. 16, pp. 1–3, 1966.

[96] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Advances in
Applied Mathematics, vol. 6, no. 1, pp. 4–22, 1985.

https://scholar.sun.ac.za

BIBLIOGRAPHY 96

[97] E. Visser, C. E. van Daalen, and J. Schoeman, “Lossy compression of observations for
Gaussian process regression,” in MATEC Web of Conferences, vol. 370, EDP Sciences,
Dec 2022.

[98] K. A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, USA, 1975.

[99] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Transac-
tions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999.

[100] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions for global op-
timisation problems,” International Journal of Mathematical Modelling and Numerical
Optimisation, vol. 4, no. 2, pp. 150–194, 2013.

[101] F. H. Branin, “Widely convergent method for finding multiple solutions of simultaneous
nonlinear equations,” IBM Journal of Research and Development, vol. 16, no. 5, pp. 504–
522, 1972.

[102] M. Laguna and R. Martí, “Experimental testing of advanced scatter search designs for
global optimization of multimodal functions,” Journal of Global Optimization, vol. 33,
pp. 235–255, Oct 2005.

[103] B. L. Welch, “The generalization of ‘Student’s’ problem when several different population
variances are involved,” Biometrika, vol. 34, pp. 28–35, 01 1947.

[104] O. J. Dunn, “Multiple comparisons among means,” Journal of the American Statistical
Association, vol. 56, no. 293, pp. 52–64, 1961.

[105] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-parameter black-box optimization
benchmarking 2009: Noiseless functions definitions,” Research Report RR-6829, INRIA,
2009.

[106] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík, “Comparing results of 31 algorithms
from the black-box optimization benchmarking BBOB-2009,” in Proceedings of the 12th
Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’10,
(New York, NY, USA), pp. 1689–1696, Association for Computing Machinery, 2010.

[107] W. Huyer and A. Neumaier, “Global optimization by multilevel coordinate search,” Jour-
nal of Global Optimization, vol. 14, pp. 331–355, Jun 1999.

[108] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization with-
out the Lipschitz constant,” Journal of Optimization Theory and Applications, vol. 79,
pp. 157–181, Oct 1993.

[109] M. J. D. Powell, “The NEWUOA software for unconstrained optimization without deriva-
tives,” in Large-Scale Nonlinear Optimization, pp. 255–297, Boston, MA, USA: Springer
US, 2006.

[110] Z. Pitra, L. Bajer, J. Repický, and M. Holeňa, “Comparison of ordinal and metric Gaus-
sian process regression as surrogate models for CMA evolution strategy,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion, GECCO
’17, (New York, NY, USA), pp. 1764–1771, Association for Computing Machinery, 2017.

https://scholar.sun.ac.za

BIBLIOGRAPHY 97

[111] W. Huyer and A. Neumaier, “Benchmarking of MCS on the noiseless function testbed.”
Unpublished manuscript on webpage at https://arnold-neumaier.at/ms/mcs_exact.
pdff, 2009.

[112] R. Ros, “Benchmarking the NEWUOA on the BBOB-2009 function testbed,” in Proceed-
ings of the 11th Annual Conference Companion on Genetic and Evolutionary Computa-
tion Conference: Late Breaking Papers, GECCO ’09, (New York, NY, USA), pp. 2421–
2428, Association for Computing Machinery, 2009.

[113] F. Hutter, H. Hoos, and K. Leyton-Brown, “An evaluation of sequential model-based
optimization for expensive blackbox functions,” in Proceedings of the 15th Annual Con-
ference Companion on Genetic and Evolutionary Computation, GECCO ’13 Companion,
(New York, NY, USA), pp. 1209–1216, Association for Computing Machinery, 2013.

[114] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete
samples),” Biometrika, vol. 52, pp. 591–611, Dec 1965.

[115] E. C. Garrido-Merchán and D. Hernández-Lobato, “Dealing with categorical and integer-
valued variables in Bayesian optimization with Gaussian processes,” Neurocomputing,
vol. 380, pp. 20–35, Mar 2020.

[116] W. Wang, H.-L. Liu, and K. C. Tan, “A surrogate-assisted differential evolution algo-
rithm for high-dimensional expensive optimization problems,” IEEE Transactions on
Cybernetics, vol. 53, no. 4, pp. 2685–2697, 2023.

[117] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics Bulletin, vol. 1,
no. 6, pp. 80–83, 1945.

https://scholar.sun.ac.za

https://arnold-neumaier.at/ms/mcs_exact.pdff
https://arnold-neumaier.at/ms/mcs_exact.pdff

Appendix A

Ideal Transformation Parameter
Proofs

This chapter contains the mathematical proofs for the ideal choice of transformation parame-
ters from Equations 9.5 and 9.6 and how these choices ensure that invariant properties (i)–(iv)
hold for the set of transformed, observed input points X ′ and transformed, observed out-
put points Y ′. The proofs in the rest of this chapter are ordered according to the invariant
properties (i.e., first proving that invariant property (i) holds, then proving that invariant
property (ii) holds, and so on).

Proof for invariant property (i). The transformation defining the mapping between the el-
ements of the set of observed outputs Y and the transformed representation thereof Y ′ is
given as

yi = ay′i + b ∀i ∈ {1, . . . , n}. (A.1)

Rearranging terms yields

∴ y′i =
yi − b
a
∀i ∈ {1, . . . , n}. (A.2)

It must be shown that the choosing the transformation parameters as a = ymax and b = ymin

satisfies invariant property (i). In other words, that by using these choices for a and b means
that the observed minimum value ymin is mapped to zero and that the observed maximum
value ymax is mapped to one. Substituting the choices of a and b into Equation A.1 yields

∴ y′i =
yi − ymin

ymax − ymin

∀i ∈ {1, . . . , n}. (A.3)

The minimum observed output point ymin is defined using

∃ymin ∈ Y : ymin ≤ yi ∀yi ∈ Y, (A.4)

with a corresponding transformed value y′min defined using Equation A.2. Similarly, the
current maximum observed output value ymax is defined as

98

https://scholar.sun.ac.za

APPENDIX A. IDEAL TRANSFORMATION PARAMETER PROOFS 99

∃ymax ∈ Y : ymax ≥ yi ∀yi ∈ Y, (A.5)

with the corresponding transformed value y′max also defined using Equation A.2. Substitut-
ing this minimum observed value ymin and the corresponding transformed output value y′min

into the transform defined in Equation A.3, or

∴ y′min =
ymin − ymin

ymax − ymin

= 0, (A.6)

shows that the minimum observed output value is mapped to zero. Substituting the values
of ymax and y′max into Equation A.3, given by

∴ y′max =
ymax − ymin

ymax − ymin

= 1, (A.7)

shows that the maximum observed output value is mapped to one, concluding the proof.

Proof for invariant property (ii). The transformation defining the mapping between the el-
ements of the set of observed inputs X and the transformed representation thereof X ′ is
given as

xi = RSx′
i + c ∀i ∈ {1, . . . , n}. (A.8)

It must be shown that the choosing the transformation parameters as R = U, S = L̂
and c = xmin satisfies invariant property (i). In other words, that for these choices the
minimum observed input point xmin associated with the minimum observed output point
ymin is transformed to be at the origin.Substituting these choices of the transformation
parameters yields

∴ xi = UL̂x′
i + xmin ∀i ∈ {1, . . . , n}. (A.9)

Rearranging terms yields

∴ x′
i = L̂−1U⊤(xi − xmin) ∀i ∈ {1, . . . , n}. (A.10)

The minimum observed input point xmin that is associated with the minimum observed
output value ymin, is defined by

∃(xmin, ymin) ∈ D : ymin ≤ yi ∀(xi, yi) ∈ D, (A.11)

with the corresponding transformed minimum observed input point x′
min defined using Equa-

tion A.10. Substituting the values of xmin and x′
min into Eq A.10 yields

https://scholar.sun.ac.za

APPENDIX A. IDEAL TRANSFORMATION PARAMETER PROOFS 100

∴ x′
min = L̂−1U⊤(xmin − xmin) (A.12)

= L̂−1U⊤(0n)

= 0n,

which shows that xmin is transformed to be a vector of zeroes or the origin, concluding the
proof.

Proof for invariant property (iii). Suppose that the weighted principal components of the
transformed input points X′ is given by the matrix Û in the following SVD

X′W = ÛΣ̂V̂
⊤
. (A.13)

It must be shown that these weighted principal components are aligned with the coordinate
axes, or Û ∈ diag(±1, . . . ,±1).

The matrix form of Equation A.10, where the i-th columns of the matrices X and X′

correspond to xmin and x′
min, respectively, can be given by

∴ X′ = L̂−1U⊤(X− xmin1
⊤
n). (A.14)

Substituting this value of X′ into Equation A.13 yields

∴ L̂
−1

U⊤(X− xmin1
⊤
n)W = ÛΣ̂V̂

⊤
, (A.15)

where the value of (X−xmin1
⊤
n) is recognized to be equal to X⊙ from Equation 7.5. Using

this value, this expression can be restated as

∴ L̂
−1

U⊤X⊙W = ÛΣ̂V̂
⊤
. (A.16)

From Equation 7.7, it can be seen that the SVD of U⊤X⊙W is given by IΣV⊤. Substituting
this decomposition for U⊤X⊙W and noting that the matrix multiplication of L̂

−1
and Σ

(both of the shape Rd×d) is commutative yields

∴ ÛΣ̂V̂
⊤
= L̂

−1
IΣV⊤ (A.17)

= I(L̂
−1

Σ)V⊤

Since L̂
−1

and Σ are positive semidefinite diagonal matrices of the same shape, the result
must also a positive semidefinite diagonal matrix. This result is therefore a valid SVD of X′

X′W = I(L̂
−1

Σ)V⊤, (A.18)

since I is orthogonal by definition, V⊤ is orthogonal by virtue of being a result of the SVD
of Equation 7.7 and (L̂

−1
Σ) is a positive semidefinite diagonal matrix as stated previously.

https://scholar.sun.ac.za

APPENDIX A. IDEAL TRANSFORMATION PARAMETER PROOFS 101

This decomposition implies that the weighted principal components Û from Equation A.13
are equal to the identity matrix, concluding the proof.

Proof for invariant property (iv). It must be proven that the most likely length-scales for
a GP constructed using the transformed input points X′ and automatic relevance determi-
nation along the weighted principal components (described by the rotation matrix U) are
unity.

Supposing that rotated automatic relevance determination along non-coordinate axes
can be described by the squared exponential kernel

kSE(xi,xj ; ℓ̂U) = σ2f · exp
(
−1

2
(xi − xj)

⊤Λ̂
−1
U (xi − xj)

)
+ σ2nδij (A.19)

with the change of basis

Λ̂
−1
U = UΛ̂

−1
U⊤ (A.20)

where Λ̂ = diag(ℓ̂21, ℓ̂
2
2, . . . , ℓ̂

2
d).

The diagonal factor Λ̂ in this kernel can be factorized as

Λ̂
−1
U = U(L̂ L̂)

−1
U⊤ (A.21)

= UL̂−1L̂−1U⊤

where L̂ = diag(ℓ̂1, ℓ̂2, . . . , ℓ̂d)

Substituting the values of xi and xj from Equation A.9 into the kernel defined in Equa-
tion A.19 and noting that L is orthogonal (L⊤ = L), simplifying yields

∴ kSE(xi,xj ; ℓ̂U) = σ2f · exp
(
−1

2
(UL̂x′

i − xmin −UL̂x′
j + xmin)

⊤
(A.22)

× Λ̂
−1
U (UL̂x′

i − xmin −UL̂x′
j + xmin)

)
+ σ2nδij

= σ2f · exp
(
−1

2
(UL̂x′

i −UL̂x′
j)

⊤
Λ̂

−1
U (UL̂x′

i −UL̂x′
j)

)
+ σ2nδij

= σ2f · exp
(
−1

2
(x′

i − x′
j)

⊤
L̂U⊤Λ̂

−1
U UL̂(x′

i − x′
j)

)
+ σ2nδij

Substituting the value of Λ̂
−1
U for the value from Equation A.20, noting that the matrix U

is orthogonal (i.e, U⊤U = I), simplifying yields

https://scholar.sun.ac.za

APPENDIX A. IDEAL TRANSFORMATION PARAMETER PROOFS 102

∴ kSE(xi,xj ; ℓ̂U) = σ2f · exp
(
−1

2
(x′

i − x′
j)

⊤
L̂U⊤UL̂−1L̂−1U⊤UL̂(x′

i − x′
j)

)
+ σ2nδij

(A.23)

= σ2f · exp
(
−1

2
(x′

i − x′
j)

⊤
L̂L̂−1L̂−1L̂(x′

i − x′
j)

)
+ σ2nδij

= σ2f · exp
(
−1

2
(x′

i − x′
j)

⊤I (x′
i − x′

j)

)
+ σ2nδij

= kSE(x′
i,x

′
j ;1n).

Therefore, constructing a GP using the transformed input points X ′ using unit length scales
along the coordinate axes would be equivalent to constructing a GP using the untransformed
inputs X with length-scales along the weighted principal components U, concluding the
proof.

https://scholar.sun.ac.za

Appendix B

Full Synthetic Test Function
Benchmark Results

The full results of the comparative algorithm study using synthetic test functions from Sec-
tion 10.1 is provided in this chapter. Each of the compared algorithms chosen in Section 10.1
are applied to each test function, defined in Table 10.1, for 50 independent runs. In Table B.1
and B.2, the means and standard deviations of the minimum global regret (ymin−fmin) reached
and the total wall-clock times needed for each run (in effect, for 150 objective function sam-
ples while excluding the time needed to calculate the objective function for each sample) are
reported.

Similarly to the analysis used by Xie et al. [49] and Wang et al. [116], for each test function,
a Wilcoxon rank-sum test [117] (also known as the Mann-Whitney U test) is performed for the
minimum global regret for each algorithm compared to the LABCAT algorithm. We indicate
the results of this test using “+”, “≈” and “−”, if the LABCAT algorithm performs statistically
significantly better than, comparable to, or worse than the compared algorithm, respectively.
The result is considered to be statistically significant if the p-value is less than 0.05, adjusted
using a Bonferroni correction [104] to 0.05

8 = 0.00625 using the number of algorithms compared
against LABCAT.

103

https://scholar.sun.ac.za

APPENDIX B. FULL SYNTHETIC TEST FUNCTION BENCHMARK RESULTS 104

Sphere Quartic Booth

Algorithm µ± (σ) +/≈/− Time (s) µ± (σ) +/≈/− Time (s) µ± (σ) +/≈/− Time (s)

LABCAT 5.68e−17±
(7.44e−17) N/A 0.055±

(0.011)
2.79e−22±
(6.40e−22) N/A 0.055±

(0.007)
9.98e−16±
(1.28e−15) N/A 0.055±

(0.012)

BADS 3.80e−09±
(1.20e−08) +

5.448±
(0.704)

1.20e−08±
(5.29e−08) +

4.890±
(0.758)

4.88e−06±
(2.25e−05) +

6.868±
(0.801)

BO 1.36e−05±
(1.93e−05) +

21.507±
(0.779)

1.52e−08±
(1.81e−08) +

24.213±
(0.933)

4.87e−05±
(5.48e−05) +

24.271±
(1.119)

Random 1.32e−01±
(1.18e−01) +

0.010±
(0.005)

5.38e−04±
(1.15e−03) +

0.009±
(0.002)

2.62e+00±
(1.92e+00)

+
0.010±
(0.005)

SRSM 2.14e−02±
(1.50e−01) +

34.696±
(2.249)

9.17e−10±
(5.90e−09) +

29.548±
(0.916)

5.77e−05±
(7.77e−05) +

37.755±
(1.628)

TREGO 1.73e−03±
(2.80e−03) +

111.496±
(2.323)

3.82e−04±
(1.91e−03) +

111.667±
(8.665)

6.23e−02±
(1.30e−01) +

109.807±
(1.846)

TRLBO 1.34e−04±
(3.37e−04) +

1.408±
(0.067)

1.90e−04±
(5.24e−04) +

1.427±
(0.110)

2.64e−02±
(5.75e−02) +

1.326±
(0.073)

TuRBO-1 3.36e−04±
(3.18e−04) +

1.407±
(0.124)

8.94e−09±
(5.47e−08) +

1.474±
(0.102)

4.67e−03±
(1.13e−02) +

1.446±
(0.134)

TuRBO-5 1.22e−03±
(1.27e−03) +

4.019±
(0.442)

4.40e−06±
(6.09e−06) +

4.138±
(0.339)

3.36e−02±
(3.63e−02) +

4.005±
(0.392)

Table B.1: Average and standard deviation of the minimum global regret, their statistical
comparisons according to a rank-sum test, and mean and standard deviation of the wall-clock
times for 50 independent runs on synthetic test functions f1 to f3.

Rosenbrock Branin-Hoo Levy

Algorithm µ± (σ) +/≈/− Time (s) µ± (σ) +/≈/− Time (s) µ± (σ) +/≈/− Time (s)

LABCAT 1.08e−10±
(1.36e−10) N/A 0.056±

(0.011)
1.71e−11±
(3.02e−11) N/A 0.091±

(0.046)
1.26e−01±
(5.95e−01) N/A 0.061±

(0.018)

BADS 6.86e−04±
(9.92e−04) +

6.807±
(0.647)

4.57e−07±
(1.27e−06) +

5.182±
(0.795)

4.25e−07±
(1.76e−06) +

4.983±
(0.861)

BO 2.76e−01±
(3.22e−01) +

35.238±
(1.950)

3.08e−05±
(2.71e−05) +

25.093±
(1.075)

3.47e−05±
(3.67e−05) +

24.546±
(1.232)

Random 4.04e+00±
(4.85e+00)

+
0.017±
(0.004)

4.14e−01±
(4.12e−01) +

0.010±
(0.003)

2.01e−01±
(2.02e−01) +

0.010±
(0.004)

SRSM 3.43e+00±
(4.12e+00)

+
32.168±
(2.477)

2.39e−05±
(3.93e−05) +

36.125±
(1.802)

2.40e−05±
(1.02e−04) +

35.992±
(2.253)

TREGO 1.25e+00±
(1.33e+00)

+
110.343±
(2.684)

4.50e−03±
(1.29e−02) +

110.813±
(2.427)

2.83e−03±
(3.46e−03) +

110.802±
(2.280)

TRLBO 1.68e+00±
(3.05e+00)

+
1.318±
(0.062)

8.52e−03±
(4.03e−02) +

1.407±
(0.077)

2.13e−01±
(6.32e−01) +

1.393±
(0.057)

TuRBO-1 2.35e+00±
(3.27e+00)

+
1.417±
(0.120)

1.58e−03±
(2.23e−03) +

1.445±
(0.137)

1.05e−03±
(3.97e−03) +

1.499±
(0.204)

TuRBO-5 1.65e+00±
(1.46e+00)

+
4.144±
(0.254)

9.21e−03±
(1.11e−02) +

3.983±
(0.353)

9.13e−03±
(1.61e−02) +

3.328±
(0.536)

Table B.2: Average and standard deviation of the minimum global regret, their statistical
comparisons according to a rank-sum test, and mean and standard deviation of the wall-clock
times for 50 independent runs on synthetic test functions f4 to f6.

https://scholar.sun.ac.za

Appendix C

COCO Benchmark Results

C.1 LABCAT Ablation Study COCO Results

C.1.1 Primary Ablation Study Results

The full results of the primary LABCAT ablation study from Section 10.3 using the COCO
benchmark are provided in this section.

105

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 106

All Functions (i) Separable

(ii) Unimodal, Low Conditioning (iii) Unimodal, High Conditioning

(iv) Multimodal, Adequate Structure (v) Multimodal, Weak Structure

Table C.1: 2-D runtime ablation ECDFs table from the COCO benchmark.

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 107

All Functions (i) Separable

(ii) Unimodal, Low Conditioning (iii) Unimodal, High Conditioning

(iv) Multimodal, Adequate Structure (v) Multimodal, Weak Structure

Table C.2: 5-D runtime ablation ECDFs table from the COCO benchmark.

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 108

All Functions (i) Separable

(ii) Unimodal, Low Conditioning (iii) Unimodal, High Conditioning

(iv) Multimodal, Adequate Structure (v) Multimodal, Weak Structure

Table C.3: 10-D runtime ablation ECDFs table from the COCO benchmark.

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 109

C.1.2 Secondary Ablation Study Results

The full results of the secondary LABCAT ablation study from Section 10.3 using the COCO
benchmark are provided in this section.

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 110

All Functions (i) Separable

(ii) Unimodal, Low Conditioning (iii) Unimodal, High Conditioning

(iv) Multimodal, Adequate Structure (v) Multimodal, Weak Structure

Table C.4: 2-D runtime secondary ablation ECDFs table from the COCO benchmark.

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 111

All Functions (i) Separable

(ii) Unimodal, Low Conditioning (iii) Unimodal, High Conditioning

(iv) Multimodal, Adequate Structure (v) Multimodal, Weak Structure

Table C.5: 5-D runtime secondary ablation ECDFs table from the COCO benchmark.

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 112

All Functions (i) Separable

(ii) Unimodal, Low Conditioning (iii) Unimodal, High Conditioning

(iv) Multimodal, Adequate Structure (v) Multimodal, Weak Structure

Table C.6: 10-D runtime secondary ablation ECDFs table from the COCO benchmark.

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 113

C.2 Full COCO Comparative Study Results

The full results of the comparative algorithm study from Section 10.4 using the COCO bench-
mark are provided in this section.

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 114

All Functions (i) Separable

(ii) Unimodal, Low Conditioning (iii) Unimodal, High Conditioning

(iv) Multimodal, Adequate Structure (v) Multimodal, Weak Structure

Table C.7: 2-D comparative study runtime ECDFs table from the COCO benchmark.

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 115

All Functions (i) Separable

(ii) Unimodal, Low Conditioning (iii) Unimodal, High Conditioning

(iv) Multimodal, Adequate Structure (v) Multimodal, Weak Structure

Table C.8: 5-D comparative study runtime ECDFs table from the COCO benchmark.

https://scholar.sun.ac.za

APPENDIX C. COCO BENCHMARK RESULTS 116

All Functions (i) Separable

(ii) Unimodal, Low Conditioning (iii) Unimodal, High Conditioning

(iv) Multimodal, Adequate Structure (v) Multimodal, Weak Structure

Table C.9: 10-D comparative study runtime ECDFs table from the COCO benchmark.

https://scholar.sun.ac.za

	Declaration
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Research motivation
	Research aim and objectives
	Solution overview and contributions
	Document outline

	Review of Bayesian optimization methods with local focus
	Hybrid Bayesian optimization
	Domain partitioned Bayesian optimization
	Combined local and global kernel functions
	Surrogate assisted evolutionary algorithms
	trust-region-based Bayesian optimization
	SRSM
	TRIKE
	TuRBO and TRLBO
	TREGO
	BADS

	Evaluation of existing approaches

	Gaussian processes
	Gaussian process regression model
	Kernel functions
	Hyperparameter selection

	Bayesian optimization
	Standard Bayesian optimization
	trust-region-based Bayesian optimization

	Principal components
	Standard principal components
	Weighted principal components

	Overview of the LABCAT algorithm
	Weighted-principal-component-based rotation
	Data preprocessing in trust-region-based Bayesian optimization
	Rotation transformation definition
	Illustrative example

	Length-scale-based rescaling
	Rescaling transformation definition

	Detailed description of the LABCAT algorithm
	Combined observation transformation
	Transformation definition
	Iterative transformation parameter calculation

	Approximative Gaussian process hyperparameter estimation
	Hyperparameter prior distribution selection
	Jacobian and Hessian matrix calculation
	Marginal likelihood maximization

	Fixed Trust region definition
	Observation discarding strategy
	Algorithm initialization and termination
	Algorithm pseudocode and discussion
	Computational complexity

	Experimental Results
	Synthetic test functions benchmark
	COCO black-box optimization benchmark
	LABCAT ablation study with the COCO benchmark
	Comparison with state-of-the-art derivative-free optimization algorithms using the COCO benchmark

	Conclusion
	Evaluation of the LABCAT algorithm
	Contributions
	Future work

	Bibliography
	Ideal transformation parameter proofs
	Full synthetic test function benchmark results
	COCO benchmark results
	LABCAT ablation study COCO results
	Primary ablation study results
	Secondary ablation study results

	Full COCO comparative study results

