
Degenerate Gaussian factors for probabilistic inference

by

Johannes Cornelius Schoeman

Dissertation presented for the degree of Doctor of Philosophy in Electronic
Engineering in the Faculty of Engineering at Stellenbosch University

Supervisors: Dr. Corné E. van Daalen
Prof. Johan A. du Preez

December 2021

Declaration

By submitting this dissertation electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the sole author thereof (save to the extent explicitly
otherwise stated), that reproduction and publication thereof by Stellenbosch University will
not infringe any third party rights and that I have not previously in its entirety or in part
submitted it for obtaining any qualification.

December 2021
Date: .

Copyright c© 2021 Stellenbosch University
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

Gaussian random variables and distributions are widely used for inference across many ap-
plications, where correlations within probabilistic models can be used to calculate accurate
posterior distributions over unobserved variables. In the case of perfect correlation, however,
the covariance matrix of a Gaussian distribution is only positive semi -definite and therefore
singular. This effectively means that linear dependencies exist among the random variables
and can either be a direct artefact of the constructed model or the result of machine precision
limitations during ill-conditioned numerical calculations. Consequently, traditional Gaussian
parametrisations and calculations involving the inverse of the covariance matrix cannot be
used in these degenerate settings.

In this dissertation, we propose a parametrised factor that enables accurate and automatic
inference on Gaussian networks in such degenerate settings at little additional computational
cost. In contrast, a common practical solution is to employ ridge regularisation, which trades
accuracy for numerical stability through approximations. Other, more principled solutions
in turn do not provide all the capabilities of non-degenerate parametrisations. Our factor
representation is effectively a generalisation of traditional Gaussian parametrisations where
the positive-definite constraint (of the covariance matrix) has been relaxed. This is achieved
by representing any possible degeneracies using Dirac delta functions.

To extend the capabilities of Gaussian factors to degenerate settings, we derive various
statistical operations and results (such as marginalisation, multiplication and affine transfor-
mations of random variables) using our parametrised factors. The computational complexity
of these operations is shown to be at most O(n3). In addition, we present means for accom-
modating both linear and nonlinear models as well as for performing Bayesian model compar-
ison. Finally, we apply our methodology to a representative example involving recursive state
estimation of cooperative mobile robots. This illustrates the advantages of computing with
explicit degenerate Gaussian factors when degeneracies arise inconsistently and unpredictably.
Experimental results also reveal that using our factor definition leads to shorter computation
times while requiring fewer parameters when compared to existing approaches.

ii

Stellenbosch University https://scholar.sun.ac.za

Opsomming

Gaussiese toevalsveranderlikes en verspreidings word algemeen gebruik vir inferensie in verskeie
toepassings, waar korrelasies in waarskynlikheidsmodelle gebruik kan word om akkurate pos-
terieuse verspreidings oor onwaargenome veranderlikes te bereken. In die geval van per-
fekte korrelasie is die kovariansie matriks van ’n Gaussiese verspreiding egter slegs positief
semi -definiet en dus singulier. Dit beteken effektief dat lineêre afhanklikhede tussen die toe-
valsveranderlikes bestaan en kan óf ’n direkte gevolg van die opgestelde model wees óf die
resultaat van masjien-presisie beperkings tydens swak-gekondisioneerde numeriese bewerk-
ings. Gevolglik kan tradisionele Gaussiese parametriserings en bewerkings wat die inverse van
die kovariansie matriks bevat nie gebruik word in hierdie ontaarde kontekste nie.

In hierdie proefskrif stel ons ’n geparametriseerde faktor voor wat akkurate en outomatiese
inferensie op Gaussiese netwerke in sulke ontaarde kontekste bewerkstellig teen min addisionele
berekeningskoste. Daarinteen is ’n algemene praktiese oplossing om rif-regularisering te ge-
bruik, wat akkuraatheid ruil vir numeriese stabiliteit deur middel van benaderings. Ander,
meer beginselvaste oplossings verskaf weer nie al die vermoëns van nie-ontaarde parametri-
serings nie. Ons faktor voorstelling is effektief ’n veralgemening van tradisionele Gaussiese
parametriserings waar die positief-definiete beperking (van die kovariansie matriks) verslap
word. Dit word reggekry deur Dirac delta funksies te gebruik om enige moontlike ontaardhede
voor te stel.

Om die vermoëns van Gaussiese faktore na ontaarde kontekste toe uit te brei lei ons
verskeie statistiese operasies en resultate (soos marginalisering, vermenigvuldiging en lineêre
transformasies van toevalsveranderlikes) af deur gebruik te maak van ons geparametriseerde
faktore. Daar word gewys dat die berekeningskompleksiteit van hierdie operasies O(n3) is op
die meeste. Verder stel ons maniere voor om beide lineêre en nie-lineêre modelle te akkom-
modeer sowel as om Bayesiese model vergelyking te doen. Laastens pas ons ons metodologie
toe op ’n verteenwoordigende voorbeeld wat rekursiewe toestandsafskatting van samewerk-
ende mobiele robotte behels. Dit illustreer die voordele daarvan om met eksplisiete ontaarde
Gaussiese faktore te bereken wanneer ontaardhede onkonsekwent en onvoorspelbaar opduik.
Eksperimentele resultate wys ook dat die gebruik van ons faktor definisie na korter bereken-
ingstye lei en minder parameters vereis in vergelyking met bestaande benaderings.

iii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to the following people and organisations:

• The Wilhelm Frank Bursary Fund who funded my studies from 2017 to 2019 and thereby
enabled me to complete the research reported in this dissertation.

• The Department of Electrical and Electronic Engineering for appointing me as a lecturer
in 2019 while still allowing me to complete my postgraduate studies.

• My two supervisors who provided invaluable insights and guidance during our countless
meetings over the past five years.

• My fellow postgraduate students in the Electronic Systems Laboratory (ESL) for cre-
ating an enjoyable yet productive work environment.

• My family and friends who have always helped me to maintain a balanced lifestyle with
many adventures along the way.

• My wife, Michelle, for her unconditional love, support, patience and kindness.

iv

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

List of Figures vii

List of Tables vii

Nomenclature viii

1 Introduction 1
1.1 Research motivation . 1
1.2 Aims and objectives . 2
1.3 Existing approaches to inference in degenerate settings 2

1.3.1 Ridge regularisation . 3
1.3.2 Dirac delta functions and pseudo-inverses 3
1.3.3 Complementary subspaces and indicator functions 4

1.4 Solution overview and contributions . 5
1.5 Dissertation outline . 6

2 Gaussian networks 7
2.1 Probabilistic graphical models . 7

2.1.1 Bayesian networks and Markov random fields 7
2.1.2 Factor and cluster graphs . 8
2.1.3 Message passing algorithms . 9

2.2 Canonical factors . 11
2.2.1 Definition and parametrisation . 11
2.2.2 Statistical operations . 13

2.3 Approximation of nonlinear dependencies . 13
2.3.1 Taylor series expansion . 14
2.3.2 The unscented transform . 14

3 Linear algebra 16
3.1 Vector spaces . 16

3.1.1 The four fundamental subspaces of a matrix 17
3.1.2 Matrix rank, independence and dimensionality 17

v

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vi

3.2 Orthogonality . 18
3.2.1 Orthogonal subspaces and matrices . 18
3.2.2 Projections and least squares approximations 19

3.3 The singular value decomposition . 20

4 Dirac delta functions 21
4.1 Definition as the limit of a Gaussian . 21
4.2 Extension to multiple dimensions . 22

5 Degenerate Gaussian factors 24
5.1 Definition and parameterisation . 24
5.2 The degenerate density function . 26
5.3 Affine transformations of degenerate random variables 27

6 Statistical operations on degenerate factors 30
6.1 Marginalisation . 30
6.2 Multiplication . 35
6.3 Division . 39
6.4 Reduction . 41

7 Computational complexity 45
7.1 Complexity of matrix operations . 45
7.2 Complexity of operations on degenerate factors 47

7.2.1 Marginalisation . 47
7.2.2 Multiplication . 48
7.2.3 Division . 49
7.2.4 Reduction . 49

7.3 Measured execution times . 50

8 Additional operations necessary for inference 52
8.1 Extending and rearranging factor scopes . 52
8.2 Representing conditional density functions . 53

8.2.1 Linear dependencies . 53
8.2.2 Nonlinear dependencies . 57

8.3 Kullback-Leibler divergence . 61

9 An example: State estimation for autonomous robots 64
9.1 Recursive state estimation . 64
9.2 Cooperative transportation robots . 67
9.3 Experiments and results . 68

10 Conclusion 72
10.1 Evaluation of degenerate Gaussian factors . 72
10.2 Original contributions . 73
10.3 Future work . 74

Bibliography 75

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1 Example of a Bayesian network to illustrate PGM concepts such as nodes, edges
and conditional independence. 8

2.2 The factor graph corresponding to the Bayesian network shown in Figure 2.1. . . 9
2.3 The cluster graph created by grouping the factors as shown in Figure 2.2. 10

5.1 A visualisation of a degenerate Gaussian factor to illustrate some of its properties. 25

6.1 The marginalisation of a degenerate factor. 31
6.2 The multiplication of two degenerate factors. 37
6.3 The reduction of a degenerate factor according to evidence. 43

7.1 Measured execution times of statistical operations using degenerate factors. . . . 50

8.1 Representing conditional densities using degenerate factors. 55

9.1 A Bayesian network that models the recursive state estimation problem and the
corresponding factor graph. 65

9.2 A possible cluster graph corresponding to the model of the recursive state esti-
mation problem in Figure 9.1. 66

9.3 State estimation for three robots transporting a triangular object on a 2-D ware-
house floor. 69

9.4 The effect of ridge regularisation on the maximum condition number as well as
on the model likelihood. 70

9.5 Model comparison for the state estimation problem in Figure 9.3 to determine
the time step when the object was picked up and the size of the object. 71

List of Tables

7.1 Asymptotic time complexity of common matrix operations in terms of the input
and output dimensions of the applicable matrices. 46

vii

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Acronyms and abbreviations

DBN deep belief network
EM expectation maximisation
FLOP floating point operation
GMM Gaussian mixture model
GP Gaussian process
HMM hidden Markov model
KFM Kalman filter model
KL Kullback-Leibler
LDPC low-density parity check
MAP maximum a posteriori
MAV micro aerial vehicle
PGM probabilistic graphical model
SVD singular value decomposition

Notation

x scalar
|x| absolute value of a scalar
x vector
x0 observed value of a random vector
E[x] expected value of a random vector
Cov[x] covariance of a random vector
X matrix
XT transpose of a matrix
X−1 inverse of a matrix
X+ pseudo-inverse of a matrix
|X| determinant of a matrix
tr(X) trace of a matrix√
X square root of a matrix

C(X) column space of a matrix
N(X) nullspace of a matrix
C(X)⊥ orthogonal complement of a subspace
X matrix of sigma points

viii

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Using probability theory to solve problems in engineering and computer science often fol-
lows the familiar process of modelling, observation and inference. Under this methodology,
the starting point is usually to construct a parametrised mathematical model of the given
system based on equations describing its underlying behaviour. These equations often have
some physical origin, for example differential equations describing the dynamics of a robotic
vehicle. A subset of the random variables in the model are then observed and used to infer
the posterior distribution over other unobserved (but correlated) random variables. A good
example of this is the Kalman filter used in recursive state estimation, where noisy measure-
ments are used to estimate time-dependent latent states [1]. When dealing with continuous
random variables such as these, a popular choice for keeping the inference process tractable
is to make the Gaussian assumption for all prior and conditional distributions [2]. Under
this assumption, the representation is closed under typical statistical operations required for
inference algorithms. In other words, the result of each operation is conveniently once again
a Gaussian distribution [3].

1.1 Research motivation

An important (and necessary) constraint for using Gaussian models is that the covariance
matrix of any Gaussian distribution must be positive definite [4]. If the covariance matrix were
instead only positive semi -definite, the likelihood of the distribution would not be defined,
nor would the precision matrix (i.e., the inverse of the covariance matrix) exist. The latter
would be problematic even for basic operations such as multiplication and conditioning on
evidence. Such positive semi-definite settings correspond to cases of perfect correlation and
are commonly referred to as degenerate, where it is understood that linear dependencies exist
among certain random variables [5]. This implies that the density in reality only has support
(i.e., is not equal to zero) on a lower-dimensional manifold.

Although certain applications necessitate the explicit modelling of linear dependencies
between random variables, another common manifestation thereof is the result of machine
precision limitations [6]. A simple example of the latter is the repeated noisy observation of a
constant latent state. Although the uncertainty in the posterior distribution will theoretically
only be zero in the limit, this will happen after finite time in practice. Since such character-
istics are typically a function of model parameters, it can easily lead to numerical errors in

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

certain cases if not handled appropriately.
A straightforward solution to guard against degeneracies is to simply redefine the problem

to remove redundant variables as needed. For example, if a vehicle is moving on a constrained
horizontal plane, it is unnecessary to estimate its position in the entire three-dimensional
space. Similarly, should two random variables become perfectly correlated due to machine
precision effects, one could manually reduce the dimensionality of the space until sufficient
uncertainty once again allows explicit separation. Although this solution might work, it
involves repeated human engineering, which can be especially tedious when dealing with time-
dependent models where degeneracies arise inconsistently and unpredictably. An alternative
approach that can automatically handle degenerate cases is therefore desirable.

1.2 Aims and objectives

The aim of this project is to develop a generalised representation for Gaussian distributions
(or more generally for unnormalised Gaussian factors) that can handle statistical operations
in degenerate cases. Ideally, the capabilities of traditional, non-degenerate parametrisations
(such as model comparison and linearisation) should still be preserved and the additional
computational cost should not be significant. Along with proposing an appropriate definition
for such a degenerate Gaussian factor, it is therefore also necessary to derive typical inference
operations from first principles. Concretely, we identify the following research objectives:

• To propose a representation for Gaussian factors that can express possible degeneracies
without suffering from over-parametrisation.

• To derive the appropriate statistical operations such that the capabilities of non-degenerate
factors are preserved.

• To implement the developed solution and showcase its advantages at the hand of a
representative example.

If successful, this will ultimately enable numerically stable inference (due to well-conditioned
matrices) in degenerate or near-degenerate settings without resorting to unnecessary approx-
imations.

1.3 Existing approaches to inference in degenerate settings

With these objectives in mind, we review the existing literature on degenerate Gaussian
factors (or distributions). In the majority of cases, degeneracies are correctly identified,
but no subsequent mechanisms are developed which would enable inference. For example,
in their work on Gaussian influence diagrams, Shachter and Kenley [2] recognise that zero
variance corresponds to linear dependencies, but do not provide a means to handle such
cases automatically. Lauritzen and Jensen [5] also acknowledge possible degeneracies in their
definition of conditional Gaussian distributions – a hybrid parametrisation where the joint
distribution of continuous random variables given discrete random variables is assumed to
be multivariate Gaussian. However, since they employ singular covariance matrices for this
purpose, representing more general factors (with singular precision matrices) is not possible.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

Despite this shortcoming, there are a wide variety of applications where the need for de-
generate Gaussian factors is apparent. Two examples include the work by Pawula et al. [7],
where they determine formulas for the symbol error rate in digital frequency modulation, and
that by Cao and Shen [8] on the fault detection of photovoltaic cells using Gaussian mixture
models (GMMs). In both of these cases, deterministic formulas lead to degeneracies when
combined with standard probabilistic models. Two further studies by Quinonero-Candela and
Rasmussen [9] and Biernacki and Chrétien [10] show that degenerate cases arise even in gen-
eral regression and estimation techniques such as Gaussian processes (GPs) and expectation
maximisation (EM).

To support the methodology in the rest of this dissertation, there are three approaches
(for handling degenerate Gaussian factors) that are worth discussing in more detail. The
first is a means to avoid the need for computing with degeneracies altogether at the cost of
additional approximations. This will additionally serve as a benchmark for evaluating the
performance of our proposed solution in Chapter 9. Similar to most approaches, the second
does not provide any means for performing inference with degenerate factors. However, the
definition employing a Dirac delta function is similar to ours and therefore deserves a mention.
The third approach is the most relevant. Although their factor definition is different from
ours and consequently does not extend all the capabilities of non-degenerate factors, there are
a number of parallels in the mathematical results.

1.3.1 Ridge regularisation

A popular practical solution to deal with degeneracies is to employ ridge regularisation, where
a widely-used strategy is to add a small scalar value to the diagonal terms of the covariance
matrix. This strategy was first introduced by Hoerl and Kennard [11], where it was used to
reduce the mean square error in linear regression. This not only ensures positive definiteness,
but also that the condition number of the matrix remains manageable. Specifically, for a
singular covariance matrix Σ, Warton [12] writes the regularised covariance as

Σλ = Σ + λI. (1.1)

Although a subset of the eigenvalues of Σ are trivial, the addition of a scaled identity matrix
results in an invertible approximation. Warton [12] further states that the correlation matrix
R is often regularised instead, since it has diagonal elements equal to unity.

Unfortunately, this added robustness often comes at the cost of a decrease in accuracy [13].
This makes sense intuitively, since the effective covariance matrix used for inference is different
from the true statistic. As a result, there is always a trade-off between more numerically
stable computations for larger values of λ and less biased estimates otherwise. Although
a number of studies have investigated optimal strategies for designing these regularisation
values [14, 15], whether this approximation is tolerable or not ultimately depends on the
particular application [16].

1.3.2 Dirac delta functions and pseudo-inverses

In contrast to ridge regularisation, Mikheev [17] proposes an explicit representation for de-
generate Gaussian distributions. For the special case where the mean is zero, they express

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

the density function over an n-dimensional vector x as

p(x) = (2π)−r/2

(
r∏
i=1

σi

)−1/2

exp

(
−1

2
xTΣ+x

) n∏
i=r+1

δ(xTvi), (1.2)

where the covariance matrix Σ has rank r, eigenvalues σi, eigenvectors vi and pseudo-inverse
Σ+. This is then simplified to an expression for the density function that is only valid on the
lower-dimensional manifold where the linear constraints are satisfied, given by

p(x) = η exp

(
−1

2
xTΣ+x

)
, (1.3)

where η is the normalisation constant. The final result therefore does not include a Dirac
delta function and looks very similar to the standard Gaussian density where the matrix
inverse is just replaced with a pseudo-inverse. By first making sure that the given vector
satisfies the linear constraints imposed by the covariance matrix, Equation 1.3 can then be
used to calculate the relative likelihood. Mikheev [17] does not, however, provide any means
for performing inference with this representation.

1.3.3 Complementary subspaces and indicator functions

The approach by Raphael [18] is the only one that we are aware of that both represents
parametrised degenerate factors explicitly and then also provides a means to use this rep-
resentation to perform inference. In this case, the factors are represented as the product
of an exponential factor and a multivariate indicator function. For this purpose, Raphael
defines three mutually orthogonal subspaces that form a decomposition of Rn according to
(a) components associated with finite variance, (b) those that need to satisfy the implied
linear constraints, and (c) those that the factor does not depend on. Raphael then derives
the necessary operations for inference algorithms and demonstrates their application to an
example of automatic musical accompaniment.

In addition to the three subspaces, which are denoted by U+, U0 and U∞ and represented
by bases in the columns of matrices, Raphael’s parametrisation includes an n-dimensional
mean vector µ and two non-negative definite n × n matrices Σ and S that are equivalent
to the covariance and precision matrices in non-degenerate cases. This results in a hextuple
(U+, U0, U∞,Σ, S,µ), although only three of these parameters appear in their factor definition

φ(x) = 1(PU0x = PU0µ) exp

(
−1

2
(x− µ)TS(x− µ)

)
. (1.4)

Firstly, the projection matrix PU0 is used to check whether the given vector x lies on the
lower-dimensional manifold satisfying the linear constraints. The exponential term in turn
resembles a non-degenerate Gaussian factor with precision matrix S. The matrix Σ, which
does not appear in the definition but is used in their subsequent statistical operations, is the
pseudo-inverse of S and the column space of both of these is U+. Finally, the mean vector µ
is chosen such that PU∞µ = 0.

Although the representation in Equation 1.4 makes the notation and results of some sta-
tistical operations more concise, it is over-parametrised. More specifically, it should not be

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

necessary to store multiple parameters that can be obtained from one another by computing,
for example, pseudo-inverses or column spaces. In addition, Raphael [18] mentions that this
definition cannot express unnormalised factors, which prohibits model comparison. This lim-
itation is ultimately due to their use of an indicator function, where the Dirac delta proposed
by Mikheev [17] provides a less restrictive alternative. Finally, they do not provide a method
for approximating nonlinear models. This is especially relevant when using the unscented
transform, where deterministic samples cannot be drawn naively from a singular covariance
matrix.

1.4 Solution overview and contributions

In light of the shortcomings of existing approaches, we present a generalised representation
for Gaussian factors in this dissertation that can handle statistical operations in degenerate
cases both automatically and accurately. This is in contrast to ridge regularisation [11] which
introduces unnecessary approximations. Our parametric form makes use of a canonical factor
with a diagonal precision matrix to express the uncertainty in the (possibly) lower-dimensional
manifold and a Dirac delta function to represent any linear dependencies. Unlike the work
by Mikheev [17], we keep the Dirac delta functions as part of the representation to enable
the derivation of inference operations. This is also in contrast to Raphael’s [18] use of the
indicator function.

Unlike Raphael, we only keep track of two complementary subspaces. This is because
canonical factors themselves can already express random variables with zero precision (or
infinite variance). The bases for the appropriate decomposition into these two subspaces
are then represented by the columns of two semi-orthogonal matrices. By using a diagonal
precision matrix, our representation achieves the same expressibility as that by Raphael with
only n2 + 2n scalar parameters, as opposed to their 3n2 + n parameters. An added benefit
is that deterministic samples can then also be drawn from a singular covariance matrix in a
straightforward manner.

Our representation explicitly keeps track of the normalisation constant, thereby allow-
ing model comparison and maximum a posteriori (MAP) estimation. This is not possible in
degenerate settings with any existing approaches. We subsequently derive typical inference
operations for our representation from first principles that are applicable to both linear and
nonlinear models. Lastly, this generalised representation also provides a method to repre-
sent the distribution over a rank-deficient transformation of non-degenerate Gaussian random
variables.

Collectively, these contributions have the implication that all the capabilities of Gaussian
factors can be extended to degenerate settings, without requiring any manual checks nor
a different strategy for appropriately handling each case. Since Gaussian random variables
are utilised in such a wide variety of applications, this would be very useful in practice. As
previously mentioned, traditional inference can also become unstable due to machine precision
errors. By choosing an appropriate threshold based on the problem specifics, this can be
improved by introducing artificial degeneracies in ill-conditioned cases.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

1.5 Dissertation outline

To ensure that our development of degenerate factors is relevant, it is necessary to keep the
context general enough. Throughout this dissertation, we therefore present the definition of
degenerate Gaussian factors, as well as the resulting statistical operations, in the context of
probabilistic graphical models (PGMs). (This does not, however, limit the application of the
subsequent development to this context alone.) For this purpose, we introduce various PGM
concepts in Chapter 2 and specifically discuss the typical operations required for inference
on Gaussian networks. In Chapter 3 we review concepts from the field of linear algebra
that are relevant for our definition of degenerate Gaussian factors and used throughout the
derivations of the subsequent statistical operations. Utilising concepts such as orthogonality
and projections is ultimately what results in a representation that is not over-parametrised.
In Chapter 4 we present the definition of both the one-dimensional and multidimensional
Dirac delta functions, since the latter subsequently forms part of our factor parametrisation.

In Chapter 5 we introduce our definition of the degenerate Gaussian factor. We also
derive the first- and second-order moments of the generalised density function and cover the
affine transformation of random variables. In Chapter 6 we derive the statistical operations
(such as marginalisation, multiplication and reduction according to evidence) required for
inference with degenerate factors and in Chapter 7 we discuss the computational complexity
thereof. Chapter 8 presents further operations that are necessary for performing inference
on Bayesian networks and Chapter 9 investigates a recursive state estimation example that
illustrates the advantages of explicitly representing and performing inference with degenerate
Gaussian factors. In Chapter 10 we provide concluding remarks and discuss possible avenues
for future research.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Gaussian networks

Gaussian random variables are widely used across many engineering and computer science
applications, where a few examples include robotics, computer vision and natural language
processing. We use the term “Gaussian network” to refer to any probabilistic model where
the joint distribution over all the random variables is Gaussian. In order to choose an appro-
priate representation for degenerate Gaussian factors, we first need to know how these factors
will typically be used. We therefore start with a review of inference with traditional, non-
degenerate Gaussian factors. To keep the context general enough, we make use of probabilistic
graphical models (PGMs) for this purpose.

2.1 Probabilistic graphical models

PGMs are a family of statistical techniques that represent the factorisation of a problem using
directed or undirected graphs [19]. Since this is a rather general framework, many traditional
machine learning techniques and algorithms can be considered special cases of the larger class
of PGMs. Such examples include temporal classifiers like hidden Markov models (HMMs) and
Kalman filter models (KFMs), error correction techniques such as low-density parity-check
(LDPC) coding, certain graph-colouring algorithms and a class of neural network, called deep
belief networks (DBNs).

PGMs take advantage of conditional independence between random variables within a
model, thereby expressing the joint distribution over all the random variables as a product of
factors. This results in a less computationally expensive, factored approach. The use of PGMs
for solving inference problems typically amounts to (1) modelling the problem using either a
Bayesian network or Markov random field, (2) converting to another, more convenient type of
graphical model such as a factor or cluster graph, and (3) inferring the posterior distributions
over certain unobserved variables that are of interest. In the remainder of this section we will
provide an overview of these concepts at the hand of a simple example. For a more in-depth
discussion, kindly refer to the work by Koller and Friedman [3] or Barber [19].

2.1.1 Bayesian networks and Markov random fields

For modelling an inference problem using a PGM, one generally has two options. The subclass
of Bayesian networks are often used to model systems with clear causal relationships between
their random variables, whereas Markov random fields (also called Markov networks) make use

7

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. GAUSSIAN NETWORKS 8

of a different structure allowing the representation of non-causal relationships. In both cases,
random variables are usually represented by round nodes, while the relationships between
them are represented by directed or undirected edges in the case of Bayesian or Markov
networks, respectively. In a Bayesian network, each of the variable nodes are associated with
a conditional distribution and the (absence of) edges indicate conditional (in)dependencies
among the random variables [20]. In a Markov random field, the edges represent a more
general factorisation of the joint distribution [21]. Although we focus on Bayesian networks to
introduce subsequent concepts and terminology in the remainder of this section, the majority
of the development applies to Markov random fields as well.

In a Bayesian network, each node with an edge towards another node is called the parent of
that node, and the other node is in turn called the child of the first node. It is possible for any
node to have multiple parents or children. A node with no parents is called a root node and
a node with no children is called a leaf node. To represent an inference problem, we require
the conditional distribution of each variable given all of its parents, or the prior distribution
in the case of a root node [19]. For a given Bayesian network, the implicit assumption is that
the product of all these prior and conditional distributions is equal to the joint distribution
over all the random variables. We usually indicate random variables that are observed, i.e., for
which the value will be specified exactly, using shaded nodes. These definitions are illustrated
in Figure 2.1 for a simple example.

a b c

g h

d e f

p(a) p(b) p(c)

p(d|a)

p(g|e, f) p(h|f)

p(f |b, c)

p(e|a)

Figure 2.1: Example of a Bayesian network for a system with random variables a to h, where the vari-

ables d and g are observed. Nodes a, b and c are root nodes, and nodes d, g and h are leaf nodes. Node f

is a child of nodes b and c, and a parent of nodes g and h. The three root nodes have no parents and are

therefore associated with prior distributions, whereas nodes d, e and h each have one parent and nodes f

and g each have two parents and are therefore associated with the appropriate conditional distributions.

The joint distribution is p(a, b, c, d, e, f, g, h) = p(a) p(b) p(c) p(d|a) p(e|a) p(f |b, c) p(g|e, f) p(h|f).

2.1.2 Factor and cluster graphs

Although a Bayesian network is useful for capturing the structure and causal relationships
of a system, it provides relatively few techniques for performing inference on its own. A
popular choice is therefore to convert the Bayesian network to another type of PGM, called
a factor graph, which is the foundation for a large number of inference algorithms [3]. In a
factor graph, each prior or conditional distribution of the corresponding Bayesian network is
represented by a more general factor. This factor is a positive, real-valued function of both

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. GAUSSIAN NETWORKS 9

the given random variable as well as its parents – collectively called the scope of the factor.
Each factor is then connected to every random variable within its scope via undirected edges.
The factor graph corresponding to the Bayesian network in Figure 2.1 is shown in Figure 2.2.

a b c

g h

d e f

φA(a) φB(b) φC(c)

φD(a, d) φE(a, e)

φH(f, h)

φF (b, c, f)

φG(e, f, g)

Cluster 1 Cluster 3

Cluster 2

Figure 2.2: The factor graph corresponding to the Bayesian network shown in Figure 2.1. Each

factor φ(·) is indicated by a square node, with undirected edges to each random variable node within

its scope. For example, the factor φG(e, f, g) = p(g|e, f) is connected to the random variable nodes

e, f and g. The dotted lines indicate a possible choice of grouping factors together to form clusters

(discussed next).

By further grouping subsets of these factors together and specifying the connections be-
tween these newly formed clusters, we can construct another type of PGM called a cluster
graph. Although this factor grouping is typically not unique, Koller and Friedman [3] highlight
two important constraints for a valid cluster graph:

• The family preservation property: Every factor needs to be assigned to some cluster,
such that the scope of the factor is a subset of the scope of the cluster.

• The running intersection property: For every variable and any two clusters that contain
that variable as part of their scopes, there should be exactly one path between the two
clusters such that the given variable is in the scope of every cluster along that path.

For each cluster, the cluster potential is the product of all the factors that are assigned to that
cluster and constitutes a node in the cluster graph. The sepset between any two clusters is
then defined as a subset of the intersection of their potentials’ scopes. These sepsets are the
foundation for a very popular family of inference algorithms, known as message passing. Each
sepset is also a node in the cluster graph, with undirected edges to the appropriate cluster
potentials. The cluster graph resulting from the factor groupings in Figure 2.2 is shown in
Figure 2.3.

2.1.3 Message passing algorithms

Message passing algorithms, such as belief propagation by Shenoy and Shafer [22] or belief
update by Lauritzen and Spiegelhalter [23], are a popular choice for performing inference on

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. GAUSSIAN NETWORKS 10

e fψ2(e, f, g∗, h)ψ1(a, d∗, e) ψ3(b, c, f)

ξ1→2 ξ2→3

ξ2→1 ξ3→2

Figure 2.3: The cluster graph created by grouping the factors as shown in Figure 2.2. The clus-

ter potentials and sepsets are represented by oval and square nodes, respectively. As an exam-

ple, the intersection of the scopes of the two potentials ψ1(a, d, e) = φA(a)φD(a, d)φE(a, e) and

ψ2(e, f, g, h) = φG(e, f, g)φH(f, h) is the variable e. Observed variables are denoted with an asterisk

and the directions of every message ξ (discussed next) is indicated by an arrow.

PGMs. According to these methodologies, the Bayesian or Markov network must first be
converted to a factor or cluster graph as discussed previously. All observed variables are then
treated as evidence and the posterior distribution, or belief, over any unobserved variable can
be calculated.

For each sepset in a cluster graph, there exists a pair of messages in opposite directions
between the two appropriate clusters, where each message is a factor with the sepset as its
scope. These messages provide a means for the clusters to share their belief regarding com-
mon variables with one another. Koller and Friedman [3] define the messages by performing
variable elimination in computing marginal distributions from the joint distribution over all
the random variables. According to their sum-product algorithm, the process of computing a
given outgoing message from a cluster starts by multiplying all the other incoming messages
with the cluster potential. We then proceed by incorporating any evidence regarding vari-
ables within the cluster scope, and finally marginalise over all the variables not in the desired
sepset. In general, for an outgoing message ξi→j(xi,j) from a cluster with potential ψi(xi),
this is given by

ξi→j(xi,j) =

∫
ψi(xi)

∏
k 6=j

ξk→i(xi,k) dxi,−j , (2.1)

where xi,−j indicates the variables that are in xi but not in xi,j . Returning to the example
in Figure 2.3, the four messages are defined as

ξ1→2(e) =

∫
ψ1(a, d = d0, e) da

ξ2→1(e) =

∫
ψ2(e, f, g = g0, h) ξ3→2(f) df dh

ξ2→3(f) =

∫
ψ2(e, f, g = g0, h) ξ1→2(e) de dh

ξ3→2(f) =

∫
ψ3(b, c, f) db dc, (2.2)

where d0 and g0 are the observed values of variables d and g, respectively.
An important observation can be made from the message computations in Equation 2.2.

Since the two outward messages ξ2→1 and ξ2→3 depend on the two inward messages ξ3→2 and
ξ1→2, the latter should be computed first. This reveals that the order of message computations

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. GAUSSIAN NETWORKS 11

is significant. Another important consideration when using these algorithms is the structure
of the cluster graph. In a tree-structured graph (such as the one in Figure 2.3), inference is
exact and messages only need to be computed once. In a graph with loops, however, inference
is approximate and requires iteration for convergence [3].

Once all the messages in a cluster graph have been computed, the belief regarding any
unobserved variable can be obtained in one of two ways. Firstly, we could multiply any cluster
potential where the given variable forms part of that cluster’s scope with all the incoming
messages to that cluster, and then marginalise over all the other variables. Alternatively, we
could combine any pair of messages with the given variable as part of the sepset, and once
again marginalise over all the other variables. For the example in Figure 2.3, we can use the
former method to calculate the belief over h as

p(h|d = d0, g = g0) ∝
∫
ψ2(e, f, g = g0, h) ξ1→2(e) ξ3→2(f) de df. (2.3)

This then concludes the factored approach of using PGMs to infer the posterior distribution
over an unobserved variable given the available evidence.

2.2 Canonical factors

Up to this point, the discussion of inference using PGMs was not specific to Gaussian random
variables. Now that the general framework has been presented, we proceed to the specific
details for a popular representation of Gaussian factors, called canonical factors. In this
section, the definitions and results only hold for the non-degenerate case.

2.2.1 Definition and parametrisation

For representing parametrised factors in Gaussian networks, Koller and Friedman [3] define
the canonical factor over an n-dimensional random vector x as

C (x;K,h, g) , exp

(
−1

2
xTKx + hTx + g

)
, (2.4)

where K is a symmetric n × n precision matrix, h is an n-dimensional vector and g is a
scalar normalisation constant. The factor in Equation 2.4 is a normalised probability density
function if and only if the matrix K is positive definite and

g = −1

2
hTK−1h− 1

2
log
∣∣2πK−1

∣∣ . (2.5)

Koller and Friedman [3] further show that any Gaussian density function with mean vector
µ and covariance matrix Σ can be expressed as such a canonical factor, according to

N (x;µ,Σ) ,
1√
|2πΣ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
= exp

(
−1

2
xTΣ−1x + µTΣ−1x− 1

2
µTΣ−1µ− 1

2
log |2πΣ|

)
= C

(
x; Σ−1,Σ−1µ,−1

2
µTΣ−1µ− 1

2
log |2πΣ|

)
. (2.6)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. GAUSSIAN NETWORKS 12

Conversely, a normalised canonical factor can also be expressed as a Gaussian density with
covariance parametrisation according to

C(x;K,h, g) = N (x;K−1h,K−1). (2.7)

One of the main benefits of canonical factors is their ability to represent conditional
Gaussian densities. (Recall that this is necessary for modelling a system using a Bayesian
network.) To illustrate this, note that any canonical factor with scope Ux+v can be expressed
over scope x according to

C(Ux + v;K,h, g) = exp

(
−1

2
(Ux + v)TK(Ux + v) + hT (Ux + v) + g

)
= exp

(
−1

2
xTUTKUx + (h−Kv)TUx + g +

(
h− 1

2
Kv

)T
v

)

= C

(
x;UTKU,UT (h−Kv), g +

(
h− 1

2
Kv

)T
v

)
. (2.8)

Next, given the affine transformation

y = Ax + b + w (2.9)

subject to independent Gaussian noise

w ∼ N (w;µ,Σ), (2.10)

we can represent the conditional density

p(y|x) = N (y;µ+Ax + b,Σ) = N (y −Ax;µ+ b,Σ) (2.11)

by adding the offset Ax + b to the mean. By then using the result in Equation 2.6 and
expressing the scope of the resulting canonical factor as a matrix product, we obtain

p(y|x) = C
([
−A I

] [x
y

]
; Σ−1,Σ−1(µ+ b),−1

2
(µ+ b)TΣ−1(µ+ b)− 1

2
log |2πΣ|

)
.

(2.12)
Finally, applying the result in 2.8 yields

p(y|x) = C
([

x
y

]
;K ′,h′, g′

)
, (2.13)

where

K ′ =
[
−A I

]T
Σ−1

[
−A I

]
h′ =

[
−A I

]T
Σ−1(µ+ b)

g′ = −1

2
(µ+ b)TΣ−1(µ+ b)− 1

2
log |2πΣ| . (2.14)

Since the precision matrix K ′ is singular, the conditional density cannot be expressed with
scope {x,y} using the covariance parametrisation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. GAUSSIAN NETWORKS 13

2.2.2 Statistical operations

A very useful property of canonical factors is that they are closed under typical message pass-
ing operations. A closer inspection of the individual computations in Equation 2.2 reveals that
message passing requires results for marginalisation, multiplication and reduction according to
evidence. For belief propagation [22], also known as the Shenoy-Shafer algorithm, we only re-
quire these three operations. For belief update [23], also known as the Lauritzen-Spiegelhalter
algorithm, a fourth operation is necessary, namely division.

Koller and Friedman [3] show that for the partitioned canonical factor

φ(x,y) = C
([

x
y

]
;

[
Kxx Kxy

Kyx Kyy

]
,

[
hx

hy

]
, g

)
, (2.15)

marginalising over y results in the marginal canonical factor∫
φ(x,y) dy = C

(
x;Kxx −KxyK

−1
yyKyx,hx −KxyK

−1
yyhy, g +

1

2
hTyK

−1
yyhy +

1

2
log
∣∣2πK−1

yy

∣∣) .
(2.16)

Furthermore, the product of two canonical factors over the same scope x is given by

C(x;K1,h1, g1) C(x;K2,h2, g2) = C(x;K1 +K2,h1 + h2, g1 + g2). (2.17)

Similarly, the quotient of two canonical factors is given by

C(x;K1,h1, g1)

C(x;K2,h2, g2)
= C(x;K1 −K2,h1 − h2, g1 − g2). (2.18)

Finally, the canonical factor in Equation 2.15 can be reduced according to available evidence
by setting y = y0, resulting in

φ(x,y0) = C(x;Kxx,hx −Kxyy0, g + hTyy0 −
1

2
yT0 Kyyy0). (2.19)

The results in Equations 2.16 to 2.19 form the building blocks for message passing algorithms
in Gaussian networks. To perform inference using a more general factor representation that
can accommodate degeneracies will therefore require similar results.

2.3 Approximation of nonlinear dependencies

Constructing a Bayesian network of a system with continuous random variables usually starts
with a given system of equations. These relationships typically have some physical origin
(for example differential equations describing the dynamics of a vehicle) and are often nonlin-
ear. Since only linear transformations of Gaussian random variables are again Gaussian dis-
tributed, the latter warrants the use of linearisation techniques to keep the inference tractable.
Consider, for example, the nonlinear transform

y = f(x) (2.20)

and the prior distribution
p(x) = N (x;µ,Σ) . (2.21)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. GAUSSIAN NETWORKS 14

Since the exact distribution p(y) will not necessarily be Gaussian, a standard approach is to
use the approximation

y ≈ Ax + b (2.22)

to obtain the marginal distribution

p(y) ≈ N (y;Aµ+ b, AΣAT) = N (y;µ′,Σ′), (2.23)

where the quantities A and b can be computed in various ways. Two of the most popular
linearisation techniques that are widely-used are first-order Taylor series expansion and the
unscented transform [24].

2.3.1 Taylor series expansion

For a univariate scalar function g(x), recall the Taylor series

g(x) = g(a) +
g′(a)

1!
(x− a) +

g′′(a)

2!
(x− a)2 +

g′′′(a)

3!
(x− a)3 + (2.24)

Such an expansion can be truncated to obtain a first-order approximation of the nonlinear
function in Equation 2.20, namely

f(x) ≈ f(µ) + J(µ)(x− µ), (2.25)

where J(x) is the Jacobian matrix of the function f(x) [25]. Since only the mean of the prior
distribution in Equation 2.21 is used, this is considered as linearising around a single point.
Combining Equations 2.20 and 2.25 and rearranging terms yields

y ≈ J(µ)x + (f(µ)− J(µ)µ). (2.26)

Since Equation 2.26 is in the desired form of Equation 2.22, Equation 2.23 becomes

p(y) ≈ N (y; f(µ), J(µ)ΣJ(µ)T) (2.27)

in the case of the Taylor series approximation. Note, however, that this requires the tedious
recalculation of problem-specific partial derivatives. We therefore also consider the unscented
transform as an alternative, for which the performance has been proven to be at least as good
as that of the Taylor approximation on average [26].

2.3.2 The unscented transform

In the unscented transform, multiple deterministic samples (known as sigma points) are in-
stead drawn from the prior distribution (Equation 2.21) and then individually propagated
through the nonlinear transform (Equation 2.20). For an n-dimensional Gaussian prior, Thrun
et al. [25] arrange the set of 2n+ 1 sigma points as the columns of the matrix

X =
[
x[0] . . . x[2n]

]
=
[
0, γ

√
Σ, − γ

√
Σ
]

+ µ1T , (2.28)

where the square root of a matrix
√
A is typically determined using the Cholesky decomposi-

tion. In addition, the scaling parameter γ determines how far the sigma points are distributed

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. GAUSSIAN NETWORKS 15

from the mean and consequently what the relative weight of each sample should be. Thrun
et al. [25] define two weights

w[i]
m =

{
1− n

γ2
, if i = 0

1
2γ2

, otherwise
(2.29)

and

w[i]
c =

{
4− n

γ2
− γ2

n , if i = 0
1

2γ2
, otherwise

(2.30)

for this purpose. The i’th sigma point is then propagated through the nonlinear transforma-
tion to yield

y[i] = f
(
x[i]
)
, (2.31)

which is in turn used to calculate the resulting mean and covariance (of the distribution in
Equation 2.23) according to

µ′ =
2n∑
i=0

w[i]
m y[i] (2.32)

and

Σ′ =
2n∑
i=0

w[i]
c

(
y[i] − µ′

)(
y[i] − µ′

)T
. (2.33)

As we will show in Chapter 8, these results can also be used to calculate an equivalent
affine transformation as in Equation 2.22, which can in turn be used to represent conditional
Gaussian densities in nonlinear models.

In summary, we provided an overview of Gaussian networks in this chapter and specifically
presented the necessary operations for performing inference using canonical factors. The
canonical factor will form the first component of our definition for degenerate Gaussian factors
in Chapter 5. The subsequent message passing operations outlined in this chapter not only
serve as the foundation for Chapter 6, but are themselves used in various proofs of the main
results. In addition, the techniques for approximating nonlinear dependencies are extended
to the case of degenerate distributions in Chapter 8.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Linear algebra

Vectors and matrices are prominent in countless branches of engineering and computer sci-
ence, where a few examples include image processing, Fourier analysis, electrical circuit theory
and machine learning. In its purest form, linear algebra is concerned with solving equations of
the form Ax = b for a given matrix A and vector b. In general, it is a proper understanding
of matrix properties and the appropriate application of matrix operations that are imperative
for successful application. Degenerate Gaussian factors are no exception. Although the defi-
nition of such a factor using a Dirac delta component is not unique, choosing matrices with
appropriate properties avoids over-parametrisation and leads to simpler statistical results.

3.1 Vector spaces

Before discussing the matrix properties relevant to degenerate factors, an introduction to
vector spaces is appropriate. Strang [27] defines a vector space as a set V together with rules
for vector addition (i.e., x + y) and multiplication by real numbers (i.e., cx) that satisfy the
following eight axioms:

1. Commutativity: x + y = y + x

2. Associativity: x + (y + z) = (x + y) + z

3. Additive identity: There exists a unique 0 such that ∀x, x + 0 = x

4. Additive inverses: ∀x, there exists −x such that x + (−x) = 0

5. Unitarity: 1x = x

6. Compatibility: (cd)x = c(dx)

7. Distributivity w.r.t. vectors: c(x + y) = cx + cy

8. Distributivity w.r.t. scalars: (c+ d)x = cx + dx

Arguably the most well-known example of a vector space is the n-dimensional space Rn, which
consists of all column vectors with n components. Although vector spaces are not limited to
spaces of column vectors alone, this will be the context throughout this dissertation.

A subspace of a vector space is in turn defined as any set of vectors that satisfy two
requirements:

16

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LINEAR ALGEBRA 17

• Closed under addition: If v and w are vectors that are both in the subspace, then so is
their sum v + w.

• Closed under multiplication: If v is a vector in the subspace, then so is cv where c is
any scalar.

These two requirements can be combined to reveal that any subspace containing v and w
must also contain all linear combinations cv + dw. By setting c = 0 in the second, we also
see that all subspaces must necessarily contain the zero vector 0. An example of a subspace
of R2 is a straight line L that passes through the origin (0, 0), where we write L ⊂ R2.

The intersection of two subspaces V and W is further defined as the set of all vectors
that are elements of both V and W and is denoted by V ∩W . In turn, their union is the
set of all vectors that are elements of either V or W and is denoted by V ∪W . Unlike its
intersection, the union of two subspaces is not closed under addition (i.e., for two vectors
v ∈ V and w ∈W , the sum v + w is not necessarily an element of V or W) and is therefore
not a subspace itself. An example of this is the union of the x-axis and the y-axis in R2.

3.1.1 The four fundamental subspaces of a matrix

A useful perspective on the properties of and the operations on a given matrix Am×n (with
m rows and n columns) is what Strang [27] calls its four fundamental subspaces. These are
the column space, nullspace, row space and left nullspace. Even if two matrices appear to be
different at first glance, if they share certain properties they can be manipulated in similar
ways. Furthermore, such matrices can often be used interchangeably to convey equivalent
ideas, as we will see in later chapters.

The column space (also called the range) of A refers to the set of all possible vectors that
can be constructed from a linear combination of the columns of A and is denoted by

C(A) ⊆ Rm. (3.1)

Since this linear combination can be written as Ax, the equation Ax = b is solvable if and
only if b ∈ C(A), i.e., if the vector b is in the column space of A. Since the columns of A
have m components, the column space is a subspace of Rm (and not Rn). The row space of
A is simply the column space of AT , i.e., C

(
AT
)
⊆ Rn.

The nullspace (also called the kernel) of A is the set of all solutions x to the equation
Ax = 0 and is denoted by

N(A) ⊆ Rn. (3.2)

For invertible matrices, the only solution to this equation is x = 0, but in general there could
be non-trivial solutions as well. Since the rows of A have n components, so does the vector x
and consequently the nullspace is a subspace of Rn (and not Rm). The left nullspace of A is
simply the nullspace of AT , i.e., N

(
AT
)
⊆ Rm.

3.1.2 Matrix rank, independence and dimensionality

Another fundamental property of a matrix is its rank, denoted by r = rank(A) and defined as
the number of linearly independent columns of A [27]. A set of vectors v1, ... , vn is linearly
independent if the only solution to the equation

c1v1 + . . .+ cnvn = 0 (3.3)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LINEAR ALGEBRA 18

is ∀i, ci = 0. Note that any set of n vectors in Rm is necessarily linearly dependent if n > m.
The number of independent rows of A is also equal to its rank and therefore

0 ≤ r ≤ min[m,n]. (3.4)

A matrix is said to have full column rank when r = n (or full row rank if r = m). In this
case, the nullspace (or left nullspace) is trivial, i.e., N(A) = {0}.

A set of vectors v1, ... , vn is further said to span the subspace comprising all possible
linear combinations c1v1 + . . . + cnvn. The columns of a matrix therefore span its column
space, even though these columns do not need to be independent. Similarly, the rows of a
matrix span its row space. If a set of vectors that span a given space are in fact independent,
this is called a basis for that space. According to Strang [27], although the basis for a vector
space is not unique, the number of vectors in every such basis must be the same. This is called
the dimension of the space. From these definitions, the rank of A is equal to the dimension
of the column space of A, i.e.,

r = dim(C(A)). (3.5)

Finally, the sum of two subspaces V and W is defined as the span of the sum of any of their
elements and is denoted by V +W . For example, the sum of the x-axis and the y-axis is R2.

3.2 Orthogonality

Up to this point, our discussion has been applicable to general matrices. Although it is well
established that two vectors x and y are orthogonal when xTy = 0, this idea can be extended
to orthogonal subspaces and orthogonal matrices as well [27].

3.2.1 Orthogonal subspaces and matrices

Two subspaces V and W are said to be orthogonal if every vector v ∈ V is orthogonal
to every vector w ∈ W . An important special case of this is that for any matrix A, the
column space and left nullspace are orthogonal, i.e., C(A) ⊥ N(AT). Similarly, its row space
and nullspace are orthogonal, i.e., C(AT) ⊥ N(A). In fact, these fundamental subspaces
are not just orthogonal, but are orthogonal complements. Strang [27] defines the orthogonal
complement of a subspace V (denoted by V ⊥) as the set of all vectors orthogonal to V . We
can therefore write

C(A) = N(AT)⊥ and C(AT) = N(A)⊥. (3.6)

The latter follows directly from the definition of the nullspace, since every vector x that is
orthogonal to the rows of A must satisfy Ax = 0.

A square matrix Q is orthogonal if and only if Q−1 = QT and subsequently

QTQ = QQT = I. (3.7)

If Q is not square, but its n columns are orthonormal, then QTQ = I and Q is said to be
semi-orthogonal. A set of vectors v1, ... , vn is orthonormal if

∀i, j, vTi vj = δij =

{
1 i = j

0 i 6= j
(3.8)

where δij is called the Kronecker delta.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LINEAR ALGEBRA 19

3.2.2 Projections and least squares approximations

Oftentimes – both in this dissertation but also in general – we need to compute the orthogonal
projection of a vector b onto a given subspace V . This projection p ∈ V is defined such that
the norm of the error

e = b− p (3.9)

due to the projection is a minimum. If the subspace V is given as the column space of a
matrix A, then we can write

p = Ax (3.10)

for some value of x. Since the error e will be orthogonal to C(A), by substituting Equations 3.9
and 3.10, Strang [27] writes

ATe = AT (b−Ax) = 0 =⇒ ATAx = ATb. (3.11)

Solving for x and substituting back into Equation 3.10 then yields the solution

p = A
(
ATA

)−1
ATb. (3.12)

Note, however, that the matrix ATA is invertible if and only if A has full column rank [27].
Furthermore, the matrix

P = A
(
ATA

)−1
AT (3.13)

is called the projection matrix onto C(A) and the matrix

A+ = (ATA)−1AT (3.14)

is called the pseudo-inverse of the matrix A. In an overdetermined system of equations Ax = b
(where m > n), the least squares solution

x = (ATA)−1ATb (3.15)

makes use of the latter. Also note that for any projection matrix P ,

P 2 = P = P T . (3.16)

Some special cases are worth mentioning here. Firstly, in the case where the vector b is
already in the column space of the matrix A, we can write b = Ax and consequently the
projection in Equation 3.12 simplifies to

p = A
(
ATA

)−1
ATAx = Ax = b (3.17)

as expected. Secondly, for a semi-orthogonal matrix Q, the projection matrix in Equation 3.13
simplifies to

P = Q
(
QTQ

)−1
QT = QQT (3.18)

and for an orthogonal matrix to
P = I. (3.19)

Finally, for two semi-orthogonal matrices Q and R such that C(Q) = C(R)⊥, the matrix[
Q R

]
is orthogonal and therefore[

Q R
] [
Q R

]T
= QQT +RRT = I. (3.20)

Collectively, all these properties make orthogonal matrices a convenient subclass to work with.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. LINEAR ALGEBRA 20

3.3 The singular value decomposition

A popular method for computing orthonormal bases for the fundamental subspaces of a matrix
is using the singular value decomposition (SVD) [28]. The SVD of any real matrix

A = UΣV T (3.21)

is a factorisation into an m×m orthogonal matrix U , an m× n rectangular diagonal matrix
Σ and an n × n orthogonal matrix V . If A is real and symmetric, the SVD is equivalent to
the eigendecomposition

A = QΛQT . (3.22)

The scalar values on the diagonal of Σ are called the singular values of A and are usually
arranged in decreasing order. For a positive-definite matrix (with only positive singular
values), the ratio of its largest to its smallest singular value is known as its condition number
and is denoted by κ(A). On machines with finite precision, computations involving matrices
with large condition numbers lead to a decrease in accuracy (due to the loss of significant
digits) and results in numeric instability beyond a certain value.

The number of non-trivial singular values of a matrix A is equal to its rank r. Partitioning
the columns of U and V and the diagonal of Σ in Equation 3.21 according to r results in the
compact SVD

A =
[
Ur U0

] [Σr 0
0 0

] [
Vr V0

]T
= UrΣrV

T
r . (3.23)

Since the SVD (with complexity O(n3)) is numerically stable compared to other matrix de-
compositions and enjoys efficient implementations across many different platforms, Strang [27]
shows that it provides a very effective method to determine orthonormal bases for the column
space

C(A) = C(Ur) (3.24)

and the nullspace
N(A) = C(V0). (3.25)

In addition, the SVD can be used to compute the pseudo-inverse

A+ = V Σ+UT = V
(
ΣTΣ

)−1
ΣTUT (3.26)

as well as an orthonormal basis for the orthogonal complement

C(A)⊥ = C(U0). (3.27)

The linear algebra ideas presented in this chapter are used throughout the rest of this dis-
sertation – both in our definition of degenerate factors (Chapter 5) as well as in the results and
proofs for the statistical operations (Chapters 6 and 8). It is ultimately the convenient proper-
ties of orthogonal subspaces and projections that lead to the proposed factor parametrisation,
where the SVD is used as a mechanism for the necessary computations. Having introduced
this theory, we proceed to the second component of our degenerate factor representation,
namely the Dirac delta function.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Dirac delta functions

To represent degeneracies in a Gaussian factor, we need a multi-dimensional function that can
describe linear constraints. The work by Raphael [18] made use of an indicator function for
this purpose. However, the simplicity of this choice meant that unnormalised factors could
no longer be represented and therefore Bayesian model comparison was no longer possible.
A more principled alternative that preserves all the capabilities of non-degenerate Gaussian
factors, is using Dirac delta functions.

4.1 Definition as the limit of a Gaussian

The Dirac delta function δ(x) is a distribution (or generalised function) that satisfies the two
properties

δ(x) = 0, for x 6= 0 (4.1)

and ∫ ∞
−∞

δ(x) dx = 1. (4.2)

It was originally proposed as part of the early development of quantum mechanics [29], but
also plays an integral role in other applications of engineering and physics. In Fourier analysis,
it is referred to as the unit impulse [30] and is the inverse Fourier transform of the spectrum
G(f) = 1, i.e.,

δ(t) =

∫ ∞
−∞

ej2πft df. (4.3)

In applied mathematics, it is often used to express the force due to an instantaneous exchange
of momentum, i.e.,

F (t) = Pδ(t), (4.4)

where the units of δ(t) are s−1.
Three further properties of the Dirac delta function follow from those in Equations 4.1

and 4.2. Firstly, multiplying a function f(x) that is continuous at x = a with the Dirac delta
δ(x− a) yields

f(x) δ(x− a) = f(a) δ(x− a). (4.5)

21

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DIRAC DELTA FUNCTIONS 22

Since δ(x−a) = 0 where x 6= a, the product is independent of f(x) where x 6= a. Furthermore,
the sampling (or sifting) property follows directly from Equation 4.5 and states that∫ ∞

−∞
f(x) δ(x− a) dx = f(a)

∫ ∞
−∞

δ(x− a) dx = f(a). (4.6)

Finally, the scaling property states that

δ(kx) =
1

|k|
δ(x). (4.7)

To see that |k|δ(kx) = δ(x), we check that the two properties in Equations 4.1 and 4.2 are
satisfied. The first follows directly and for the second we have that∫ ∞

−∞
|k|δ(kx) dx =

{
|k|
∫∞
−∞ δ(y) dyk k > 0

|k|
∫ −∞
∞ δ(y) dyk k < 0

=
k

k

∫ ∞
−∞

δ(y) dy

= 1. (4.8)

Due to the property in Equation 4.1, another useful interpretation of the Dirac delta is
that it imposes a constraint on its argument, i.e., x = 0. The Dirac delta can therefore be
regarded as the limit of a function that spikes at the origin and is consequently used in physics
to model an idealised point mass. According to Shankar [31], a common definition for the
one-dimensional Dirac delta that makes use of a Gaussian distribution (with zero mean and
variance a) is

δ(x) , lim
a→0
N (x; 0, a) = lim

a→0

1√
2πa

exp

(
−x

2

2a

)
. (4.9)

Since this definition of the Dirac delta as the limit of an exponential term conveniently re-
sembles that of the canonical factor in Equation 2.4, it is the one we will use throughout this
dissertation.

4.2 Extension to multiple dimensions

The multidimensional Dirac delta function over a k-dimensional vector x is defined as the
product of the one-dimensional Dirac delta functions over every component xi, i.e.,

δ (x) ,
k∏
i=1

δ (xi) . (4.10)

After combining Equations 4.9 and 4.10, we can write the multidimensional Dirac delta as

δ(x) = lim
a→0
N (x;0, aI) = lim

a→0
(2πa)−

k
2 exp

(
− 1

2a
xTx

)
. (4.11)

Using the definition in Equation 4.10 we can further use element-wise arguments to show that
similar properties to those in Equations 4.5 and 4.6 hold for the multidimensional Dirac delta
function, i.e.,

f(x) δ(x− a) = f(a) δ(x− a) (4.12)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. DIRAC DELTA FUNCTIONS 23

and ∫ ∞
−∞

f(x) δ(x− a) dx = f(a). (4.13)

The more subtle generalisation of the scaling property in Equation 4.7 to multiple dimensions
is given by Result 1.

Result 1. For an n× n non-singular matrix A, we can write

δ (Ax + b) =
1√
|A|2

δ
(
x +A−1b

)
. (4.14)

If A is orthogonal and b = 0, the result reduces to

δ (Ax) = δ (x) . (4.15)

Proof. By using the definition of the multidimensional Dirac delta in Equation 4.11, the
SVD A = UΣV T in Equation 3.21 and the fact that UTU = I, we can write

δ (Ax) = lim
a→0

(2πa)−
n
2 exp

(
− 1

2a
xTATAx

)
= lim

a→0
(2πa)−

n
2 exp

(
− 1

2a
xTV ΣTΣV Tx

)
= δ

(
ΣV Tx

)
. (4.16)

Since Σ is diagonal, we can use Equation 4.10 to write

δ
(
ΣV Tx

)
=

n∏
i=1

δ
(
σiv

T
i x
)
, (4.17)

where σi is the ith singular value of A and vi is the ith column of V . Using the scaling
property of the Dirac delta function in Equation 4.7, we can combine Equations 4.16 and
4.17 to write

δ (Ax) =

n∏
i=1

δ
(
σiv

T
i x
)

=

n∏
i=1

1

|σi|
δ
(
vTi x

)
=

(
n∏
i=1

1

|σi|

)
δ
(
V Tx

)
. (4.18)

Using the definition in Equation 4.11 again, and since V V T = I and |A| = |Σ| =
∏
σi, we

can further expand the Dirac delta in Equation 4.18 to write

δ (Ax) =

(
n∏
i=1

1

|σi|

)
lim
a→0

(2πa)−
n
2 exp

(
− 1

2a
xTx

)
=

1√
|A|2

δ (x) . (4.19)

The more general result for a non-zero offset b is obtained by substituting x = y+A−1b into
Equation 4.19 and if A is orthogonal, |A| = 1. This concludes the proof for Result 1.

In conclusion, the multidimensional Dirac delta function defined in Equation 4.11 can
be regarded as the limit of a normalised canonical factor with infinite precision. This will
therefore be used in the next chapter to model the degenerate component of our novel factor
parametrisation. The three properties in Equations 4.12, 4.13 and 4.14 are then used through-
out Chapters 6 and 8 to derive the relevant statistical operations for this factor representation.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Degenerate Gaussian factors

A popular approach for performing inference with continuous random variables is to employ
parametrised factors. In the special case of Gaussian networks, the canonical factor in Equa-
tion 2.4 is a good example. In this chapter, we combine a canonical factor with a Dirac delta
function to form a novel parametrised factor that can express possible degeneracies. We also
discuss the requirements for this factor to be a normalised density function and derive its mo-
ments. Since our definition is a generalisation of traditional parametrisations, non-degenerate
Gaussian densities can still be represented. Finally, we show that explicitly representing
degeneracies within a joint density also enables affine transformations of Gaussian random
variables to higher-dimensional spaces.

5.1 Definition and parameterisation

Using the definitions of the canonical factor (Equation 2.4) and the Dirac delta function
(Equation 4.11), we represent a degenerate Gaussian factor over an n-dimensional vector x
(with k degrees of degeneracy) as the product

D(x;Q,R,Λ,h, c, g) , C(QTx; Λ,h, g) δ(RTx− c). (5.1)

In this parametrisation, Λ is a nonnegative1, diagonal precision matrix describing the un-
certainty in the (n − k)-dimensional affine space where the factor is non-zero. The vector
h determines the location of the peak in this affine space and the normalisation constant g
its height. The vector c in turn describes the minimum offset from the coordinate origin to
the affine space. For mathematical convenience in later chapters, the column spaces of the
semi-orthogonal matrices Qn×(n−k) and Rn×k are constrained to be orthogonal complements.
A useful interpretation of the degenerate factor in Equation 5.1 is as a lower-dimensional,
non-degenerate factor (parametrised by Λ, h and g) expanded to a higher-dimensional space
through an affine transformation (parametrised by Q, R and c). Some of these properties are
illustrated in Figure 5.1.

When comparing our representation in Equation 5.1 to that by Mikheev [17] in Equa-
tion 1.2, we can highlight a couple of key differences. In addition to the limitation that the

1We restrict our parametrisation to positive semi-definite precision matrices. Negative-definite precision
matrices that may occur due to approximations (as for example in expectation propagation [32]) could be
handled in a similar way as for non-degenerate representations.

24

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DEGENERATE GAUSSIAN FACTORS 25

x1

x2x3

q1

q2

r

a

a

c

(a)

x1x2
σ1

σ2
aa

x3

q2

q1

(b)

Figure 5.1: (a) A visualisation of a degenerate factor in R3 subject to the linear constraint x1+x2 = a.

The variation in shading represents the scalar value of the canonical component in the affine space and

the dashed lines indicate the principal axes. Away from this plane (along the vector r) the degenerate

factor evaluates to zero. The shortest (perpendicular) distance from the origin in R3 to this plane is c.

(b) From a view perpendicular to the affine plane, we see that the vectors q1 and q2 have been chosen

to align with the principal axes of the lower-dimensional distribution. The corresponding standard

deviations are related to the precisions according to σ1 = 1/
√
λ1 and σ2 = 1/

√
λ2.

latter is only defined for normalised factors with zero mean, the use of a covariance matrix has
the implication that variables with zero precision cannot be represented. Furthermore, since
the eigenvalues and eigenvectors are needed in any case, the quadratic term in the exponent
can instead be written in a factored form, which reduces the cost of subsequent computa-
tions. This is precisely what we achieve in Equation 5.1 by using a diagonal precision matrix,
where the parameters are related according to Σ+ = QΛQT . Lastly, our use of the singu-
lar value decomposition (SVD) for subsequent computations is more stable compared to the
eigendecomposition, especially when identical singular values arise [27].

There are also some key differences to note when comparing our representation to that by
Raphael [18] in Equation 1.4. Despite the fact that the latter cannot express any normalisation
information, only three of their parameters are actually used in the over-parametrised factor
definition. The relationships between the two sets of subspaces are that C(R) = C(U0)
and C(Q) = C(U+) + C(U∞), although Q is chosen specifically to align with the principal
axes. This means that the precision matrix can again be factorised as S = QΛQT . Lastly,
the check whether the given vector x lies on the lower-dimensional manifold is simplified in
our parametrisation. Instead of projecting to the column space of U0 and comparing to the
projection of the mean vector µ, which would be equivalent to the check RRTx = Rc, it is
sufficient to perform a lower-dimensional check for the component perpendicular to the affine
space, i.e., RTx = c.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DEGENERATE GAUSSIAN FACTORS 26

5.2 The degenerate density function

For the special case where the factor in Equation 5.1 is a valid density function p(x), we
require that ∫ ∞

−∞
p(x) dx =

∫ ∞
−∞
C(QTx; Λ,h, g) δ(RTx− c) dx = 1. (5.2)

In addition, we require that the density function is non-negative, but this is already true
for the general factor in Equation 5.1. The integral in Equation 5.2 can be rewritten using
the substitutions ε = QTx and η = RTx. Since Q and R are orthogonal complements,
this change of variables is orthogonal and (since the integral over a Dirac delta is unity) we
therefore require that∫ ∞

−∞
C(ε; Λ,h, g) δ(η − c) dε dη =

∫ ∞
−∞
C(ε; Λ,h, g) dε = 1. (5.3)

Consequently, we can use the result in Equation 2.5 to see that

g = −1

2
hTΛ−1h− 1

2
log
∣∣2πΛ−1

∣∣ . (5.4)

This also requires that Λ is non-singular. Note that, since Λ is diagonal, the matrix inverse
in Equation 5.4 is straightforward and can be computed in linear time. This computational
advantage is applicable to many operations throughout the rest of this dissertation. A useful
perspective on the degenerate Gaussian density function is given by Result 2.

Result 2. A degenerate Gaussian density can be expressed as the limit of a non-degenerate
density according to

p(x) = D(x;Q,R,Λ,h, c, g) = lim
a→0
N
(
x;QΛ−1h +Rc, QΛ−1QT + aRRT

)
. (5.5)

Proof. By substituting the result in Equation 2.7 as well as the definition of a multidimen-
sional Dirac delta in Equation 4.11 into the definition of a degenerate factor in Equation 5.1,
we can write

p(x) = D(x;Q,R,Λ,h, c, g) = N (QTx; Λ−1h,Λ−1) lim
a→0
N
(
RTx− c;0, aI

)
. (5.6)

By moving the first term into the limit and expressing the factored product as a joint
density, Equation 5.6 becomes

p(x) = lim
a→0
N
([
QT

RT

]
x;

[
Λ−1h
c

]
,

[
Λ−1 0

0 aI

])
. (5.7)

Since N (UTx;µ,Σ) = N (x;Uµ, UΣUT) for an orthogonal transformation U , Equation 5.7
can further be simplified according to

p(x) = lim
a→0
N
(
x;
[
Q R

] [Λ−1h
c

]
,
[
Q R

] [Λ−1 0
0 aI

] [
Q R

]T)
= lim

a→0
N
(
x;QΛ−1h +Rc, QΛ−1QT + aRRT

)
. (5.8)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DEGENERATE GAUSSIAN FACTORS 27

This concludes the proof for Result 2.

We can determine the moments (specifically the mean and the covariance) of a degenerate
Gaussian density directly from Result 2. For the mean, we can use Equation 5.5 to calculate
the expected value

E[x] = lim
a→0

(
QΛ−1h +Rc

)
= QΛ−1h +Rc. (5.9)

For the covariance, we obtain

Cov [x] = lim
a→0

(
QΛ−1QT + aRRT

)
= QΛ−1QT . (5.10)

For k degrees of degeneracy, the covariance will therefore have rank n− k, as expected.
Conveniently, any non-degenerate Gaussian density function with mean vector µ and

covariance matrix Σ can still be expressed as a degenerate Gaussian factor such that

p(x) = N (x;µ,Σ) = D(x;Q,R,Λ,h, c, g). (5.11)

In this non-degenerate case, C(Q) = Rn and subsequently C(R) = {0}. The other extreme
where C(Q) = {0} and C(R) = Rn in turn relates to zero uncertainty and n degrees of
degeneracy. Although a subset of the parameters in Equation 5.1 will be empty in both of
these cases, the degenerate factor is still well defined under the convention that canonical
factors and Dirac delta functions with empty arguments equate to unity.

Returning to the unknown parameters in Equation 5.11, we can use Equation 5.10 to write

Σ = QΛ−1QT . (5.12)

Since Σ is symmetric and positive definite, Q and Λ can be calculated directly using the SVD.
With the values of Q and Λ in Equation 5.11 known, we proceed to calculate the quantities
h and g. Note that in the non-degenerate case (i.e., when k = 0), the factor in Equation 5.1
as well as the expectation in Equation 5.9 no longer depend on the empty arguments R and
c. Since Q is orthogonal, the reduced form of the latter yields

h =
(
QΛ−1

)−1
µ = ΛQTµ. (5.13)

Finally, substituting Equation 5.13 followed by Equation 5.12 into Equation 5.4 yields

g = −1

2
µTQΛQTµ− 1

2
log
∣∣2πΛ−1

∣∣ = −1

2
µTΣ−1µ− log

√
(2π)n|Σ|, (5.14)

which is equivalent to the normalisation constant in traditional parametrisations. Equa-
tion 5.11 illustrates the idea that our representation for degenerate Gaussian factors is a
generalisation of existing parametrisations that relaxes positive definiteness constraints.

5.3 Affine transformations of degenerate random variables

Among the many useful properties of Gaussian random variables is the fact that an affine
transformation

y = Ax + b (5.15)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DEGENERATE GAUSSIAN FACTORS 28

of a Gaussian random vector x is still Gaussian-distributed. However, one important condition
for the use of traditional parametrisations to express the resulting density function is, once
again, that the resulting covariance matrix must be positive definite. Since

Cov [y] = ACov [x]AT , (5.16)

this will only be the case when the matrix A has full row rank. By instead using the parametri-
sation in Equation 5.1 to express the prior density

p(x) = D(x;Q,R,Λ,h, c, g), (5.17)

we can relax this constraint and represent the density p(y) for any matrix A.
Since an affine transformation only alters the respective subspaces associated with (a)

jointly Gaussian-distributed random variables and (b) linear dependencies, p(y) will also be a
degenerate Gaussian density with parameters Q′, R′, Λ′, h′, c′ and g′. The procedure to calcu-
late these parameters – derived through moment matching using the results in Equations 5.9
and 5.10 – is summarised in Algorithm 1. The detailed derivation follows after a discussion
of the algorithm. In this as well as further algorithms we use the tuple θ = (Q,R,Λ,h, c, g)
as a shorthand for the parameters.

Algorithm 1 AffineTransformation

Input: θ, A, b such that p(x) = D(x; θ) and y = Ax + b
Output: θ′ such that p(y) = D(y; θ′)

1: Q′,Σ′, ← CompactSVD
(
AQΛ−1QTAT

)
2: Λ′ ← Σ′−1

3: R′ ← Complement(Q′)
4: µ′ ← A(QΛ−1h +Rc) + b
5: c′ ← R′Tµ′

6: h′ ← Λ′Q′Tµ′

7: g′ ← −1
2h
′TΛ′−1h′ − 1

2 log
∣∣2πΛ′−1

∣∣
Since the resulting covariance might only be positive semi-definite, the quantities Q′ and

Λ′ are calculated (in lines 1 and 2 of Algorithm 1) using the compact SVD, i.e., by partition-
ing the SVD according to its non-trivial singular values. Note that the resulting degree of
degeneracy in p(y) depends on the mutual properties of A and Q. Next, the semi-orthogonal
matrix R′ is computed (in line 3) such that C(R′) = C(Q′)⊥. The mean vector µ′ = E[y] is
calculated (in line 4) by substituting the expectation in Equation 5.9 into Equation 5.15. As
in Equation 5.13, c′ and h′ are then calculated (in lines 5 and 6) by exploiting the mutual
orthogonality of R′ and Q′. Since the resulting density p(y) will be normalised, g′ is calculated
(in line 7) by direct application of Equation 5.4.

Proof. To determine the parameters of the degenerate factor representing the density p(y)
as calculated according to Algorithm 1, we can use Equations 5.9, 5.10 and 5.15 to calculate
the mean

E[y] = AE[x] + b =⇒ Q′Λ′−1h′ +R′c′ = A(QΛ−1h +Rc) + b (5.18)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. DEGENERATE GAUSSIAN FACTORS 29

and covariance

Cov [y] = ACov [x]AT =⇒ Q′Λ′−1Q′T = AQΛ−1QTAT . (5.19)

The quantities Q′ and Λ′ can then be calculated directly from Equation 5.19 using the com-
pact SVD. By definition, C(R′) = C(Q′)⊥, and R′ can be determined as in Equation 3.27.
With these quantities known, h′ and c′ can be determined from Equation 5.18 by exploiting
the mutual orthogonality of Q′ and R′, where we can write

R′T
(
Q′Λ′−1h′ +R′c′

)
= c′ = R′T

(
A(QΛ−1h +Rc) + b

)
(5.20)

and
Λ′Q′T

(
Q′Λ′−1h′ +R′c′

)
= h′ = Λ′Q′T

(
A(QΛ−1h +Rc) + b

)
. (5.21)

Finally, since the resulting density p(y) will be normalised, g′ is calculated by direct appli-
cation of Equation 5.4. This concludes the derivation of Algorithm 1.

In summary, our definition of degenerate Gaussian factors in Equation 5.1 can express
k ∈ [0, n] degeneracies. It comprises a canonical factor and Dirac delta component, as nec-
essary. For the degenerate factor to represent a normalised density function, the canonical
factor must be normalised as in Equation 5.4. The mean of a degenerate density in Equa-
tion 5.9 is then the sum of two orthogonal vectors in the respective subspaces and the rank
of the covariance matrix in Equation 5.10 is equal to n − k. Any non-degenerate Gaussian
density can be converted to the degenerate parametrisation as in Equation 5.11. Finally,
affine transformations of degenerate (or non-degenerate) Gaussian random variables are also
distributed according to a degenerate Gaussian density.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Statistical operations on degenerate
factors

To use degenerate Gaussian factors for inference, the appropriate statistical operations need
to be derived. In the context of message passing algorithms, these include marginalisation,
multiplication, division and reduction according to available evidence. Following the notion
that the degenerate factor is a generalisation of the canonical factor, the results in this chapter
mirror those in Section 2.2.2. We show a procedure to perform each operation in the form of
an algorithm and provide visualisations of simple examples where appropriate. The detailed
derivations of the results are also included at the end of each section. As always, it is desirable
that the factor representation is closed under these operations, i.e., that the result of each
operation is once again a degenerate Gaussian factor parametrised according to Equation 5.1.

6.1 Marginalisation

The first statistical operation that we present is marginalisation. In particular, for the parti-
tioned degenerate factor

φ(x,y) = D
([

x
y

]
;

[
Qx

Qy

]
,

[
Rx

Ry

]
,Λ,h, c, g

)
, (6.1)

marginalising over y results in the marginal factor∫
φ(x,y) dy = D

(
x;Q′, R′,Λ′,h′, c′, g′

)
, (6.2)

where the parameters Q′, R′, Λ′, h′, c′ and g′ are determined according to Algorithm 2.
Since marginalisation amounts to projecting to a subspace, the idea is to use an appropriate
orthogonal decomposition (according to the properties of the four block matrices Qx, Qy, Rx

and Ry) to handle possible degeneracies before marginalising the resulting canonical factor
as in Equation 2.16.

The first step (in line 1 of Algorithm 2) is to compute appropriate bases U , V and W
according to the block matrices Qx and Rx. As mentioned in Section 3.3, this can be achieved
using the singular value decomposition (SVD). Depending on the degree of degeneracy k, the
dimension n′ of the vector x and the rank of each respective block matrix, some of these

30

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 31

Algorithm 2 Marginalise

Input: θ such that φ(x,y) = D
([

x
y

]
; θ

)
Output: θ′ such that

∫
φ(x,y) dy = D(x; θ′)

1: U ← Columnspace (Qx), V ← Nullspace (Qx), W ← Columnspace
(
RTxQx

)
2: R′ ← Complement(U)
3: c′ ← R′TRxc

4: F ←
(
W (RyW)+Qy

)T
, G←

(
QTx − FRTx

)
U , S ← V

(
V TΛV

)−1
V T

5: Z,Λ′, ← SVD
(
GT (Λ− ΛSΛ)G

)
6: Q′ ← UZ
7: h′ ← ZTGT (I − ΛS)(h− ΛFc)

8: g′ ← g +
(
h− 1

2ΛFc
)T

Fc + 1
2(h− ΛFc)TS(h− ΛFc) + 1

2 log
|2π(V T ΛV)−1|
|WTRT

yRyW |

bases could be trivial. The degree of degeneracy k′ in the marginal factor is then equal to
n′ − rank(Qx) and the basis for this marginal degeneracy in Rn′ is C(U)⊥ (in line 2). The
corresponding offset (in line 3) is R′TRxc. The three auxiliary matrices F , G and S (in line
4) make the rest of the notation more concise. The resulting full-rank precision matrix is
diagonalised using the SVD (in line 5). The corresponding orthogonal matrix Z is then used
(in line 6) to determine the (n′−k′)-dimensional basis for the marginal support in Rn′ . Finally,
the vector h′ and normalisation constant g′ are also calculated (in lines 7 and 8, respectively).
Figure 6.1 illustrates various aspects of Algorithm 2 for a simple example.

x

y2

a

q1

y1a

a

q2

r

(a)

x

y2

a

v

g

y1
a

a

fc

q1

q2

x

(b)

Figure 6.1: The marginalisation over {y1, y2} of (a) a degenerate factor in R3 subject to the linear

constraint x + y1 + y2 = a. The vector r is perpendicular to the affine plane and the two vectors

q1 and q2 align with the principal axes. (b) From a view perpendicular to this plane, we see the

2-D point fc. Furthermore, the orthogonal 2-D vectors g and v align with the x-axis and the edge

of the linear constraint in the y1-y2 plane, respectively. Collectively, these three components describe

an appropriate transformation within the affine plane based on the required marginalisation in the

coordinate axes. The marginal factor over x is then indicated by the dashed 1-D curve, where the

corresponding origin is the projection of the point fc (where x = 0 in R3).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 32

Proof. To determine the parameters of the marginal factor φ(x) as calculated according to
Algorithm 2, we need to evaluate the integral

J =

∫
C
([
QTx QTy

] [x
y

]
; Λ,h, g

)
δ

([
RTx RTy

] [x
y

]
− c

)
dy. (6.3)

Since the matrix
[
Q R

]
is orthogonal, some important relationships that will be useful

throughout this derivation are

QTxRx +QTyRy = 0 =⇒ QTxRx = −QTyRy

QTxQx +QTyQy = I =⇒ QTxQx = I −QTyQy

RTxRx +RTyRy = I =⇒ RTxRx = I −RTyRy. (6.4)

The first step for calculating the integral in Equation 6.3 is to define an appropriate sub-
stitution. This is achieved by determining orthonormal bases for the nullspaces of the four
block matrices Qx, Qy, Rx and Ry such that

C(V1) = N(Qx), C(V2) = N(Qy), C(V3) = N(Rx) and C(V4) = N(Ry). (6.5)

Since the matrix
[
Q R

]
has full rank, N(Qx) ⊥ N(Qy) and N(Rx) ⊥ N(Ry), although the

pairs are not necessarily orthogonal complements. This is because there could for example
be a vector w ∈ Rn−k such that w /∈ N(Qx) and w /∈ N(Qy). The implication is that the
semi-orthogonal matrices

[
V1 V2

]
and

[
V3 V4

]
are not necessarily square. We therefore

need additional bases to guarantee an orthogonal decomposition of Rn. For this purpose,
we define two ad-hoc matrices A and B such that Ay = 0 and Bx = 0. Using the definitions
in Equation 6.5, the orthogonal matrix

[
QV1 QV2 RV3 RV4 A B

]
=

[
0 QxV2 0 RxV4 Ax 0

QyV1 0 RyV3 0 0 By

]
(6.6)

reveals that

C(Ax) = (C (QxV2) + C (RxV4))⊥ and C(By) = (C (QyV1) + C (RyV3))⊥ . (6.7)

From Equations 6.4 and 6.5, we further have that QTxRxV4 = 0 and consequently

C(Qx) = C (RxV4)⊥ = C
([
QxV2 Ax

])
. (6.8)

Returning to the integral in Equation 6.3 and using the substitution

[
x
y

]
=
[
QV1 QV2 RV3 RV4 A B

]

α
β
γ
θ
ω
ρ

 , (6.9)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 33

as well as the fact that QTR = 0, we can write

[
QTx QTy

] [x
y

]
=
[
V1 V2 QTxAx QTyBy

]
α
β
ω
ρ

 (6.10)

and

[
RTx RTy

] [x
y

]
=
[
V3 V4 RTxAx RTyBy

]
γ
θ
ω
ρ

 . (6.11)

The next step is to decompose the Dirac delta in Equation 6.3 into three convenient
components. This is achieved by multiplying its argument with the orthogonal matrix[
V3 V4 W

]T
, where

C(W) = (N (Rx) +N (Ry))⊥ = C
(
RTx
)
∩ C

(
RTy
)

= C
(
RTxQx

)
= C

(
RTyQy

)
(6.12)

follows from Equations 6.4 and 6.5. Using the substitution in Equation 6.11 and the result
in Equation 4.15, after this multiplication the Dirac delta becomes

δ

([
RTx RTy

] [x
y

]
− c

)
= δ

 γ − V T
3 c

θ − V T
4 c

W TRTxAxω +W TRTyByρ−W T c

 . (6.13)

Note that V T
3 R

T
xAx = 0 and V T

4 R
T
yBy = 0 from Equation 6.5 and V T

3 R
T
yBy = 0 and

V T
4 R

T
xAx = 0 from Equation 6.7. By also using the substitution in Equation 6.10 and the

definition in Equation 4.10, and since θ is independent of the variables of integration and
the integral over a Dirac delta is unity, the integral in Equation 6.3 becomes

J = δ(θ − V T
4 c)

∫
C

[V1 V2 QTxAx QTyBy

]
α
β
ω
ρ

 ; Λ,h, g

×
δ
(
W TRTxAxω +W TRTyByρ−W T c

)
dα dρ. (6.14)

The next step is to use the sifting property in Equation 4.13. For this purpose, we first use
Equation 4.14 to express the argument of the Dirac delta inside the integral in terms of ρ,
i.e.,

1√∣∣W TRTyBy

∣∣2 δ
(
ρ+

(
W TRTyBy

)−1
W T

(
RTxAxω − c

))
. (6.15)

By using Equations 6.4, 6.5 and 6.7 once again, we further obtain

ByB
T
yRyW = (I −QyV1V

T
1 Q

T
y −RyV3V

T
3 R

T
y)RyW

= RyW +QyV1V
T

1 Q
T
xRxW −RyV3V

T
3 (I −RTxRx)W = RyW. (6.16)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 34

Therefore, substituting the expression in Equation 6.15 into the integral in Equation 6.14
and using the sifting property in Equation 4.13 yields

J =
1√∣∣W TRTyRyW

∣∣ δ(θ − V T
4 c)

∫
C

[V1 V2 M
] αβ
ω

+ Fc; Λ,h, g

 dα, (6.17)

where we made use of the matrix definitions

F = QTyBy(W TRTyBy)−1W T =
(
W (RyW)+Qy

)T
(6.18)

and
M = QTxAx − FRTxAx = (QTx − FRTx)Ax. (6.19)

Next, the canonical factor inside the integral in Equation 6.17 can be rewritten to have
scope α, β and ω according to Equation 2.8, namely

C

αβ
ω

 ;

V T
1

V T
2

MT

Λ

V T
1

V T
2

MT

T ,
V T

1

V T
2

MT

 (h− ΛFc), g +

(
h− 1

2
ΛFc

)T
Fc

 . (6.20)

Using the result for marginalisation of a canonical factor in Equation 2.16, the integral in
Equation 6.17 becomes

J =
1√∣∣W TRTyRyW

∣∣ δ(θ − V T
4 c) C

([
β
ω

]
; K̂, ĥ, ĝ

)
, (6.21)

where

K̂ =
[
V2 M

]T
(Λ− ΛSΛ)

[
V2 M

]
ĥ =

[
V2 M

]T
(I − ΛS)(h− ΛFc)

ĝ = g +

(
h− 1

2
ΛFc

)T
Fc +

1

2
(h− ΛFc)TS(h− ΛFc) +

1

2
log
∣∣2π(V T

1 ΛV1)−1
∣∣ (6.22)

and where we have made use of the matrix definition

S = V1

(
V T

1 ΛV1

)−1
V T

1 . (6.23)

Reversing the change of variables according to Equation 6.9 then yields

J =
1√∣∣W TRTyRyW

∣∣ C
([
QxV2 Ax

]T
x; K̂, ĥ, ĝ

)
δ(V T

4 R
T
xx− V T

4 c). (6.24)

Although the specific orthonormal bases
[
QxV2 Ax

]
and RxV4 were convenient for deriving

this result, recall from Equation 6.8 that the former is also a basis for C(Qx). Consequently,
using an arbitrary basis U such that C(U) = C(Qx) results in a simpler computation of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 35

the canonical factor in Equation 6.24 (without requiring the explicit calculation of V2, V3,
V4, Ax or By). However, it is then also necessary to adapt K̂ and ĥ to correspond to this
new basis. Specifically, we require that

UK̂UT =
[
QxV2 Ax

] [
V2 M

]T
(Λ− ΛSΛ)

[
V2 M

] [
QxV2 Ax

]T
. (6.25)

Expanding the first two factors and using Equations 6.4, 6.5 and 6.7 yields[
QxV2 Ax

] [
V2 M

]T
= QxV2V

T
2 +AxA

T
x (Qx −RxF)

= QxV2V
T

2 + (I −QxV2V
T

2 Q
T
x −RxV4V

T
4 R

T
x)(Qx −RxF)

= Qx(V2V
T

2 (I −QTxQx) + I)− (I −RxV4V
T

4 R
T
x)RxF

= Qx(V2V
T

2 Q
T
yQy + I)− UUTRxF

= UUT (Qx −RxF) (6.26)

and consequently the precision matrix

K̂ = UT (Qx −RxF)(Λ− ΛSΛ)(Qx −RxF)TU = ZΛ̂ZT (6.27)

can be diagonalised using the SVD. Similarly,

U ĥ =
[
QxV2 Ax

] [
V2 M

]T
(I − ΛS)(h− ΛFc) (6.28)

and therefore
ĥ = UT (Qx −RxF)(I − ΛS)(h− ΛFc). (6.29)

Finally, for any R′ such that C(R′) = C(U)⊥ = C(RxV4), by multiplying its argument
with R′TRxV4 and using the result in Equation 4.15, we can express the Dirac delta in
Equation 6.24 as

δ
(
V T

4 R
T
xx− V T

4 c
)

= δ
(
V T

4 R
T
xx− V T

4 (RTxRx +RTyRy) c
)

= δ
(
R′Tx−R′TRxc

)
. (6.30)

Substituting these new definitions into Equation 6.24 then yields

J =
1√∣∣W TRTyRyW

∣∣ C
(
UTx;ZΛ̂ZT , ĥ, ĝ

)
δ(R′Tx−R′TRxc)

= D
(
x;UZ,R′, Λ̂, ZT ĥ, R′TRxc, ĝ −

1

2
log
∣∣W TRTyRyW

∣∣) . (6.31)

Note that since both U and Z are semi-orthogonal, so is their product (as required). This
concludes the derivation of Algorithm 2.

6.2 Multiplication

The next statistical operation that we present is multiplication. In particular, the product of
two degenerate factors over the same scope x is given by

D(x;Q1, R1,Λ1,h1, c1, g1)D(x;Q2, R2,Λ2,h2, c2, g2) = D(x;Q′, R′,Λ′,h′, c′, g′), (6.32)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 36

where the parameters Q′, R′, Λ′, h′, c′ and g′ are determined according to Algorithm 3. Since
each degenerate factor only has support on a lower-dimensional manifold, the affine space of
the product will be the intersection of those of the two original factors. The idea is therefore
to reduce each factor to this intersection and then to multiply the resulting canonical factors
as in Equation 2.17.

Algorithm 3 Multiply

Input: θ1, θ2 such that φ1(x) = D(x; θ1) and φ2(x) = D(x; θ2)
Output: θ′ such that φ1(x)× φ2(x) = D(x; θ′)

1: V ← Columnspace
(
Q1Q

T
1 R2

)
2: R′ ←

[
R1 V

]
3: b← (RT2 V)−1(c2 −RT2 R1c1)

4: c′ ←
[
c1

b

]
5: U ← Complement (R′)
6: Z,Λ′, ← SVD

(
UT (Q1Λ1Q

T
1 +Q2Λ2Q

T
2)U

)
7: Q′ ← UZ
8: h′ ← Q′T (Q1(h1 − Λ1Q

T
1 V b) +Q2(h2 − Λ2Q

T
2 R
′c′))

9: g′ ← g1 + g2 +
(
h1 − 1

2Λ1Q
T
1 V b

)T
QT1 V b +

(
h2 − 1

2Λ2Q
T
2 R
′c′
)T
QT2 R

′c′ − 1
2 log

∣∣RT2 V ∣∣2
The first step (in line 1 of Algorithm 3) is to find an orthonormal basis V for the column

space of the projection of R2 onto N(RT1) = C(Q1). This represents the additional degeneracy
due to the second factor and, together with R1, forms the orthonormal basis (in line 2) for
the resulting degenerate space in Rn. The offset b (in line 3) is determined by the intersection
of the affine spaces of the two degenerate factors and this forms the second component of
the offset c′ (in line 4). In the edge case where C(R1) ∩ C(R2) 6= {0}, the matrix RT2 V
will not be square and consequently its pseudo-inverse (V TR2R

T
2 V)−1V TR2 should be used

instead1. The orthonormal basis U (in line 5) is then used to determine the resulting full-
rank precision matrix, which is in turn diagonalised using the SVD (in line 6). As was the
case in Algorithm 2, the corresponding orthogonal matrix Z is used (in line 7) to determine
the basis for the support in Rn. Finally, the vector h′ and normalisation constant g′ are
also calculated (in lines 8 and 9, respectively). In the case where RT2 V is not square, the
determinant |V TR2R

T
2 V | should be used instead of |RT2 V |2. Figure 6.2 illustrates various

aspects of Algorithm 3 for a simple example.

Proof. To determine the parameters of the resulting degenerate factor φ(x) as calculated
according to Algorithm 3, we need to compute the product

P = C(QT1 x; Λ1,h1, g1) δ(RT1 x− c1) C(QT2 x; Λ2,h2, g2) δ(RT2 x− c2). (6.33)

We start by finding an orthonormal basis for the column space of R′. Since the product
in Equation 6.33 will evaluate to zero if and only if either of the Dirac deltas are equal to

1This will only be necessary when the same degeneracy exists in both factors and simplifies to
(
RT

2 V
)−1

otherwise.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 37

x

y

z

r1

r2

u

a

a

a

(a)

r2

r1

u

x

y

z

a

a

a

(b)

Figure 6.2: The multiplication of (a) two degenerate factors in R3 subject to the linear constraints

x + y = a and y + z = a, respectively. The intersection of the two affine planes is the line that goes

through the points (0, a, 0) and (a, 0, a) – along the vector u = q′. The vectors r1 (which is also

perpendicular to the z-axis) and r2 (which is also perpendicular to the x-axis) are perpendicular to the

respective planes. These three vectors are anchored at the point on the intersection with the minimum

distance to the origin in R3. (b) From a view where this anchor point aligns with the origin, we see the

true length of the vector u. Each reduced factor along u is indicated by a dashed 1-D curve, where the

product of these is equal to the product of the two degenerate factors along the line of intersection.

zero, we can write that
C(R′) = C(R1) + C(R2). (6.34)

In general, this basis is not unique. However, a convenient choice is to have the n − k1

columns of R1 as part of the basis. This will always be possible since the columns of R1 are
orthonormal per definition and rank(R′) ≥ rank(R1). The rest of the basis vectors of C(R′)
can be obtained by projecting the columns of R2 onto N(RT1) = C(Q1) and computing its
column space. Since Q1 is semi-orthogonal, the necessary projection matrix is Q1Q

T
1 . By

defining the orthonormal basis V such that

C(V) = C(Q1Q
T
1 R2), (6.35)

the columns of the matrix
[
R1 V

]
then form an orthonormal basis for C(R′). As with the

marginalisation operation, we now define a convenient orthogonal change of variables

x =
[
U V R1

] αβ
γ

 , (6.36)

where
C(U) = (C(V) + C(R1))⊥. (6.37)

Also note that C(Q1) = (C(U) + C(V)). Returning to the product in Equation 6.33 and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 38

using the substitution in Equation 6.36 yields

P = C(QT1 (Uα+ V β); Λ1,h1, g1) δ (γ − c1)×
C(QT2 (Uα+ V β +R1γ); Λ2,h2, g2) δ

(
RT2 (V β +R1γ)− c2

)
. (6.38)

Note that RT2 U = 0 because, from Equation 6.34, C(R2) ⊆ C(R′) = C(U)⊥. Using the
property in Equation 4.12 followed by the result in Equation 4.14, we can express the
product of the two Dirac delta functions in Equation 6.38 as

δ (γ − c1) δ
(
RT2 V β +RT2 R1γ − c2

)
= δ (γ − c1) δ

(
RT2 V β +RT2 R1c1 − c2

)
=

1√∣∣RT2 V ∣∣2 δ (γ − c1) δ (β − b) , (6.39)

where
b =

(
RT2 V

)−1
(c2 −RT2 R1c1). (6.40)

Substituting Equation 6.39 into the product in Equation 6.38 and using the property in
Equation 4.12 once again, we can write

P =
1√∣∣RT2 V ∣∣2C(Q

T
1 (Uα+V b); Λ1,h1, g1) C(QT2 (Uα+V b+R1c1); Λ2,h2, g2) δ

([
γ
β

]
−
[
c1

b

])
.

(6.41)
Each of the two canonical factors can then be rewritten to have scope α according to
Equation 2.8 and can be combined using the result in Equation 2.17, yielding

P =
1√∣∣RT2 V ∣∣2 C(α; K̂, ĥ, ĝ) δ

([
γ
β

]
−
[
c1

b

])
, (6.42)

where we have made use of the definitions

K̂ = UT (Q1Λ1Q
T
1 +Q2Λ2Q

T
2)U

ĥ = UT (Q1(h1 − Λ1Q
T
1 V b) +Q2(h2 − Λ2Q

T
2 (V b +R1c1)))

ĝ = g1 + g2 +

(
h1 −

1

2
Λ1Q

T
1 V b

)T
QT1 V b +

(
h2 −

1

2
Λ2Q

T
2 (V b +R1c1)

)T
QT2 (V b +R1c1).

(6.43)

The precision matrix in Equation 6.43 can be diagonalised using the SVD

K̂ = ZΛ̂ZT . (6.44)

Reversing the change of variables in Equation 6.36 and substituting Equation 6.44 into

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 39

Equation 6.42 yields

P =
1√∣∣RT2 V ∣∣2C(U

Tx;ZΛ̂ZT , ĥ, ĝ) δ

([
R1 V

]T
x−

[
c1

b

])

= C
(
ZTUTx; Λ̂, ZT ĥ, ĝ − 1

2
log
∣∣RT2 V ∣∣2) δ

([
R1 V

]T
x−

[
c1

b

])
= D

(
x;UZ,

[
R1 V

]
, Λ̂, ZT ĥ,

[
c1

b

]
, ĝ − 1

2
log
∣∣RT2 V ∣∣2) . (6.45)

Note that since both U and Z are semi-orthogonal, so is their product (as required). This
concludes the derivation of Algorithm 3.

6.3 Division

The next statistical operation that we present is division. In particular, the quotient of two
degenerate factors over the same scope x is given by

D(x;Q1, R1,Λ1,h1, c1, g1)

D(x;Q2, R2,Λ2,h2, c2, g2)
= D(x;Q′, R′,Λ′,h′, c′, g′), (6.46)

where the parameters Q′, R′, Λ′, h′, c′ and g′ are determined according to Algorithm 4.
Due to the usual context of the division operation as part of the belief update algorithm [23]
(where the numerator is a product of the denominator and other factors), we assume that
C(R2) ⊆ C(R1) and that

c2 = RT2 R1c1, (6.47)

i.e., that a trivial denominator implies a trivial numerator2. By choosing the affine space
of the quotient so that it is (a) a subspace of that of the numerator and (b) orthogonal to
that of the denominator, we consequently reduce the denominator to the affine space of the
numerator before dividing the resulting canonical factors as in Equation 2.18. Except for the
different computation of R′ (in line 1 of Algorithm 4) and Q′ (in line 4), Algorithm 4 follows
a similar procedure to the multiplication operation as outlined in Algorithm 3.

Proof. To determine the parameters of the resulting degenerate factor φ(x) as calculated
according to Algorithm 4, we need to compute the quotient

Q =
C(QT1 x; Λ1,h1, g1) δ(RT1 x− c1)

C(QT2 x; Λ2,h2, g2) δ(RT2 x− c2)
= D(x;Q′, R′,Λ′,h′, c′, g′). (6.48)

Since multiplication of Dirac delta functions is better defined than division, a more precise
formulation is to calculate the quantities Q′, R′, Λ′, h′, c′ and g′ such that

P = C(Q′Tx; Λ′,h′, g′) δ(R′Tx− c′) C(QT2 x; Λ2,h2, g2) δ(RT2 x− c2)

= C(QT1 x; Λ1,h1, g1) δ(RT1 x− c1). (6.49)

2In addition, the results in Algorithm 4 are only valid if Λ′ is non-negative as required by our definition of
degenerate factors in Equation 5.1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 40

Algorithm 4 Divide

Input: θ1, θ2 such that φ1(x) = D(x; θ1) and φ2(x) = D(x; θ2)
Output: θ′ such that φ1(x)/φ2(x) = D(x; θ′)

1: R′ ← Complement
([
Q1 R2

])
2: c′ ← R′TR1c1

3: Z,Λ+, ← SVD(Λ1 −QT1 Q2Λ2Q
T
2 Q1)

4: Q′ ←
[
Q1Z R2

]
5: Λ′ ←

[
Λ+ 0
0 0

]
6: h′ ← Q′T (Q1h1 −Q2(h2 − Λ2Q

T
2 R1c1))

7: g′ ← g1 − g2 −
(
h2 − 1

2Λ2Q
T
2 R1c1

)T
QT2 R1c1

This is similar to the product in Equation 6.33, where the θ′-superscripts and θ1-subscripts
have been reversed. Therefore, just as in Equation 6.34, Equation 6.49 requires that

C(R1) = C(R′) + C(R2). (6.50)

This satisfies the assumption in Section 6.3 that C(R2) ⊆ C(R1) and consequently

QT1 R2 = 0. (6.51)

To prove that the proposed parameters

R′ = Complement
([
Q1 R2

])
c′ = R′TR1c1

Q′ =
[
Q1Z R2

]
Λ′ =

[
Λ+ 0
0 0

]
h′ = Q′T (Q1h1 −Q2(h2 − Λ2Q

T
2 R1c1))

g′ = g1 − g2 −
(
h2 −

1

2
Λ2Q

T
2 R1c1

)T
QT2 R1c1, (6.52)

where
ZΛ+Z

T = Λ1 −QT1 Q2Λ2Q
T
2 Q1, (6.53)

satisfy Equation 6.49, we use the results in Algorithm 3, with the θ1-subscripts replaced
by θ′-superscripts and the latter in turn replaced by θ′′-superscripts. From Equation 6.35,
substituting Equation 6.51 yields

C(V) = C
([
Q1Z R2

] [
Q1Z R2

]T
R2

)
= C

(
(Q1Q

T
1 +R2R

T
2)R2

)
= C(R2) (6.54)

in this case. From Equation 6.37, we further have that

C(U) =
(
C(R2) + (C(Q1) + C(R2))⊥

)⊥
= C(Q1). (6.55)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 41

From Equation 6.45, this yields

P = C(Q′′Tx; Λ′′,h′′, g′′) δ(R′′Tx− c′′), (6.56)

where

R′′ =
[
R′ R2

]
c′′ =

[
c′

c2 −RT2 R′c′
]

=

[
R′TR1c1

RT2 R1c1 − 0

]
=
[
R′ R2

]T
R1c1

Λ′′ = QT1

([
Q1Z R2

] [Λ+ 0
0 0

] [
Q1Z R2

]T
+Q2Λ2Q

T
2

)
Q1

= QT1
(
Q1

(
Λ1 −QT1 Q2Λ2Q

T
2 Q1

)
QT1 +Q2Λ2Q

T
2

)
Q1 = Λ1

Q′′ = Q1

h′′ = QT1

([
Q1Z R2

] ([
Q1Z R2

]T
(Q1h1 −Q2(h2 − Λ2Q

T
2 R1c1))−[

Λ+ 0
0 0

] [
Q1Z R2

]T
R2c2

)
+Q2(h2 − Λ2Q

T
2 R
′′c′′)

)
= h1

g′′ = g1 − g2 −
(
h2 −

1

2
Λ2Q

T
2 R1c1

)T
QT2 R1c1 + g2 +(

h′ − 1

2
Λ′Q′TR2c2

)T
Q′TR2c2 +

(
h2 −

1

2
Λ2Q

T
2 R
′′c′′
)T

QT2 R
′′c′′

= g1 +

[
ZTQT1 (Q1h1 −Q2(h2 − Λ2Q

T
2 R1c1))

0

]T [
0
c2

]
= g1. (6.57)

This reveals that the product of the canonical factors in Equation 6.49 is correct. Since
C (R1) = C

([
R′ R2

])
= C (Q1)⊥, by multiplying its argument with RT1

[
R′ R2

]
and

using the result in Equation 4.15, we can further express the Dirac delta in Equation 6.56
as

δ
([
R′ R2

]T
x−

[
R′ R2

]T
R1c1

)
= δ

(
RT1 x− c1

)
. (6.58)

This concludes the derivation of Algorithm 4.

6.4 Reduction

The final statistical operation that we present in this chapter is reduction. In particular, the
partitioned degenerate factor

φ(x,y) = D
([

x
y

]
;

[
Qx

Qy

]
,

[
Rx

Ry

]
,Λ,h, c, g

)
(6.59)

can be reduced according to available evidence y0. Setting y = y0 in Equation 6.59 results in

φ(x,y0) = D
(
x;Q′, R′,Λ′,h′, c′, g′

)
, (6.60)

where the parameters Q′, R′, Λ′, h′, c′ and g′ are determined according to Algorithm 5. Since
evidence can be regarded as imposing an additional linear constraint in the original space, the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 42

idea is to treat reduction as a special case of multiplication. Consequently, since the support
of this product will be independent of the variables in y, the lower-dimensional reduced factor
is readily obtained through partitioning.

Algorithm 5 Reduce

Input: θ, y0 such that φ(x,y) = D
([

x
y

]
; θ

)
Output: θ′ such that φ(x,y0) = D(x; θ′)

1: R′ ← Columnspace (Rx)

2: c′ ←
(
RTxR

′)−1 (
c−RTyy0

)
3: Ux ← Complement (R′)
4: Z,Λ′, ← SVD(UTx QxΛQTxUx)
5: Q′ ← UxZ

6: h′ ← Q′TQx

(
h− ΛQT

[
R′c′

y0

])
7: g′ ← g +

(
h− 1

2ΛQT
[
R′c′

y0

])T
QT
[
R′c′

y0

]
− 1

2 log
∣∣RTxR′∣∣2

The first step (in line 1 of Algorithm 5) is to find an orthonormal basis for the resulting
degenerate space in Rn′ , where n′ is the dimension of the vector x. The corresponding offset
c′ (in line 2) is determined by the intersection of the original affine space and the additional
constraint y = y0. In the edge case where the block matrix Rx does not have full column rank,
the matrixRTxR

′ will not be square and consequently its pseudo-inverse (R′TRxR
T
xR
′)−1R′TRx

should be used instead3. The orthonormal basis Ux (in line 3) is then used to determine the
resulting full-rank precision matrix, which is in turn diagonalised using the SVD (in line 4).
As was the case in Algorithms 2, 3 and 4, the corresponding orthogonal matrix Z is once
again used (in line 5) to determine the basis for the support in Rn′ . Finally, the vector h′

and normalisation constant g′ are also calculated (in lines 6 and 7, respectively). In the case
where RTxR

′ is not square, the determinant |R′TRxR
T
xR
′| should be used instead of |RTxR′|2.

Figure 6.3 illustrates various aspects of Algorithm 5 for a simple example.

Proof. To determine the parameters of the resulting degenerate factor φ(x) as calculated
according to Algorithm 5, we need to substitute the evidence y0 into Equation 6.59 to
obtain φ(x,y0) and then express this factor over scope x. Instead of doing this directly, we
start by defining an auxiliary factor with scope {x,y}, namely

φ0(x,y) = φ(x,y) δ (y − y0) . (6.61)

This multiplication of the joint factor with a Dirac delta can be interpreted as imposing
an additional linear constraint due to the evidence y = y0. If we further multiply by a
carefully-chosen vacuous canonical factor (with K = 0, h = 0 and g = 0) and rearrange

3This will only be necessary when an existing degeneracy is again included in the evidence and simplifies

to
(
RT

xR
′)−1

otherwise.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 43

x1

y

a

u x2a

a

r

y0

(a)

x1

a

rx

c′

x2

ux

q′

r′

a

(b)

Figure 6.3: The reduction of (a) a degenerate factor in R3 subject to the linear constraint

x1 + x2 + y = a. The evidence y = y0 can be regarded as a horizontal plane and its intersection

with the affine plane is indicated by the dashed line (along the vector u). (b) From a view perpendic-

ular to the x1-x2 plane, we see the orthogonal 2-D components rx and ux = q′ (where the latter is a

unit vector). The reduced factor over {x1, x2} then has a probability distribution along q′ as indicated

by the dashed 1-D curve and is equal to zero away from the dashed line (in the direction of r′ with

corresponding offset c′).

the factors, Equation 6.61 becomes

φ0(x,y) = C (x; 0,0, 0) δ (y − y0) φ(x,y)

= C
([
I 0

] [x
y

]
; 0,0, 0

)
δ

([
0 I

] [x
y

]
− y0

)
× C

([
QTx QTy

] [x
y

]
; Λ,h, g

)
δ

([
RTx RTy

] [x
y

]
− c

)
. (6.62)

The motivation for this expansion becomes apparent when comparing Equations 6.33 and
6.62. In particular, note that the evidence operation for degenerate Gaussian factors be-

comes a special case of the multiplication operation, where Q1 =
[
I 0

]T
, R1 =

[
0 I

]T
and c1 = y0. We can therefore use the results from Equation 6.45 to determine the product
in Equation 6.62. Returning to the definition of the matrix V in Equation 6.35, however,
we see that in this case

C(V) = C

([
I
0

] [
I 0

] [Rx

Ry

])
= C

([
Rx

0

])
. (6.63)

This means that Vy = 0. Therefore, the expression for the vector b in Equation 6.40 can
be simplified to

b = (RTxVx)−1(c−RTyy0). (6.64)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. STATISTICAL OPERATIONS ON DEGENERATE FACTORS 44

Furthermore, since C(U) ⊥ C
([

0 I
]T)

, Uy = 0. This means that

UZ =

[
Ux

0

]
Z =

[
UxZ

0

]
and UTQ =

[
Ux

0

]T [
Qx

Qy

]
= UTx Qx. (6.65)

Using Equation 6.45 (where Λ1 = 0, h1 = 0 and g1 = 0) and substituting Equations 6.63
to 6.65, Equation 6.62 becomes

φ0(x,y) = D
([

x
y

]
;

[
UxZ

0

]
,

[
0 Vx
I 0

]
, Λ̂, ĥ,

[
y0

b

]
, ĝ

)
, (6.66)

where

ZΛ̂ZT = UTx QxΛQTxUx

ĥ = ZTUTx Qx

(
h− ΛQT

[
Vxb
y0

])
ĝ = g +

(
h− 1

2
ΛQT

[
Vxb
y0

])T
QT
[
Vxb
y0

]
− 1

2
log
∣∣RTxVx∣∣2 . (6.67)

Using the definition of the degenerate factor in Equation 5.1 and that of the multidimen-
sional Dirac delta function in Equation 4.10, Equation 6.66 then becomes

φ0(x,y) = C
([
ZTUTx 0

] [x
y

]
; Λ̂, ĥ, ĝ

)
δ

([
0 I
V T
x 0

] [
x
y

]
−
[
y0

b

])
= C

(
ZTUTx x; Λ̂, ĥ, ĝ

)
δ
(
V T
x x− b

)
δ (y − y0) . (6.68)

However, returning to Equation 6.61 and using the multiplicative property for a Dirac delta
function in Equation 4.12, we also obtain

φ0(x,y) = φ(x,y0) δ(y − y0). (6.69)

By comparing Equations 6.68 and 6.69, we can therefore conclude that

φ(x,y0) = C
(
ZTUTx x; Λ̂, ĥ, ĝ

)
δ
(
V T
x x− b

)
= D(x;UxZ, Vx, Λ̂, ĥ,b, ĝ). (6.70)

This concludes the derivation of Algorithm 5.

In summary, the aim of this chapter was to derive results for marginalisation, multiplica-
tion, division and reduction for our definition of degenerate Gaussian factors as proposed in
Equation 5.1. The procedures summarised in Algorithms 2 to 5 reveal that this parametri-
sation is closed under these statistical operations. Consequently, these general procedures
enable the use of degenerate factors for solving typical inference problems. Importantly, we
keep track of normalisation constants throughout, which allows model comparison and max-
imum a posteriori (MAP) estimation in degenerate settings. In the next chapter, we derive
the asymptotic time complexity of these procedures and evaluate their execution times in an
experimental setup.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Computational complexity

In computer science, asymptotic complexity is an important characteristic of any algorithm
or mathematical procedure. Also referred to as “big O” notation, it provides an indication of
the processing time or memory requirements as the dimensionality of the input grows. When
deriving the theoretical complexity of an algorithm, the modus operandi is to assume the
worst-case scenario where applicable and to only retain the highest-order term without any
coefficients in the final answer. For example, in the case of the degenerate Gaussian factor in
Equation 5.1, the number of parameters n2 +2n−k+1 = O(n2) increases quadratically as the
total dimension of the vector x tends to infinity. The purpose of this chapter is to calculate
the time complexity, measured in floating point operations (FLOPs), of the marginalisation,
multiplication, division and reduction operations as derived in the previous chapter. Since
many of these computations involve common operations such as matrix multiplication and
inversion, computing subspaces and calculating the singular value decomposition (SVD), we
start by discussing the complexity of these matrix operations. We then derive the complexity
of the statistical operations themselves. Finally, we provide an additional perspective on the
computational cost of inference using degenerate factors by evaluating actual execution times
in an experimental setup.

7.1 Complexity of matrix operations

The time complexity of the common matrix operations used in Algorithms 2 to 5 are sum-
marised in Table 7.1, where some results are straightforward and others require a slightly
longer motivation. Importantly, for square, n× n matrices, all of these operations require at
most O(n3) FLOPs. In particular:

• The sum of two m× n matrices consists of mn scalar additions.

• The product of an m × n matrix and an n × p matrix amounts to mp additions of n
scalar products each. In the special case where the second matrix is n×n and diagonal,
this reduces to mn scalar multiplications.

• Using Gauss-Jordan elimination [27], the inverse of an n × n matrix is computed by
performing O(n2) row reductions on rows with O(n) elements each and then rescaling
each row. Matrix inversion can be done in O(n2.807) [33] or even O(n2.376) [34], although
the large constant coefficient in the latter renders it impractical for typical matrices.

45

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. COMPUTATIONAL COMPLEXITY 46

• According to Equation 3.14, the pseudo-inverse of an m × n matrix with full column
rank amounts to a matrix product, an inverse and another product with complexity
O(mn2), O(n3) and O(mn2), respectively.

• Using Gaussian elimination with complexity O(n3), the determinant of an n×n matrix
is the product of the n pivots [27].

• According to Golub and van Loan [35], the SVD of an m× n matrix where m ≥ n can
be computed in O(m2n) time. In the case where m < n, the SVD AT = V ΣTUT with
complexity O(mn2) is used instead.

• Equation 3.24 reveals that an orthonormal basis for the column space of an m×n matrix
can be obtained from its compact SVD. If m ≥ n, the complexity of the compact SVD
is O(mn2) [35]. In the case where m < n, the SVD AT = VrΣrU

T
r with complexity

O(m2n) is used instead.

• In turn, Equation 3.25 reveals that an orthonormal basis for the nullspace of an m× n
matrix can be obtained from its SVD. However, in the case where m > n, calculating
the matrix V alone only requires O(mn2) time [35].

• Finally, Equation 3.27 reveals that an orthonormal basis for the orthogonal complement
of the column space of an m × n matrix can also be obtained from its SVD. Since
such matrices are always semi-orthogonal in Algorithms 2 to 5, the (slightly faster) QR
decomposition can also be used.

Depending on the details, note that it could be possible to reduce the complexity of an
algorithm by combining multiple of these matrix operations. For example, when using Gauss-
Jordan elimination to compute an inverse, the determinant can be calculated as a by-product.
Similarly, computing both the column space and nullspace of the same matrix only requires
a single SVD. Such insights are imperative when implementing an algorithm in practice, as
well as when deriving the overall complexity thereof.

Operation Input Output Complexity

Sum m× n and m× n m× n O(mn)

Product m× n and n× p m× p O(mnp)

Inverse n× n n× n O(n3)

Pseudo-inverse m× n, m ≥ n n×m O(mn2)

Determinant n× n scalar O(n3)

SVD m× n m×m, m× n and n× n O(max[m2n,mn2])

Column space m× n, rank r m× r O(min[m2n,mn2])

Nullspace m× n, rank r n× (n− r) O(mn2)

Complement m× n, ⊥ m× (m− n) O(m2n)

Table 7.1: Asymptotic time complexity of common matrix operations in terms of the input and

output dimensions of the applicable matrices.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. COMPUTATIONAL COMPLEXITY 47

7.2 Complexity of operations on degenerate factors

By using the complexity of the matrix operations in Table 7.1, we can derive the complexity of
the marginalisation, multiplication, division and reduction of degenerate Gaussian factors. For
each statistical operation, this requires identifying the complexity corresponding to every step
of the specific algorithm and then selecting the terms that could be the most expensive overall
(which are indicated throughout this section by underlining them). In addition to the total
dimension of the input, each of the operations could have additional dimensions of interest,
for example the number of variables in the marginal factor in the case of marginalisation.
We therefore include all the relevant quantities explicitly in order to derive more detailed
results, except where the expressions can be simplified significantly by assuming the worst-
case scenario.

7.2.1 Marginalisation

For the marginalisation operation as outlined in Algorithm 2, the matrix R has shape n× k
and R′ has shape n′×k′. By also specifying that rank(RTxQx) = l, the shapes of all the relevant
matrices can then be determined. Since k′ ≤ min[n′, k] and l ≤ min[n′, k, n − n′, n − k], the
complexity of each line of the algorithm is as follows:

1. U involves a column space requiringO(min[n′2(n−k), n′(n−k)2]). V involves a nullspace
requiring O(n′(n− k)2). W involves a multiplication requiring O(n′k(n− k)) and a

column space requiring O(min[k2(n− k), k(n− k)2]).

2. R′ involves a complement requiring O(n′2(n− k)).

3. c′ involves two matrix-vector products (starting from the right) requiring O(n′k) and
O(n′k′).

4. F involves a product requiring O(kl(n− n′)), a pseudo-inverse requiring O(l2(n − n′))
and two further products (starting from the right) requiring O(l(n− n′)(n− k)) and
O(kl(n−k)). G involves a product requiringO(n′k(n− k)), a sum requiringO(n′(n−k))
and another product requiring O(n′(n− k)(n′− k′)). S involves two products requiring
O((n − k)(n − k − (n′ − k′))) and O((n − k)(n − k − (n′ − k′))2), an inverse requiring
O((n−k− (n′−k′))3) and two further products requiring O((n−k)(n−k− (n′−k′))2)
and O((n− k)2(n− k − (n′ − k′))).

5. Z and Λ′ involve two products and a sum requiring O((n − k)2) each, two further
products requiring O((n− k)2(n′ − k′)) and O((n− k)(n′ − k′)2) and an SVD requiring
O((n′ − k′)3).

6. Q′ involves a product requiring O(n′(n′ − k′)2).

7. h′ involves various sums and products, but all of these include either vectors or diagonal
matrices.

8. g′ also involves various such sums and products and the two determinants can be cal-
culated as by-products of the two inverses.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. COMPUTATIONAL COMPLEXITY 48

The overall complexity of the algorithm can therefore best be summarised as follows: If
the largest block matrix has shape d1 × d2, the marginalisation of a degenerate factor has
complexity O(x), where

x =

d2

1(n− k) d1 ≥ d2, n
′ ≥ n− n′

max[d1d2(n− d1), d2(n− k)2] d1 ≥ d2, n
′ < n− n′

d1d2(n− k) d1 < d2.

(7.1)

Since d1, d2 and k are all bound by n, the complexity is O(n3) at most. Furthermore, for
constant n, the complexity decreases as the degree of degeneracy k → n.

7.2.2 Multiplication

For the multiplication operation as outlined in Algorithm 3, the matrix R1 has shape n× k1

and R2 has shape n×k2. By assuming that k1 ≥ k2 without loss of generality, the complexity
of each line of the algorithm is as follows:

1. V involves two products (from right to left) requiring O(nk2(n−k1)) each and a column
space requiring O(nk2

2).

2. R′ simply involves a concatenation.

3. b involves a product requiring O(nk2
2), an inverse requiring O(k3

2) and various sums and
products involving vectors.

4. c′ simply involves a concatenation.

5. U involves a complement requiring O(n2(k1 + k2)).

6. Z and Λ′ involve six products (starting from the outside) requiring O(n(n−k1)(n−k1−
k2)), O((n − k1)(n − k1 − k2)), O((n − k1)(n − k1 − k2)2), O(n(n− k2)(n− k1 − k2)),

O((n−k2)(n−k1−k2)) and O((n−k2)(n−k1−k2)2), a sum requiring O((n−k1−k2)2)
and an SVD requiring O((n− k1 − k2)3).

7. Q′ involves a product requiring O(n(n− k1 − k2)2).

8. h′ involves various sums and products, but all of these include either vectors or diagonal
matrices.

9. g′ also involves various such sums and products and the determinant can be calculated
as a by-product of the inverse.

The multiplication of two degenerate factors therefore has complexity O(x), where

x = max[n2(k1 + k2), n(n− k2)(n− k1 − k2)]. (7.2)

Since k1 and k2 are both bound by n, the complexity is also O(n3) at most. Furthermore, for
constant n and small k2, the complexity decreases as the degree of degeneracy k1 → n

2 .

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. COMPUTATIONAL COMPLEXITY 49

7.2.3 Division

For the division operation as outlined in Algorithm 4, the matrix R1 has shape n × k1 and
R2 has shape n× k2. Since k1 ≥ k2, the complexity of each line of the algorithm is as follows:

1. R′ involves a concatenation and a complement requiring O(n2(n− k1 + k2)).

2. c′ involves two matrix-vector products (starting from the right) requiring O(nk1) and
O(n(k1 − k2)).

3. Z and Λ+ involve three products (starting from the outside) requiring O(n(n− k1)(n−
k2)), O((n− k1)(n− k2)) and O((n− k1)2(n− k2)), a sum requiring O((n− k1)2) and
an SVD requiring O((n− k1)3).

4. Q′ involves a product requiring O(n(n− k1)2) and a concatenation.

5. Λ′ simply involves a concatenation.

6. h′ involves various sums and products, but all of these include either vectors or diagonal
matrices.

7. g′ also involves various such sums and products.

The division of two degenerate factors therefore has complexity O(x), where

x = n2(n− k1 + k2). (7.3)

Since k1 and k2 are both bound by n, the complexity is also O(n3) at most. Furthermore, for
constant n and small k2, the complexity decreases as the degree of degeneracy k1 → n.

7.2.4 Reduction

For the reduction operation as outlined in Algorithm 5, the matrix R has shape n×k and the
vector y0 has n− n′ components. Since k ≤ n′, the complexity of each line of the algorithm
is as follows:

1. R′ involves a column space requiring O(min[n′2k, n′k2]).

2. c′ involves a product requiring O(n′k2), an inverse requiring O(k3) and various sums
and products involving vectors.

3. Ux involves a complement requiring O(n′2k).

4. Z and Λ′ involve three products (starting from the outside) requiringO(n′(n′ − k)(n− k)),

O((n′ − k)(n− k)) and O((n′ − k)2(n− k)), and an SVD requiring O((n′ − k)3).

5. Q′ involves a product requiring O(n′(n′ − k)2).

6. h′ involves various sums and products, but all of these include either vectors or diagonal
matrices.

7. g′ also involves various such sums and products and the determinant can be calculated
as a by-product of the inverse.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. COMPUTATIONAL COMPLEXITY 50

The reduction of a degenerate factor therefore has complexity O(x), where

x = max[n′2k, n′(n′ − k)(n− k)]. (7.4)

Since n′ and k are both bound by n, the complexity is also O(n3) at most.

7.3 Measured execution times

Although the asymptotic complexity provides useful insights into the computational cost of an
algorithm, it has a number of shortcomings when viewed in isolation. Firstly, since the analysis
is only concerned with the limit as the input dimension tends toward infinity, any coefficients
and lower-order terms are omitted. For finite (and especially small) input sizes, both of these
could in fact be very significant. For example, although n2 + 100n = O(n2), 100n > n2 for
n < 100. Secondly, these results only provide a theoretical indication of the computational
cost of an algorithm, where another important perspective is the measured execution times
for an implementation thereof. For each of the four operations in Algorithms 2 to 5, this is
indicated in Figure 7.1, where we used the parametrisation for degenerate factors proposed
by Raphael [18] as a baseline.

20 40 60 80 100 120 140 160 180

n

0

10

20

30

40

50

t
(m

s)

(a) marginalisation

20 40 60 80 100 120 140 160 180

n

0

10

20

30

40

50

t
(m

s)

(b) multiplication

20 40 60 80 100 120 140 160 180

n

0

10

20

30

40

50

t
(m

s)

(c) division

20 40 60 80 100 120 140 160 180

n

0

10

20

30

40

50

t
(m

s)

(d) reduction

Figure 7.1: Measured execution times (in milliseconds) of the four statistical operations using our

degenerate Gaussian factors (indicated by the lines with x-shaped markers) and those proposed by

Raphael [18] (indicated by the lines with circular markers) as a function of the input dimension n.

The 25’th and 75’th percentile (based on multiple experiments) are indicated by the shaded regions.

For these experiments, we varied the dimension of the input matrices from 1 to 200 and
repeated the process 500 times. For both parametrisations, we used unoptimised implemen-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. COMPUTATIONAL COMPLEXITY 51

tations using standard Python libraries such as numpy and scipy. The computations were
performed on a single thread of an Intel R© CoreTM i7 CPU. To conform to the methodolo-
gies of belief propagation [22] and belief update [23], we adapted the reduction operation of
Raphael [18] to marginalise over the observed variables after the additional constraint has
been incorporated. Despite the fact that this is also necessary for calculating normalisation
constants, it reduces the dimension of the output which leads to less computational time
downstream.

As indicated by Figure 7.1, the execution times are longer using our parametrisation
in the case of marginalisation and division, but shorter in the case of multiplication and
reduction. Importantly, both the difference and the absolute times are larger for the latter
two operations. This indicates that these are the more expensive operations and therefore the
advantage of our parametrisation is significant. In addition, for typical inference problems,
multiplication is performed more frequently compared to marginalisation and reduction, and
division is usually performed for factors with smaller scopes. Ultimately, one needs to consider
the overall execution time for a specific inference problem to obtain an additional comparison.
This is included at the end of Chapter 9 for a representative example.

In summary, due to our use of the SVD, the asymptotic time complexity of the opera-
tions in Algorithms 2 to 5 is O(n3). This is similar to that for Raphael’s [18] representation.
In comparison, the multiplication, division and reduction operations for Koller and Fried-
man’s [3] (non-degenerate) canonical factors require only O(n2). However, due to the matrix
inversion in Equation 2.16, their marginalisation operation also requires O(n3) and therefore
often dominates the computational time in practice. The expressiveness of degenerate factors
therefore comes at little additional computational cost.

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Additional operations necessary for
inference

In addition to the four operations on degenerate factors discussed in Chapter 6, we present
further operations that are necessary for performing inference on Bayesian networks in this
chapter. These include correctly manipulating degenerate factors with different scopes, mod-
elling stochastic systems by representing conditional densities (associated with both linear
and nonlinear dependencies) and checking for convergence of message passing algorithms.
The detailed derivations are once again included at the end of each section where applicable.

8.1 Extending and rearranging factor scopes

Performing inference on PGMs often amounts to multiplying (or dividing) two factors with
different scopes. This is true even for the simple case of computing the joint density p(x,y) =
p(y|x) p(x), where the scope of the second factor is a subset of that of the first. In such cases,
we need to extend the scope of each factor in the product to be the union of all the scopes.
For this purpose, we can extend the scope of a given degenerate factor with scope x to include
the vector y, such that the condition

D
([

x
y

]
;Q′, R′,Λ′,h′, c, g

)
= D (x;Q,R,Λ,h, c, g) (8.1)

is satisfied. A possible choice for the parameters in Equation 8.1 that conforms to the definition
of the degenerate factor in Equation 5.1 is

Q′ =

[
Q 0
0 I

]
, R′ =

[
R
0

]
, Λ′ =

[
Λ 0
0 0

]
and h′ =

[
h
0

]
. (8.2)

Note that Λ′ is diagonal and that C (Q′) = C (R′)⊥ as required.
Another operation that is necessary for a message passing implementation is rearranging

the scope of a given factor. For instance, consider a degenerate Gaussian factor with scope
{x,y} where the matrices Q and R are partitioned accordingly. We can determine another
factor with scope {y,x}, such that

D
([

y
x

]
;Q′, R′,Λ,h, c, g

)
= D

([
x
y

]
;

[
Qx

Qy

]
,

[
Rx

Ry

]
,Λ,h, c, g

)
, (8.3)

52

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 53

by simply rearranging the rows of the two matrices

Q′ =

[
Qy

Qx

]
and R′ =

[
Ry

Rx

]
. (8.4)

This operation is necessary to insure that, prior to applying any statistical operations, the
scopes of multiple factors not only have the same dimension but are also aligned. By extending
the result in Equation 8.3 for more partitions of Q and R, any scope rearrangement can be
performed.

8.2 Representing conditional density functions

To model a stochastic system using a Bayesian network, it is necessary to represent conditional
density functions – in our case as parametrised degenerate factors. Similar to Equation 2.13
for canonical factors, we start with the special case of linear transformations, where the
expression for the conditional density is exact. However, since it is usually also necessary to
represent more general nonlinear relationships, we propose a method for approximating these
as in Section 2.3.

8.2.1 Linear dependencies

Given the affine transformation
y = Ax + b + w (8.5)

subject to (possibly degenerate) independent noise

w ∼ D(w;Q,R,Λ,h, c, g), (8.6)

we can represent the conditional density

p(y|x) = D
([

x
y

]
;Q′, R′,Λ′,h′, c′, g′

)
, (8.7)

where the parameters Q′, R′, Λ′, h′, c′ and g′ are determined according to Algorithm 6. By
treating the vector x as constant, the idea is to use an affine transformation of the random
vector w (according to Algorithm 1) to express p(y|x) as a factor over y. We then rewrite
this factor as a parametrised degenerate factor with scope {x,y}.

The first step (in line 2 of Algorithm 6) is to use the auxiliary matrix F (in line 1) to find
an orthonormal basis R′ for the resulting degenerate space in Rnx+ny , where the matrix A has
shape ny×nx. The corresponding k-dimensional offset c′ (in line 4) is then determined using
the auxiliary matrix Z (in line 3). To ensure that C(Q′) ⊥ C(R′), the projection matrix (in line
5) is applied before the compact SVD (in line 6). This yields the basis Q+ corresponding to the
ny − k non-trivial singular values Λ+, where we use the same θ+-subscripts as Raphael [18].
The remainder of the orthogonal decomposition of Rnx+ny corresponding to the nx trivial
singular values is then determined (in line 7) and used to augment Q′ and Λ′ (in lines 8 and 9,
respectively). Finally, the vector h′ and normalisation constant g′ are also calculated (in lines
10 and 11, respectively). Figure 8.1 illustrates various aspects of Algorithm 6 for a simple
example.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 54

Algorithm 6 RepresentConditional

Input: θ, A, b such that p(w) = D(w; θ) and y = Ax + b + w

Output: θ′ such that p(y|x) = D
([

x
y

]
; θ′
)

1: F ←
[
−A I

]
2: R′ ← Columnspace

(
F TR

)
3: Z ← R′TF TR

(
RT (I +AAT)R

)−1

4: c′ ← Z(c +RTb)
5: P ←

(
I −R′R′T

)
6: Q+,Λ+, ← CompactSVD

(
PF TQΛQTFP

)
7: Q∞ ← Complement

([
Q+ R′

])
8: Q′ ←

[
Q+ Q∞

]
9: Λ′ =

[
Λ+ 0
0 0

]
10: h′ ← Q′TF TQ(h + ΛQT (b− FR′c′))
11: g′ ← g − (h + 1

2ΛQTb)T QTb + (h + ΛQT (b− 1
2FR

′c′))TQTFR′c′ + log |Z|

Proof. To determine the parameters of the degenerate factor representing the conditional
density p(y|x) as calculated according to Algorithm 6, we rewrite Equation 8.5 as

y = Iw + (Ax + b). (8.8)

Using the results in Algorithm 1 for this special case with the identity matrix, we can then
express the conditional density as

p(y|x) = D(y;Q,R,Λ, ĥ, ĉ, ĝ), (8.9)

where

ĉ = RT
(
(QΛ−1h +Rc) + (Ax + b)

)
= c +RT (Ax + b)

ĥ = ΛQT
(
(QΛ−1h +Rc) + (Ax + b)

)
= h + ΛQT (Ax + b)

ĝ = −1

2
(h + ΛQT (Ax + b))TΛ−1(h + ΛQT (Ax + b))− 1

2
log
∣∣2πΛ−1

∣∣
= g − 1

2
(Ax + b)TQΛQT (Ax + b)− hTQT (Ax + b) (8.10)

and where we have made use of the result in Equation 5.4 in the last line. We can then use
the definition of the degenerate factor in Equation 5.1 to expand Equation 8.9 according to

p(y|x) = C
(
QTy; Λ,h + ΛQT (Ax + b), ĝ

)
δ
(
RTy −

(
c +RT (Ax + b)

))
. (8.11)

By using the definition in Equation 2.4 and rearranging terms, the canonical factor in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 55

w2

a

w1

r

a
q

(a)

y1

y2

a

q∞x −a

a

r′

q+

(b)

Figure 8.1: (a) A visualisation of a degenerate factor in R2 subject to the linear noise constraint

w1 + w2 = a. The dashed 1-D curve indicates the probability distribution along the constraint (and

in the direction of the vector q). Away from this line (in the direction of r) the factor is equal to zero.

(b) The constructed degenerate factor p(y1, y2|x) in R3, where y1 = w1 + x and y2 = w2. This factor

is consequently subject to the linear constraint y1 + y2 − x = a and the vector r′ is perpendicular to

the resulting affine plane. In contrast, the vectors q+ and q∞ lie in the plane, where the factor is

invariant to any change along the latter.

Equation 8.11 can further be rewritten as

exp

(
−1

2
yTQΛQTy + (h + ΛQT (Ax + b))TQTy + ĝ

)
= exp

(
−1

2

[
x
y

]T [
−A I

]T
QΛQT

[
−A I

] [x
y

]
+

(h + ΛQTb)TQT
[
−A I

] [x
y

]
+ g − (h +

1

2
ΛQTb)T QTb

)
. (8.12)

Similarly, the Dirac delta in Equation 8.11 can be rewritten as

δ
(
RT (y −Ax)−

(
c +RTb

))
= δ

(
RT
[
−A I

] [x
y

]
− (c +RTb)

)
. (8.13)

To guarantee that the matrix R′ will be semi-orthogonal, we define the orthonormal basis
U such that

C(U) = C
([
−A I

]T
R
)
. (8.14)

Since the two corresponding projection matrices are also equal, we can multiply the argu-
ment of the Dirac delta in Equation 8.13 by the carefully-chosen matrix

Z = UT
[
−A I

]T
R
(
RT
(
I +AAT

)
R
)−1

(8.15)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 56

and using Equation 4.14, we can write

δ

(
RT
[
−A I

] [x
y

]
− (c +RTb)

)
= |Z| δ

(
R′T

[
x
y

]
− c′

)
, (8.16)

where
R′ = U and c′ = Z(c +RTb). (8.17)

To find the remainder of the parametersQ′, Λ′, h′ and g′, the quadratic term in the exponent
in Equation 8.12 should be expanded according to

−1

2

[
x
y

]T
S

[
x
y

]
= −1

2

[
x
y

]T
(I −R′R′T)S(I −R′R′T)

[
x
y

]
+

1

2

[
x
y

]T
R′R′TSR′R′T

[
x
y

]
−
[
x
y

]T
R′R′TS

[
x
y

]
, (8.18)

where we made use of the matrix definitions

S = F TQΛQTF and F =
[
−A I

]
. (8.19)

Substituting Equations 8.12, 8.13, 8.16 and 8.18 into Equation 8.11 and using the multi-
plicative property in Equation 4.12 yields

p(y|x) = exp

(
−1

2

[
x
y

]T
(I −R′R′T)S(I −R′R′T)

[
x
y

]
+

1

2
c′TR′TSR′c′ − c′TR′TS

[
x
y

]
+

(h + ΛQTb)TQTF

[
x
y

]
+ g − (h +

1

2
ΛQTb)T QTb + log |Z|

)
δ

(
R′T

[
x
y

]
− c′

)
.

(8.20)

This reveals the motivation behind the expansion in Equation 8.18, namely that, for the
compact SVD of the quadratic coefficient in Equation 8.20

Q+Λ+Q
T
+ = (I −R′R′T)S(I −R′R′T), (8.21)

we ensure that C(Q+) ⊥ C(R′). However, if the density function over the vector w ∈ Rny

in Equation 8.6 has k degrees of degeneracy, then

rank(R′) = rank(R) = k and rank(Q+) = rank(Q) = ny − k (8.22)

and consequently C(Q+) + C(R′) ⊂ Rnx+ny , where x ∈ Rnx . We therefore define a third
orthonormal basis Q∞ (with dimension nx) to complete the decomposition such that

C(Q∞) = (C(Q+) + C(R′))⊥. (8.23)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 57

For such an orthogonal decomposition, we can relate the respective projection matrices
according to

I −R′R′T = Q+Q
T
+ +Q∞Q

T
∞ =

[
Q+ Q∞

] [
Q+ Q∞

]T
. (8.24)

Similar to Equation 8.18, we now expand the linear term in the exponent in Equation 8.20
according to

wT

[
x
y

]
= wT (I −R′R′T)

[
x
y

]
+ wTR′R′T

[
x
y

]
, (8.25)

where we have made use of the definition

w = F TQ(h + ΛQTb)− SR′c′ = F TQ(h + ΛQT (b− FR′c′)). (8.26)

Finally, substituting Equations 8.21 and 8.25 followed by Equation 8.24 into Equation 8.20
and once again using the multiplicative property in Equation 4.12 yields

p(y|x) = D
([

x
y

]
;
[
Q+ Q∞

]
, R′,

[
Λ+ 0
0 0

]
,
[
Q+ Q∞

]T
w, c′, g′

)
, (8.27)

where

g′ = g − (h +
1

2
ΛQTb)T QTb + (h + ΛQT (b− 1

2
FR′c′))TQTFR′c′ + log |Z| (8.28)

since

1

2
SR′c′ + w =

1

2
F TQΛQTFR′c′ + F TQ(h + ΛQT (b− FR′c′))

= F TQ

(
h + ΛQT

(
b− 1

2
FR′c′

))
. (8.29)

This concludes the derivation of Algorithm 6.

8.2.2 Nonlinear dependencies

Now consider the more general nonlinear transformation

y = f(x,w) (8.30)

and suppose that we once again need to represent the conditional density

p(y|x) ≈ D
([

x
y

]
;Q′, R′,Λ′,h′, c′, g′

)
. (8.31)

In the nonlinear case, just as in Section 2.3, we need to resort to approximation through
linearisation. When using the Taylor series expansion, the approach is very similar to the
non-degenerate case, where Jacobian matrices can be used to obtain an affine approximation
of Equation 8.30 before applying the results in Algorithm 6. However, to use the unscented

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 58

transform and sigma points drawn from the prior distribution1

p(x,w) = p(x) p(w) = D
([

x
w

]
;Q,R,Λ,h, c, g

)
(8.32)

requires a more subtle approach.
The idea is to use samples from the canonical component of the prior in Equation 8.32 to

obtain an equivalent affine transformation x 7→ y, given by

y ≈ Ãx + b̃ + w̃ (8.33)

and where the affine transform noise is

w̃ ∼ D(w̃; Q̃, R̃, Λ̃, h̃, c̃, g̃). (8.34)

This is achieved in Algorithm 7 through moment-matching of the joint density p(x,y) resulting
from each transformation in Equations 8.30 and 8.33. Once the parameters in Equations 8.33
and 8.34 have been calculated, we can approximate the conditional density in Equation 8.31
using Algorithm 6.

Algorithm 7 EquivalentTransformation

Input: θ, f(·) such that p(x,w) = D
([

x
w

]
; θ

)
and y = f(x,w)

Output: θ̃, Ã, b̃ such that p(w̃) = D(w̃; θ̃) and y ≈ Ãx + b̃ + w̃

1:

[
X
W

]
←
[
0, γQ

√
Λ−1, − γQ

√
Λ−1

]
+ (QΛ−1h +Rc)1T

2: for i = 0, 2(n− k) do
3: y[i] ← f

(
x[i],w[i]

)
4: end for

5: µ←
∑2(n−k)

i=0 w
[i]
m

[
x[i]

y[i]

]
6: Σ←

∑2(n−k)
i=0 w

[i]
c

([
x[i]

y[i]

]
− µ′

)([
x[i]

y[i]

]
− µ′

)T
7: Ã← ΣT

xyΣ+
xx

8: b̃← µy − Ãµx

9: Q̃, Σ̃, ← CompactSVD
(

Σyy − ÃΣxy

)
10: Λ̃← Σ̃−1

11: R̃← Complement(Q̃)
12: h̃← 0, c̃← 0

13: g̃ ← −1
2 log

∣∣∣2πΛ̃−1
∣∣∣

The first step (in line 1 of Algorithm 7) is to draw 2(n − k) sigma points from the prior
distribution p(x,w), where k is the degree of degeneracy and γ is a scaling parameter. Each

1For statistically independent random vectors x and w, this joint factor can easily be computed using the
extension operation in Equation 8.2 on each marginal factor followed by (a special case of) the multiplication
operation in Algorithm 3.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 59

sigma point is then propagated through the nonlinear transform (in line 3). Similar to Equa-
tions 2.32 and 2.33, the mean (in line 5) and covariance (in line 6) of the joint density p(x,y)
are approximated using the sigma points and corresponding weights. By partitioning the mo-
ments according to x and y and making use of the pseudo-inverse, the matrix Ã is determined
(in line 7). This value of Ã is then used to determine that of b̃ (in line 8) as well as in the
compact SVD of the noise covariance (in line 9). The quantities Λ̃ (in line 10) and R̃ (in line
11) are determined in the usual manner. Without loss of generality, the noise w̃ can be chosen
as zero-mean, which implies that h̃ = 0 and c̃ = 0 (in line 12). Finally, the normalisation
constant (in line 13) is calculated according to Equation 5.4.

Proof. To determine the parameters of the equivalent affine transformation in Equation 8.33
as well as that of the degenerate factor representing the transform noise in Equation 8.34
as calculated according to Algorithm 7, we start by approximating the moments of the
joint density p(x,y) using the unscented transform. However, since the prior distribution
in Equation 8.32 is degenerate and the Cholesky decomposition for a positive semi-definite
matrix is not defined, the 2n + 1 sigma points in Equation 2.28 cannot be used directly.
Instead, we propose adapting the result by Thrun et al. [25] to draw 2(n − k) + 1 sigma
points

E =
[
0, γ

√
Λ−1, − γ

√
Λ−1

]
+ Λ−1h1T (8.35)

from only the canonical component of the degenerate factor in Equation 5.1, where k is the
degree of degeneracy and where we have made use of the substitution

QT
[
x
w

]
= ε. (8.36)

Since all samples (with non-zero likelihood) from the prior distribution in Equation 8.32
must satisfy

RT
[
x
w

]
= c, (8.37)

the 2k sigma points corresponding to the Dirac delta component of the degenerate factor
and the basis R are not necessary. By combining Equation 8.36 and Equation 8.37, and
since C(Q) = C(R)⊥, we can then write

QQT
[
x
w

]
+RRT

[
x
w

]
=

[
x
w

]
= Qε+Rc. (8.38)

This can in turn be used to transform the sigma points in Equation 8.35 to correspond to
the prior p(x,w), i.e.,[

X
W

]
=
[
0, γQ

√
Λ−1, − γQ

√
Λ−1

]
+ (QΛ−1h +Rc)1T . (8.39)

Note that the approximated moments of the prior using these sigma points as in Equa-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 60

tions 2.32 and 2.33, namely

E
[[

x
w

]]
≈

2(n−k)∑
i=0

w[i]
m

[
x[i]

w[i]

]

=

1− n− k
γ2

+

2(n−k)∑
i=1

1

2γ2

 (QΛ−1h +Rc) +
n−k∑
i=1

1

2γ2

(
γqi√
λi
− γqi√

λi

)
= QΛ−1h +Rc (8.40)

and

Cov

[[
x
w

]]
≈

2(n−k)∑
i=0

w[i]
c

([
x[i]

w[i]

]
− (QΛ−1h +Rc)

)([
x[i]

w[i]

]
− (QΛ−1h +Rc)

)T

=
n−k∑
i=1

1

2γ2

(
γqi√
λi

)(
γqi√
λi

)T
+
n−k∑
i=1

1

2γ2

(
− γqi√

λi

)(
− γqi√

λi

)T

=

n−k∑
i=1

qiq
T
i

λi
= QΛ−1QT , (8.41)

are equal to those calculated in Equations 5.9 and 5.10. Next, each of the sigma point pairs
x[i] and w[i] are propagated through the nonlinear transformation in Equation 8.30 to yield
y[i] = f

(
x[i],w[i]

)
. Using the same weights, the moments of the joint density p(x,y) can

then be approximated as

E
[[

x
y

]]
≈

2(n−k)∑
i=0

w[i]
m

[
x[i]

y[i]

]
(8.42)

and

Cov

[[
x
y

]]
≈

2(n−k)∑
i=0

w[i]
c

([
x[i]

y[i]

]
− E

[[
x
y

]])([
x[i]

y[i]

]
− E

[[
x
y

]])T
. (8.43)

For the equivalent affine transformation in Equation 8.33, the moments involving y are
given by

Cov[x,y] = Cov [x] ÃT

Cov[y] = ÃCov [x] ÃT + Cov [w̃]

E[y] = ÃE[x] + b̃ + E[w̃], (8.44)

where Cov [x] and E[x] are already specified according to Equation 8.32. Therefore, given
the moments in Equations 8.42 and 8.43, the three equations in Equation 8.44 can be used
to determine Ã, Cov[w̃] and b̃, respectively. Specifically, if we let the marginal density
p(x) = D (x;Qx, Rx,Λx,hx, cx, gx), we can use the first part of Equation 8.44 to write

Cov[x,y] = QxΛ−1
x QTx Ã

T =⇒ QTx Ã
T = ΛxQ

T
xCov[x,y]. (8.45)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 61

By defining the decomposition Ã = ÃQ + ÃR such that

C
(
ÃTQ

)
⊆ C (Qx) and C

(
ÃTR

)
⊆ C (Rx) , (8.46)

multiplying on both sides of Equation 8.45 by Qx yields

QxQ
T
x

(
ÃTQ + ÃTR

)
= QxΛxQ

T
xCov[x,y] =⇒ ÃQ = Cov [x,y]T Cov [x]+ , (8.47)

where we made use of the pseudo-inverse of the SVD for short. With this value of ÃQ
known, the second part of Equation 8.44 can be used to write

Cov [w̃] = Cov [y]−
(
ÃTQ + ÃTR

)
QxΛ−1

x QTx

(
ÃTQ + ÃTR

)T
= Cov [y]− ÃQ Cov [x] ÃTQ, (8.48)

which does not depend on ÃR. Finally, the third part of Equation 8.44 can be used to write

b̃ + ÃR E[x] + E[w̃] = E[y]− ÃQ E[x]. (8.49)

Since this is an underdetermined system of equations, we are free to choose ÃR = 0 and
E[w̃] = 0, without loss of generality. The former implies that Ã = ÃQ and the latter that

h̃ = 0 and c̃ = 0. The remainder of the parameters Q̃, R̃, Λ̃ and g̃ can then be obtained by
computing the compact SVD of Equation 8.48 and calculating the normalisation constant
according to Equation 5.4. This concludes the derivation of Algorithm 7.

8.3 Kullback-Leibler divergence

As mentioned in Section 2.1.3, inference on graphs containing loops is approximate. In addi-
tion, even for tree-structured graphs, approximations could be introduced due to linearisation.
For message passing algorithms, this means that messages typically need to be computed it-
eratively until convergence. A popular method to check for convergence of such an algorithm
is to use the Kullback-Leibler (KL) divergence

DKL(P ||Q) ,
∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx = Ep(x) [log p(x)− log q(x)] . (8.50)

This provides a measure of the relative entropy from density Q to density P and the condition

DKL(P ||Q) = 0 (8.51)

only holds when p(x) = q(x).
In the case of two degenerate Gaussian densities

p(x) = D(x;Q1, R1,Λ1,h1, c1, g1) and q(x) = D(x;Q2, R2,Λ2,h2, c2, g2), (8.52)

the KL divergence can be calculated according to

DKL(P ||Q) =
1

2

(
tr
(
Q2Λ2Q

T
2 Q1Λ−1

1 QT1
)

+ hT1 Λ−1
1 QT1 Q2Λ2Q

T
2 Q1Λ−1

1 h1 +

hT1 Λ−1
1 h1 − n+ k

)
− hT1 Λ−1

1 QT1 Q2h2 + g1 − g2. (8.53)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 62

Note, however, that this result is only valid when the two degenerate densities have support on
the same lower-dimensional manifold, i.e., if C (R1) = C (R2) and R1c1 = R2c2. Conversely,
if these conditions are not satisfied, the KL divergence will instead be infinite. In the context
of message passing algorithms, however, this should not be the case near convergence.

Proof. To calculate the KL divergence in Equation 8.50 for the two degenerate densities in
Equation 8.52, we need to calculate the expectation

DKL(P ||Q) = Ep(x)

[
log

p(x)

q(x)

]
. (8.54)

According to Algorithm 4, for the quotient of two degenerate densities

p(x)

q(x)
= D(x;Q′, R′,Λ′,h′, c′, g′) (8.55)

where C (R1) = C (R2), C(R′) = {0}. The expectation in Equation 8.54 (with respect to
the density P) therefore becomes

DKL(P ||Q) = E
[
log C(Q′Tx; Λ′,h′, g′)

]
= −1

2
E
[
xTQ′Λ′Q′Tx

]
+ E [x]T Q′h′ + g′. (8.56)

Since the Dirac delta components of the two densities are equivalent, we are effectively only
comparing their canonical components. The next step is to calculate the three terms in
Equation 8.56. By using the results in Algorithm 4, and since the matrix Z is orthogonal
and C (Q1) = C (Q2), we can write

Q′Λ′Q′T = Q1(Λ1 −QT1 Q2Λ2Q
T
2 Q1)QT1 and Q′h′ = Q1h1 −Q2h2. (8.57)

Since
E
[
xTAx

]
= E [x]T AE [x] + tr(ACov[x]), (8.58)

we use the first part of Equation 8.57 and the results in Equations 5.9 and 5.10 to calculate

E [x]T Q′Λ′Q′TE [x] = hT1 Λ−1
1 (Λ1 −QT1 Q2Λ2Q

T
2 Q1) Λ−1

1 h1 (8.59)

and

tr(Q′Λ′Q′TCov[x]) = tr
(
Q1(Λ1 −QT1 Q2Λ2Q

T
2 Q1)QT1 Q1Λ−1

1 QT1
)

= tr
(
Q1Q

T
1 −Q1Q

T
1 Q2Λ2Q

T
2 Q1Λ−1

1 QT1
)

= tr
(
Q1Q

T
1

)
− tr

(
Q2Λ2Q

T
2 Q1Λ−1

1 QT1 Q1Q
T
1

)
= n− k − tr

(
Q2Λ2Q

T
2 Q1Λ−1

1 QT1
)
. (8.60)

In the second-to-last line of Equation 8.60 we used the fact that tr(AB) = tr(BA) and in
the last line that the trace of a projection matrix is equal to its rank. Next, by using the
second part of Equation 8.57, we can write

E [x]T Q′h′ =
(
Q1Λ−1

1 h1 +R1c1

)T
(Q1h1 −Q2h2) = hT1 Λ−1

1 (h1 −QT1 Q2h2). (8.61)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. ADDITIONAL OPERATIONS NECESSARY FOR INFERENCE 63

Finally, since g′ = g1−g2, we can substitute Equations 8.59, 8.60 and 8.61 into Equation 8.56
to yield

DKL(P ||Q) =
1

2

(
tr
(
Q2Λ2Q

T
2 Q1Λ−1

1 QT1
)

+ hT1 Λ−1
1 QT1 Q2Λ2Q

T
2 Q1Λ−1

1 h1 +

hT1 Λ−1
1 h1 − n+ k

)
− hT1 Λ−1

1 QT1 Q2h2 + g1 − g2. (8.62)

This concludes the derivation of the KL divergence in Equation 8.53.

Together with the results from Chapter 6, this chapter provided the means to perform
inference on Bayesian networks using degenerate Gaussian factors. This includes representing
both linear and nonlinear models (as outlined in Algorithms 6 and 7) as well as practical
aspects such as aligning factor scopes and checking for convergence of message passing al-
gorithms. Note, however, that this does not limit the application of degenerate factors to
Bayesian networks alone, where many of the results derived thus far can readily form part of
more general inference processes. In the next chapter, we support our theoretical development
by applying these results to a recursive state estimation problem.

Stellenbosch University https://scholar.sun.ac.za

Chapter 9

An example: State estimation for
autonomous robots

To illustrate the advantages of performing inference with degenerate factors, we consider a
representative example. More specifically, we demonstrate a scenario where it is essential
to account for degeneracies (a) during the modelling process as well as (b) when perform-
ing subsequent computations. For this purpose, we first provide an overview of recursive
state estimation – specifically in the context of mobile robotics. In order to keep the dis-
cussion pertinent yet not overly complex, we choose to model the estimation problem with
a tree-structured graph. Since we perform inference on a nonlinear model using the belief
propagation algorithm, all the operations outlined in Chapters 6 and 8 (except for division)
are relevant. We also comment on the shortcomings of existing approaches using appropriate
qualitative and quantitative results.

9.1 Recursive state estimation

Recursive state estimation (or Bayesian filtering) refers to a setting where the posterior dis-
tribution over a time-dependent latent state must be inferred using noisy measurements
thereof [36]. Common applications are found in mobile robotics [25], where accurate con-
trol of a vehicle heavily relies on a good estimate of its state. For practical robotic systems,
the estimation usually occurs online and in real time. Since regularisation techniques are often
used to improve numerical robustness in certain applications [37, 38], this is an appropriate
context for showcasing the advantages of degenerate Gaussian factors.

The standard Markovian formulation of the estimation problem consists of a motion and
a measurement model. The motion model is a discrete-time, nonlinear function

xk = g(xk−1,uk,wk) (9.1)

relating the current state xk to the previous state xk−1, the control inputs uk and the process
noise wk. In turn, the measurement model is a function

zk = h(xk,vk) (9.2)

relating the measurement zk to the state xk and the measurement noise vk. Additionally, the
prior distributions over the process noise wk and measurement noise vk are generally assumed

64

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. AN EXAMPLE: STATE ESTIMATION FOR AUTONOMOUS ROBOTS 65

to be known. The aim of the estimator is then to calculate what Thrun et al. [25] call the
belief for every time step k ∈ {1, 2, . . .K}. The belief is the posterior distribution

bel(xk) , p(xk|u1:k, z1:k) (9.3)

over the state xk given all the control inputs u1:k and measurements z1:k up to time k. Under
the Markov assumption, the estimate in Equation 9.3 can be calculated recursively. The
Bayesian network and subsequent factor graph representing this inference problem are shown
in Figure 9.1, where we distinguish between motion factors

ψk(xk−1,xk,uk) , p(xk|xk−1,uk) (9.4)

and measurement factors
ρk(xk, zk) , p(zk|xk) (9.5)

in the latter. Due to the nonlinear models in Equations 9.1 and 9.2, it is generally necessary
to approximate the factors in Equations 9.4 and 9.5 using a linearisation technique such as
the unscented transform.

xk

zk

uk

zk−1

xk−1

uk−1

(a)

xk

zk

uk

zk−1

xk−1

uk−1

ψk

ρk−1 ρk

ψk−1

(b)

Figure 9.1: (a) A Bayesian network that models the recursive state estimation problem (as adapted

from Thrun et al. [25]). Round nodes represent random variables (where a shaded node indicates that

the variable is observed) and directed edges indicate causal dependencies. For each discrete time step

(as indicated by the subscript k), the state xk is latent while the control inputs uk and measurement

zk are observed. (b) The corresponding factor graph. Black squares indicate factors, where each factor

is connected to all the random variables in its scope via undirected edges. We distinguish between

motion factors ψk and measurement factors ρk.

To solve the estimation problem (i.e., to calculate the belief over every state xk), we
subsequently construct the cluster graph shown in Figure 9.2. Note, however, that this choice
of cluster graph is not unique. According to the general definition of an outgoing message in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. AN EXAMPLE: STATE ESTIMATION FOR AUTONOMOUS ROBOTS 66

Equation 2.1, the rightward, leftward, downward and upward messages are

ξ→k (xk) =

∫
ψk(xk−1,xk,uk) ξ

→
k−1(xk−1) ξ↑k(xk) dxk−1

ξ←k (xk) =

∫
ψk+1(xk,xk+1,uk+1) ξ←k+1(xk+1) ξ↑k+1(xk+1) dxk+1

ξ↓k(xk) =

∫
ψk(xk−1,xk,uk) ξ

→
k−1(xk−1) ξ←k (xk) dxk−1

ξ↑k(xk) = ρk(xk, zk), (9.6)

respectively. The computations in the first three cases each make use of two multiplication
operations followed by a single marginalisation operation. In addition, all four computations
make use of a reduction operation based on either the known control inputs uk or the observed
measurement zk. Once all of the messages have been computed (usually through iteration
until convergence), the posterior distribution

p(xk|u1:K , z1:K) = ξ→k (xk) ξ
←
k (xk) (9.7)

can be determined for each time step. Note the slight difference in conditioning between
Equation 9.3 (known as filtering) and Equation 9.7 (known as smoothing). Although the
former inference problem can also be solved using Equations 9.6 and 9.7 by simply omitting
all leftward messages ξ←k , we will only consider the latter going forward as it is (a) usually
more accurate and (b) a more natural context for PGMs.

ψk(xk−1,xk,uk)xk−1

ξ→k−1

ξ←k−1

xk

ξ→k

ξ←k
xk ξ↑kξ↓k

ρk(xk, zk)

ψk−1(xk−2,xk−1,uk−1)

xk−1 ξ↑k−1

ρk−1(xk−1, zk−1)

ξ↓k−1

Figure 9.2: A possible cluster graph corresponding to the model of the recursive state estimation

problem in Figure 9.1, where each factor has been placed in its own cluster. Each cluster potential

is therefore equal to the appropriate motion or measurement factor. The sepsets are indicated by

rectangular nodes and are connected to the clusters via undirected edges. Messages are indicated by

arrows and are differentiated (by their labels) according to both their scopes and their directions.

Even though the computations in Equations 9.6 and 9.7 are valid for any factor represen-
tation, the advantages of Gaussian factors (for example the fact that they are closed under the
required operations) make them a popular approximation in robotics applications. The most
natural context that further warrants the use of degenerate Gaussian factors is one where the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. AN EXAMPLE: STATE ESTIMATION FOR AUTONOMOUS ROBOTS 67

models in Equations 9.1 and 9.2 include deterministic relationships between a subset of the
variables. Note, however, that if a given degeneracy is present for all time steps, it could be
sufficient to construct an equivalent, lower-dimensional model of the system without requir-
ing degenerate factors. An appropriate example to illustrate the advantages of degenerate
factors is therefore one with time-dependent models, where degeneracies arise inconsistently
and unpredictably.

9.2 Cooperative transportation robots

For our illustrative example, we draw inspiration from the practical system by Loianno and
Kumar [39], where they develop a fleet of micro aerial vehicles (MAVs) that can transport
a rigid body using permanent electromagnets. If the geometry of the transported object
is assumed to be known a priori, they show that this additional information can aid the
localisation of the vehicles by formulating the estimation problem as an optimisation problem.
In this section, we show how such additional information can be incorporated automatically
into the well-established state estimation formulation (outlined in the previous section) using
degenerate Gaussian factors. To keep the dimensionality manageable, however, we limit our
discussion to ground vehicles with three degrees of freedom.

In particular, consider a scenario where a fleet of mobile robots need to work together to
transport objects on a warehouse floor. Suppose that these objects can vary in shape and
size, and consequently multiple and varying subsets of robots cooperate at any given time.
Since each robot operates independently for the majority of the time, we use the nonlinear
odometry motion model

xik =

xikyik
θik

 =

xik−1 + rik cos
(
θik−1 + αik

)
yik−1 + rik sin

(
θik−1 + αik

)
θik−1 + αik + βik

+ wi
k (9.8)

as proposed by Thrun et al. [25], where the i’th robot has position (xik, y
i
k) and orientation θik

and where the corresponding control inputs comprise a rotation αik followed by a translation
rik and another rotation βik. Suppose that each robot also receives a noisy measurement of its
position

zik =

[
xik
yik

]
+ vik (9.9)

at every time step and that the noise distributions

p(wi
k) = N (wi

k;0,Σw) and p(vik) = N (vik;0,Σv) (9.10)

are Gaussian. To keep this model consistent with the one in Figure 9.1, we then combine the
states (and similarly the measurements and controls) of all the individual robots into a single
state vector xk (as well as measurement vector zk and control vector uk).

Now consider a moment in time k′ when a group of N robots {j1, j2, . . . jN} are trans-
porting an object. If the shape of the object is known, this provides additional information
that would be useful for estimating the states of the robots. In this example, we assume that
the distances between these robots as well as their relative orientations are specified exactly1.

1For the sake of simplicity, we only consider translations of the object (as opposed to rotations as well).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. AN EXAMPLE: STATE ESTIMATION FOR AUTONOMOUS ROBOTS 68

This additional information can therefore be included in a noiseless auxiliary measurement
ẑk′ , where its n’th component is given by

ẑnk′ =

√(

xjnk′ − x
jn−1

k′

)2
+
(
yjnk′ − y

jn−1

k′

)2

θjnk′ − θ
jn−1

k′

 . (9.11)

The augmented measurement model for time step k′ then appends all of the nonlinear auxiliary
measurements in Equation 9.11 to the default measurements in Equation 9.9 to produce a
single measurement vector zk′ .

During physical operation, each robot will receive its odometry information and sensor
measurements as normal. If this were naively used to perform state estimation separately
for each robot, the correlation between cooperating robots could not be utilised to improve
the accuracy of the estimated beliefs. Instead, all the robot poses should be combined into a
single state vector and auxiliary measurements of the form in Equation 9.11 included where
applicable. Note that, although such a measurement is expressed in terms of the robot states,
this is not a causal relationship. This equation is merely used to construct the necessary
conditional densities as required by the model in Figure 9.1. The actual observations are
instead determined by the geometry of the particular object and will be the same at every
time step for the duration of the transportation task. Omitting the auxiliary measurements in
Equation 9.11 altogether would be equivalent to ignoring the additional information provided
by the known shape of the object.

A closer look at the necessary inference operations (as outlined in Section 9.1) reveals
the need for computing with degenerate factors in this example. Since the augmented mea-
surement model contains noiseless components, the covariance of the measurement noise will
be rank deficient and consequently the measurement factor ρk′ in Equation 9.5 cannot be
represented using non-degenerate parametrisations. We therefore need to represent the noise
distribution using a degenerate factor as in Equation 8.6. Furthermore, the upward message
ξ↑k′ as computed in Equation 9.6 will also be degenerate and will in turn be used to com-
pute other messages (for example ξ→k′ and ξ←k′−1). This requires the reduction, multiplication
and marginalisation operations as outlined in Chapter 6. Even the context for linearising
the motion factor ψk′+1 – typically the message ξ→k′ – will be degenerate. This reveals that,
once degeneracies arise during inference, it is necessary that all of the downstream operations
handle such cases appropriately.

9.3 Experiments and results

To support this argument, the transportation task in Section 9.2 was simulated, where gen-
erated control inputs and sampled noise values were used to calculate the trajectories and
measurements of the robots. The control inputs and measurements were then used to calcu-
late the messages in Figure 9.2 until convergence. As an example, the beliefs for a group of
three robots and a single object are shown in Figure 9.3. By computing with degenerate fac-
tors, we were able to handle cases where the motion of the three robots are independent (first
and last 10 time steps) as well as highly-correlated (middle 20 time steps) – both automat-
ically and without encountering numerical errors. In comparison, using ridge regularisation
(i.e., adding a small scalar value λ to the diagonal terms of the singular covariance matrix)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. AN EXAMPLE: STATE ESTIMATION FOR AUTONOMOUS ROBOTS 69

as an approximate solution resulted in more uncertain beliefs. This was also the case when
ignoring the additional information provided by the known shape of the object entirely.

(a) (b)

(c) (d)

Figure 9.3: (a) Three robots transporting a triangular object (from left to right) on a 2-D warehouse

floor, where the object’s initial and final positions are indicated by the lighter and darker triangles,

respectively. At each time step, the robots’ actual positions are represented with solid dots. The

control inputs and measurements are then used to perform state estimation for this transportation

task when (b) using degenerate factors, (c) using canonical factors with ridge regularisation and (d)

ignoring the known shape of the object. In each case, the inferred beliefs are indicated using 67%

confidence ellipses. Note that these ellipses are smaller in (b) compared to (c) and (d), as seen by the

separation between the trajectories (specifically near the top right vertex of the lighter triangle and

the left vertex of the darker triangle).

For repeated experiments, Figure 9.4 shows the trade-off between high accuracy for small
regularisation values and well-conditioned matrices for larger values. Although the critical
point when too large a condition number results in numerical errors depends on the machine
precision and other application-specific details, it is worth noting that even for this example
there is a limited range of regularisation values that achieve acceptable accuracy without
affecting the conditioning of the problem adversely. This is in contrast to our principled
solution using degenerate factors, where the condition numbers are determined by the problem
definition alone and not increased by unnecessary approximations.

Since the degenerate parametrisation proposed by Raphael [18] does not include a proce-
dure for approximating nonlinear models, we need to convert to (and from) our parametri-
sation to enable a comparison. The more significant drawback of the former, however, is
the absence of normalisation constants due to their use of indicator functions (as opposed
to our use of Dirac delta functions) for representing degeneracies. The implication is that,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. AN EXAMPLE: STATE ESTIMATION FOR AUTONOMOUS ROBOTS 70

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2

log λ

4

5

6

7

8

9

10

11

12

13

lo
g
κ

−1500

−1450

−1400

−1350

−1300

−1250

−1200

−1150

−1100

lo
g
Z

Figure 9.4: The effect of ridge regularisation (for varying values of λ) on the maximum condition

number κ (indicated by the line with circular markers) as well as on the model likelihood Z (indicated by

the line with x-shaped markers). The standard deviation for the latter (based on multiple experiments

with different control inputs and noise values) are indicated by the shaded region.

although the first- and second-order moments of the computed beliefs are equivalent in both
cases, model comparison is only possible with our parametrisation (where the messages remain
unnormalised).

To illustrate this advantage, suppose that the time when the object was picked up is
unknown but of interest. By considering multiple hypotheses (i.e., one for each time step),
performing inference for each model and then extracting the model likelihood using the nor-
malisation information, we are able to identify the correct model. This is shown in Fig-
ure 9.5(a), where the peak at k′ = 10 corresponds to the true time step when the object was
picked up in Figure 9.3. Similarly, Figure 9.5(b) illustrates an alternative context where the
transported object could be any one out of a finite set of candidates and the relative size of
the object is correctly identified (as A = 1) using the model likelihood.

As a final comparison of our methodology to both ridge regularisation and Raphael’s
factor representation, we investigate the overall execution times for inferring the posterior
belief over the robots’ trajectories. Recall from Section 7.3 that this provides an important
practical perspective on the computational cost of such algorithms or solutions. In the case
of ridge regularisation, the use of Koller and Friedman’s [3] canonical factors resulted in the
shortest execution times, as expected. This approach required an average of 0.67 seconds to
solve the entire inference problem using the same implementation and hardware as described
in Chapter 7. Next, using the parametrisation for degenerate factors by Raphael [18] took
1.58 seconds on average. In some cases, however, this resulted in numerical errors when using
the Cholesky decomposition to draw the necessary sigma points. This reveals that, although
these factors can be used to approximate nonlinear models, the use of a diagonal precision
matrix as in Equation 5.1 improves the numerical stability significantly, since its inverse and
square root can be computed in an element-wise manner.

Finally, using our degenerate Gaussian factors to solve this recursive state estimation
problem required 1.51 seconds on average. Although this is only slightly faster than Raphael’s
representation, recall that the normalisation constants are explicitly kept track of throughout
the former, but not computed at all in the latter. For a fair comparison, we can therefore adapt
our solution by omitting the final line in each of Algorithms 2 to 7. Consequently, if we are only

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. AN EXAMPLE: STATE ESTIMATION FOR AUTONOMOUS ROBOTS 71

5 6 7 8 9 10 11 12 13 14 15

k′ (pick-up time)

−1240

−1220

−1200

−1180

−1160

−1140

−1120

−1100

lo
g
Z

(a)

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

A (relative object size)

−1300

−1250

−1200

−1150

−1100

lo
g
Z

(b)

Figure 9.5: Model comparison for the state estimation problem in Figure 9.3 to determine (a) the

time step k′ when the object was picked up and (b) the size A of the object (relative to the true

object’s size). In both cases, the mean and standard deviation of the model likelihood Z are indicated

by the solid line and shaded region, respectively. The peak where the model likelihood is a maximum

(and therefore corresponding to the most likely model) is indicated by the dashed line.

interested in the first- and second-order moments of the computed beliefs, the execution time
drops to 1.34 seconds on average. In summary, ridge regularisation therefore had the shortest
execution time, but requires approximations in degenerate cases. Raphael’s representation can
accommodate degeneracies exactly, but cannot be used for model comparison and required
the longest execution time. As illustrated, using our parametrised factors instead enjoys the
advantages of both while requiring more time than the former, but less than the latter.

Stellenbosch University https://scholar.sun.ac.za

Chapter 10

Conclusion

Probabilistic inference involving Gaussian factors is only valid for positive-definite covariance
matrices. In positive semi -definite settings, linear dependencies among the random variables
instead warrant the explicit representation of generalised degenerate Gaussian factors. In this
chapter, we evaluate the development in this dissertation according to the research aims and
objectives as outlined in Chapter 1. We also highlight the most significant properties and
capabilities of our original solution. Finally, we discuss possible avenues for future research.

10.1 Evaluation of degenerate Gaussian factors

In brief, the aim of this research project was to extend the capabilities of Gaussian factors to
degenerate settings, without resorting to approximations or suffering from over-parametrisation.
Consequently, it was necessary to propose an appropriate representation for such degenerate
factors, derive the typical statistical operations under this methodology and illustrate its ad-
vantages using a representative example. These are the three research objectives as outlined
in Section 1.2.

To address the problem of performing inference in degenerate settings, we introduced a
parametrisation comprising a lower-dimensional, non-degenerate component as well as a Dirac
delta function describing possible degeneracies in Chapter 5. The definition of the Dirac delta
as the limit of a Gaussian distribution appropriately captures the idea that the variance tends
to zero in certain dimensions. We also derived the conditions for the general factor to be
a valid density function as well as the first- and second-order moments in such cases. In
addition, our definition can still express non-degenerate Gaussian distributions as a special
case and furthermore provides a principled way of handling rank-deficient transformations of
Gaussian random variables.

Next, we derived algorithms for the marginalisation, multiplication, division and reduction
of degenerate Gaussian factors from first principles in Chapter 6. This mirrors the results for
non-degenerate, canonical factors by Koller and Friedman [3] which are necessary for inference
algorithms such as belief propagation [22] and belief update [23]. Importantly, all of these
results can once again be expressed as parametrised degenerate Gaussian factors and, through
the use of Dirac delta functions, the normalisation constant can be computed throughout. In
Chapter 7, we showed that the computational complexity for performing inference using these
factors is at most O(n3).

72

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. CONCLUSION 73

To enable inference on Bayesian networks as outlined in Section 2.1, we also derived
additional results for practical operations such as extending and rearranging factor scopes in
Chapter 8. Together with modelling stochastic systems by representing conditional densities
and checking for convergence of message passing algorithms, these results were necessary
to illustrate the advantages of computing with degenerate factors as demonstrated by the
example in Chapter 9.

10.2 Original contributions

Concretely, we highlight the following original contributions made in this dissertation:

1. The definition of the degenerate Gaussian factor in Equation 5.1: Different from the
work by Raphael [18], our use of a diagonal precision matrix (a) reduces the number of
parameters required to represent and compute with degenerate factors and (b) improves
the numerical stability of inference in degenerate settings, without sacrificing any of the
capabilities of Raphael’s representation. Furthermore, our use of a Dirac delta function
allows us to keep track of normalisation constants explicitly, which in turn enables model
comparison in degenerate cases.

2. The statistical operations on degenerate factors as outlined in Algorithms 2 to 5: Since
our definition of degenerate factors is different from any existing literature, these needed
to be derived from first principles. Unlike ridge regularisation, these operations enable
inference in degenerate setting without resorting to approximations. This also goes
beyond the work by Mikheev [17], where the Dirac delta component was eventually
omitted and the statistical operations could not be derived as a result. As demonstrated
by the numerical results in Sections 7.3 and 9.3, using our methodology also resulted in
faster overall execution times compared to the solution by Raphael [18].

3. The procedure for affine transformations of degenerate random variables as outlined
in Algorithm 1: This not only extends another capability of non-degenerate Gaussian
parametrisations to degenerate settings, but provides a principled way of handling rank-
deficient transformations of non-degenerate random variables as well. In contrast, the
resulting singular covariance matrix (due to linear dependencies within the transforma-
tion) cannot be expressed using traditional parametrisations.

4. The linearisation of nonlinear models via the unscented transform when the prior dis-
tribution is degenerate as outlined in Algorithm 7: Specifically, drawing sigma points
from the lower-dimensional distribution avoids positive-definite constraints due to de-
generacies. This would not be possible if the Cholesky decomposition was instead used
on the full covariance matrix.

In summary, these contributions enable accurate and automatic inference in (possibly) de-
generate settings at little additional computational cost. In contrast, approximate solutions
sacrifice either accuracy or numerical stability as demonstrated by the recursive state estima-
tion example.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. CONCLUSION 74

10.3 Future work

In this dissertation, we used the context of probabilistic graphical models to motivate and
illustrate our methodology for solving inference problems with degenerate components. How-
ever, most of the derived operations (such as marginalisation) and properties (such as the
statistical moments) apply to other domains as well. Future work should therefore investigate
other applications of Gaussian random variables – for example techniques such as Gaussian
mixture models, Gaussian processes or Kalman filters – where it would be advantageous to
compute with explicit degenerate factors. This will typically be the case when the inference
problem and covariance matrices are ill-conditioned.

Although this was not the only motivation for computing with degenerate factors, we
only considered an example in this dissertation that included deterministic constraints as
part of its problem definition. As mentioned in Chapter 1, another potential situation where
this could be beneficial is where inference problems become near-degenerate due to machine
precision limitations. By developing a principled strategy or heuristic for introducing artificial
degeneracies based on an appropriate threshold, the numerical stability of inference with ill-
conditioned matrices could be improved significantly.

Finally, by utilising the lower-dimensional, diagonal precision matrix of our representation
as part of an optimised implementation, future work could reduce the computational cost of
performing inference on models with a significant degree of degeneracy. For example, although
mathematically equivalent, there exist multiple algorithms for computing the singular value
decomposition, where some could be able to exploit certain matrix properties that are present
in Algorithms 2 to 5. With such an optimised implementation, degenerate Gaussian factors
can be applied to large-scale problems – both to provide insight into the scalability of this
methodology and to ultimately aid practical, real-world applications.

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[1] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal
of Basic Engineering, vol. 82, pp. 35–45, 03 1960.

[2] R. D. Shachter and C. R. Kenley, “Gaussian influence diagrams,” Management Science,
vol. 35, no. 5, pp. 527–550, 1989.

[3] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques
(Adaptive Computation and Machine Learning series). The MIT Press, 2009.

[4] P. Z. Peebles, Probability, random variables, and random signal principles. McGraw Hill,
1987.

[5] S. L. Lauritzen and F. Jensen, “Stable local computation with conditional Gaussian
distributions,” Statistics and Computing, vol. 11, no. 2, pp. 191–203, 2001.

[6] R. Fitzgerald, “Divergence of the Kalman filter,” IEEE Transactions on Automatic Con-
trol, vol. 16, no. 6, pp. 736–747, 1971.

[7] R. Pawula, S. Rice, and J. Roberts, “Distribution of the phase angle between two vectors
perturbed by Gaussian noise,” IEEE Transactions on Communications, vol. 30, no. 8,
pp. 1828–1841, 1982.

[8] Q. Cao, C. Shen, and M. Jia, “A fault detection scheme for PV panels in large scale PV
stations with complex installation conditions,” arXiv preprint arXiv:2105.08943, 2021.

[9] J. Quinonero-Candela and C. E. Rasmussen, “A unifying view of sparse approxi-
mate Gaussian process regression,” The Journal of Machine Learning Research, vol. 6,
pp. 1939–1959, 2005.

[10] C. Biernacki and S. Chrétien, “Degeneracy in the maximum likelihood estimation of
univariate Gaussian mixtures with EM,” Statistics & probability letters, vol. 61, no. 4,
pp. 373–382, 2003.

[11] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal
problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[12] D. I. Warton, “Penalized normal likelihood and ridge regularization of correlation and
covariance matrices,” Journal of the American Statistical Association, vol. 103, no. 481,
pp. 340–349, 2008.

75

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 76

[13] C. Cortes, M. Mohri, and A. Talwalkar, “On the impact of kernel approximation on learn-
ing accuracy,” in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 113–120, JMLR Workshop and Conference Proceedings,
2010.

[14] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as a method for
choosing a good ridge parameter,” Technometrics, vol. 21, no. 2, pp. 215–223, 1979.

[15] N. E. Heckman and J. O. Ramsay, “Penalized regression with model-based penalties,”
Canadian Journal of Statistics, vol. 28, no. 2, pp. 241–258, 2000.

[16] D. W. Marquardt and R. D. Snee, “Ridge regression in practice,” The American Statis-
tician, vol. 29, no. 1, pp. 3–20, 1975.

[17] P. Mikheev, “Multidimensional Gaussian probability density and its applications in the
degenerate case,” Radiophysics and Quantum Electronics, vol. 49, no. 7, pp. 564–571,
2006.

[18] C. Raphael, “Bayesian networks with degenerate Gaussian distributions,” Methodology
and Computing in Applied Probability, vol. 5, no. 2, pp. 235–263, 2003.

[19] D. Barber, Bayesian reasoning and machine learning. Cambridge University Press, 2012.

[20] J. Pearl, “Fusion, propagation, and structuring in belief networks,” Artificial Intelligence,
vol. 29, no. 3, pp. 241–288, 1986.

[21] R. Kindermann, Markov random fields and their applications. American Mathematical
Society, 1980.

[22] P. P. Shenoy and G. Shafer, “Propagating belief functions with local computations,”
IEEE Expert, vol. 1, no. 3, pp. 43–52, 1986.

[23] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with probabilities on graph-
ical structures and their application to expert systems,” Journal of the Royal Statistical
Society: Series B (Methodological), vol. 50, no. 2, pp. 157–194, 1988.

[24] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear sys-
tems,” in Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 3068, pp. 182
– 193, International Society for Optics and Photonics, 1997.

[25] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press,
2005.

[26] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estima-
tion,” 2000.

[27] G. Strang, Introduction to Linear Algebra. Wellesley, MA: Wellesley-Cambridge Press,
fourth ed., 2009.

[28] G. W. Stewart, “On the early history of the singular value decomposition,” SIAM Review,
vol. 35, no. 4, pp. 551–566, 1993.

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 77

[29] P. A. M. Dirac, The principles of quantum mechanics. No. 27, Oxford University Press,
1981.

[30] B. P. Lathi, Modern digital and analog communication systems. Oxford University Press,
1998.

[31] R. Shankar, Principles of quantum mechanics. Springer Science & Business Media, 2012.

[32] T. P. Minka, “Expectation propagation for approximate Bayesian inference,” in Proceed-
ings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 362–369,
2001.

[33] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13,
no. 4, pp. 354–356, 1969.

[34] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” in
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC
’87, p. 1–6, 1987.

[35] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU Press, 2013.

[36] F. Schweppe, “Recursive state estimation: Unknown but bounded errors and system
inputs,” IEEE Transactions on Automatic Control, vol. 13, no. 1, pp. 22–28, 1968.

[37] T. Koshizen, P. Bartlett, and A. Zelinsky, “Sensor fusion of odometry and sonar sensors
by the Gaussian mixture Bayes’ technique in mobile robot position estimation,” in IEEE
SMC’99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man,
and Cybernetics (Cat. No. 99CH37028), vol. 4, pp. 742–747, IEEE, 1999.

[38] R. S. Inoue, M. H. Terra, and J. P. Cerri, “Extended robust Kalman filter for attitude
estimation,” IET Control Theory & Applications, vol. 10, no. 2, pp. 162–172, 2016.

[39] G. Loianno and V. Kumar, “Cooperative transportation using small quadrotors using
monocular vision and inertial sensing,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 680–687, 2017.

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Research motivation
	Aims and objectives
	Existing approaches to inference in degenerate settings
	Ridge regularisation
	Dirac delta functions and pseudo-inverses
	Complementary subspaces and indicator functions

	Solution overview and contributions
	Dissertation outline

	Gaussian networks
	Probabilistic graphical models
	Bayesian networks and Markov random fields
	Factor and cluster graphs
	Message passing algorithms

	Canonical factors
	Definition and parametrisation
	Statistical operations

	Approximation of nonlinear dependencies
	Taylor series expansion
	The unscented transform

	Linear algebra
	Vector spaces
	The four fundamental subspaces of a matrix
	Matrix rank, independence and dimensionality

	Orthogonality
	Orthogonal subspaces and matrices
	Projections and least squares approximations

	The singular value decomposition

	Dirac delta functions
	Definition as the limit of a Gaussian
	Extension to multiple dimensions

	Degenerate Gaussian factors
	Definition and parameterisation
	The degenerate density function
	Affine transformations of degenerate random variables

	Statistical operations on degenerate factors
	Marginalisation
	Multiplication
	Division
	Reduction

	Computational complexity
	Complexity of matrix operations
	Complexity of operations on degenerate factors
	Marginalisation
	Multiplication
	Division
	Reduction

	Measured execution times

	Additional operations necessary for inference
	Extending and rearranging factor scopes
	Representing conditional density functions
	Linear dependencies
	Nonlinear dependencies

	Kullback-Leibler divergence

	An example: State estimation for autonomous robots
	Recursive state estimation
	Cooperative transportation robots
	Experiments and results

	Conclusion
	Evaluation of degenerate Gaussian factors
	Original contributions
	Future work

	Bibliography

