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Abstract

The increasing popularity of self-driving cars has given rise to the emerging field of au-
tonomous racing. In this domain, algorithms are tasked with processing sensor data to
generate control commands (e.g., steering and throttle) that move a vehicle around a
track safely and in the shortest possible time.

This study addresses the significant issue of practical model-mismatch in learning-
based solutions, particularly in reinforcement learning (RL), for autonomous racing. Model-
mismatch occurs when the vehicle dynamics model used for simulation does not accurately
represent the real dynamics of the vehicle, leading to a decrease in algorithm performance.
This is a common issue encountered when considering real-world deployments.

To address this challenge, we propose a partial end-to-end algorithm which decouples
the planning and control tasks. Within this framework, a reinforcement learning (RL)
agent generates a trajectory comprising a path and velocity, which is subsequently tracked
using a pure pursuit steering controller and a proportional velocity controller, respectively.
In contrast, many learning-based algorithms utilise an end-to-end approach, whereby a
deep neural network directly maps from sensor data to control commands.

We extensively evaluate the partial end-to-end algorithm in a custom F1tenth sim-
ulation, under conditions where model-mismatches in vehicle mass, cornering stiffness
coefficient, and road surface friction coefficient are present. In each of these scenarios, the
performance of the partial end-to-end agents remained similar under both nominal and
model-mismatch conditions, demonstrating an ability to reliably navigate complex tracks
without crashing. Thus, by leveraging the robustness of a classical controller, our partial
end-to-end driving algorithm exhibits better robustness towards model-mismatches than
an end-to-end baseline algorithm.
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Uittreksel

Die toenemende gewildheid van selfbesturende motors het aanleiding gegee tot die op-
komende veld van outonome wedrenne. In hierdie domein, het algoritmes die taak om
sensordata te verwerk om beheeropdragte (bv., stuur en versneller) te genereer wat ’n
voertuig veilig en in die kortste moontlike tyd om ’n baan beweeg.

Hierdie studie spreek die beduidende kwessie van praktiese model-wanverhouding in
leergebaseerde oplossings aan, veral in versterkingsleer (RL), vir outonome wedrenne.
Model-wanpassing vind plaas wanneer die voertuigdinamika-model wat vir simulasie ge-
bruik word nie die werklike dinamika van die voertuig akkuraat voorstel nie, wat lei tot
’n afname in algoritme-werkverrigting. Dit is ’n algemene probleem wat teegekom word
wanneer werklike implementerings oorweeg word.

Om hierdie uitdaging aan te spreek, stel ons ’n gedeeltelike- ‘end-to-end’-algoritme
voor wat die beplanning- en beheertake ontkoppel. Binne hierdie raamwerk genereer
’n versterkingsleer (RL) agent ’n trajek wat ’n pad en snelheid bevat, wat vervolgens
nagespoor word deur gebruik te maak van ’n suiwer agtervolgstuurbeheerder en ’n pro-
porsionele snelheidsbeheerder, onderskeidelik. Daarteenoor gebruik baie leergebaseerde
algoritmes ’n ‘end-to-end’-benadering, waardeur ’n diep neurale netwerk direk (DNN)
vanaf sensordata karteer om opdragte te beheer.

Ons evalueer die gedeeltelike- ‘end-to-end’-algoritme breedvoerig in ’n pasgemaakte
‘F1tenth’-simulasie, onder toestande waar model-wanverhoudings in voertuigmassa, draai
styfheidskoeffisient en padoppervlakwrywingskoeffisient teenwoordig is. In elk van hierdie
scenario’s het die werkverrigting van die gedeeltelike- ‘end-to-end’-agente dieselfde gebly
onder beide nominale en model-wanpastoestande, wat ’n vermoe demonstreer om kom-
plekse spore betroubaar te navigeer sonder om te verongeluk. Deur dus die robuustheid
van ’n klassieke kontroleerder te benut, toon ons gedeeltelike- ‘end-to-end’- bestuursalgo-
ritme beter robuustheid teenoor model-wanpassings as ’n ‘end-to-end’- basislynalgoritme.
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Chapter 1

Introduction

Autonomous cars have the potential to revolutionise transportation by providing mobility
to a broad range of people. These vehicles could (a) increase the independence of those
who are incapable of driving, (b) reduce the number of road accidents caused by driver
negligence, and (c) reduce both road congestion and pollution by optimising routes and
driving style. These are just a few ways in which autonomous cars are expected to impact
our daily lives [1].

There are numerous challenges to the large-scale deployment of road-going autonomous
cars. In particular, public roads are an unpredictable environment, and autonomous cars
face a wide variety of scenarios that are difficult to program for. There are many edge
cases that will require the vehicle to not only respond quickly, but also operate at its
handling limits to ensure the safety of its occupants. An example of such a scenario is
avoiding a collision [2].

The emergence of autonomous racing as a research field stems from the need to de-
sign autonomous driving solutions that address these edge cases. Racing leagues such
as Formula Student Driverless [3], Indy Autonomous Challenge [4] and F1tenth [5] pro-
vide competitive environments for teams to develop autonomous algorithms that operate
vehicles at the edge of their handling limits. In particular, F1tenth scaled racing cars,
shown in Figure 1.1, is an ideal research platform due to their standardised hardware
requirements and well-developed simulators.

Figure 1.1: A standard F1tenth vehicle, built on the chassis of a miniature RC car [6].

1
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CHAPTER 1. INTRODUCTION 2

1.1 Research motivation
Racing vehicles such as F1tenth cars are equipped with light detection and ranging (Li-
DAR) scanners, inertial measurement units (IMU) and rotational encoders. Autonomous
racing algorithms must convert data from these sensors into steering and throttle actuator
commands that safely move a vehicle around a track in the shortest possible time. There-
fore, these algorithms must optimise for two objectives; (a) performance, i.e., operating
the vehicle at the handling limits to achieve the fastest lap time, and (b) safety, which
is to ensure that the vehicle does not collide with the track boundary or obstacles such
as other cars. These two objectives are inherently in conflict with each other because
operating the vehicle close to its handling limit increases the risk of losing control [7].

A recent breakthrough in autonomous racing was the introduction of learning-based
solutions, such as reinforcement learning (RL) for vehicle control. Reinforcement learning
is a machine learning paradigm where an agent learns to make sequential decisions by
interacting with an environment to maximize cumulative rewards. By setting up a reward
signal that is maximised through fast and safe lap completion, RL agents can learn to race
effectively. Interestingly, RL algorithms are commonly implemented within an end-to-end
architecture, whereby a deep neural network (DNN) is trained to map sensor data directly
to actuator commands [7]. These end-to-end RL approaches have achieved excellent
results in scenarios that are considered challenging for classical approaches that separate
the planning and control tasks. These scenarios include racing with low computational
budgets [8; 9] and racing against multiple vehicles [10; 11].

Most RL agents undergo training in simulation before their deployment on physical
vehicles [5; 12]. To ensure a consistent environment between training and deployment,
simulators attempt to replicate the real world as closely as possible. This involves em-
ploying system identification techniques to create precise vehicle dynamics models [12].
However, estimating the parameters of the vehicle model is challenging due to the dy-
namic nature of the driving task. In fact, it is inevitable that these parameters undergo
changes over time [13]. As a result, it is likely that the vehicle dynamics model employed
during training does not align with the real-world vehicle dynamics. This phenomenon,
known as model mismatch, leads to a decline in performance [14]. Since some level of
model mismatch is always present, accurate system identification alone is insufficient to
ensure the vehicle’s safety. It is imperative that autonomous vehicles exhibit robustness
towards modeling errors.

Research efforts into addressing this challenge in RL approaches have largely been
limited to modifying the DNN training process. For example, sim-to-real best practices
include randomising vehicle model parameters during training [15], or retraining the DNN
after deployment [12]. Despite these efforts, the performance of learning-based methods
is still negatively affected when there is model mismatch present [16].

1.2 Aims and objectives
The aim of this project is to develop a reinforcement learning autonomous racing algorithm
that is robust to the vehicle modelling errors associated with real-world deployment. As
such, our racing algorithm must minimise lap time and drive safely under conditions where
model mismatch is present. The racing scenario that we consider is a single-vehicle time
trial, whereby the vehicle must complete laps while being alone on the track. Furthermore,
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our proposed solution should be compared to current RL solutions for autonomous racing.
Therefore, our objectives are stated as:

1. Investigate the literature regarding methods for developing autonomous racing al-
gorithms, with a focus on methods that are robust to vehicle modelling error.

2. Identify and implement an appropriate baseline reinforcement learning autonomous
racing algorithm.

3. Design a reinforcement learning autonomous racing algorithm that is robust to ve-
hicle modelling errors.

4. Simulate the baseline and proposed racing algorithms under practical model mis-
match conditions.

1.3 Document outline
Chapter 2 constitutes an overview of the existing approaches to solving the autonomous
racing problem in literature. A variety of classical and learning-based solutions are dis-
cussed, with a focus on how these methods handle uncertainty in the vehicle model. We
identify a suitable research avenue in methods that seek to unify ideas from classical and
learning-based approaches by utilising a DNN within a classical (i.e., decoupled) structure.
Methods that utilise this approach are known as partial end-to-end.

The literature study is followed with the an overview of the necessary theory to un-
derstand reinforcement learning in Chapter 3. An essential component in training a
reinforcement learning algorithm to complete a robotic task is a realistic simulator. As
such, Chapter 4 describes how the racing environment was modelled in a suitable custom
F1tenth simulator.

Chapter 5 the baseline end-to-end RL solution, as well as the techniques for applying
an RL algorithm to solve the racing problem. This end-to-end algorithm is extensively
evaluated in racing conditions where no model mismatch is present. Furthermore, the ef-
fectiveness of sim-to-real techniques for end-to-end methods in the context of autonomous
racing is investigated.

Chapter 6 describes our partial end-to-end solution to the autonomous racing problem.
This chapter compares the performance of our chosen partial end-to-end architecture
against the end-to-end baseline algorithm, as well as the performance of several alternative
partial end-to-end architectures against each other.

The experiments that were performed under model mismatch conditions are found
in Chapter 7. This chapter considers practical model mismatch settings that could be
encountered during real-world transfer, such as adding a dynamic mass to the vehicle,
changing tire parameters, as well as a change in the road surface friction coefficient. The
thesis is then concluded in Chapter 8 with a summary of the work completed, as well as
recommendations for future work.
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Chapter 2

Literature study

With the project objectives in mind, we conduct a study of the literature regarding au-
tonomous racing. Figure 2.1 presents a taxonomy of approaches to solving the autonomous
racing problem. While the majority of efforts fall into the classical or end-to-end cate-
gories, a few research efforts have been made to combine classical and end-to-end ideas
through a partial end-to-end driving architecture. Our focus is on examining these vari-
ous approaches to developing autonomous driving algorithms address the model mismatch
and sim-to-real problems. We end the chapter with a discussion of the research gaps, as
well as a summary of the expected contributions of this project to the literature.

Autonomous
racing

algorithms

Classical,
[31], [35], [36],
[37], [38], [39],
[40], [41], [42],
[43; 44], [45],
[46], [47], [48],
[49], [50], [51].

End-to-end,
[9], [22], [23],
[24], [25],[26],
[27], [28], [29],
[30], [10], [31],
[32], [33], [15],

[16], [34].

Partial
end-to-end

Learned
controller,
[21], [14].

Learned
planner,

Our approach,
[17; 18; 19; 20].

Figure 2.1: A taxonomy of approaches to solving the autonomous racing problem. Research
efforts associated with each approach are listed.

2.1 Classical approaches
Classical approaches split the task of generating actuator commands from sensor data into
three distinct phases, namely (a) perception, (b) planning, and (c) control [7]. Perception
is the task of processing sensor data into a format that can be used for planning. Generally,
sensor fusion techniques are used to localise the vehicle within a map [52; 53]. Planners
use the map and localisation data to compute a trajectory that is subject to the vehicle

4
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dynamics constraints [44]. The controller then executes the plan on the physical hardware
[35]. This generic framework is illustrated in Figure 2.2.

Sensors Perception Planning Control Actuators

Driving architecture

Figure 2.2: The classical autonomous driving software architecture. The driving software,
which is enclosed in the dotted line, maps between the sensor input and the commands sent to
the actuators by performing perception, planning, and control separately.

Classical approaches have successfully been used to control full-scale racing cars [36;
37; 38] at high performance levels and near their handling limits. For instance, Heilmier
et al. [39] and Betz et al. [40] achieved speeds of 150 and 270 km/h respectively. The
success of classical approaches has also been showcased on scaled racing cars by Liniger
et al. [43]. We now discuss methods for planning and control in more detail. Perception
algorithms are not discussed because they are outside of the scope of this project.

2.1.1 Planning

Within classical planning approaches, trajectories are generated via optimisation methods
that minimise a cost function. These trajectories typically consist of a series of x and y
coordinates and velocities that must be tracked using controllers.

Several approaches [39; 41; 42] shift the computational burden of generating a tra-
jectory to offline, before the race starts. These approaches are categorised by their cost
function. While Heilmeier et al. [39] optimise the geometry of the path to achieve min-
imum curvature, Kelly et al. [41] consider a time-based optimisation to construct a
minimum-time path. These offline planners create robustness towards the modelling er-
rors by constructing conservative paths and taking vehicle model constraints into account.
For instance, Heilmeier et al. [39] constrain the curvature of the path so that the vehicle
adheres to a maximum lateral acceleration constraint.

While offline planning is useful, a need exists to construct trajectories that actively
avoid collisions with the environment or other vehicles in an online manner. Although it
is an optimal control technique, model predictive control (MPC) is commonly used for
generating fixed-horizon trajectories online [43; 44; 54; 55]. MPCs sample dynamically
feasible trajectories by forward simulating the vehicle dynamics using multiple actuator
input sequences. A cost is assigned to each trajectory, after which the trajectory with the
minimum cost is executed [7]. While standard MPCs consider linear vehicle dynamics,
Liniger et al. [43] proposed a non-linear MPC to more accurately represent the vehicle
dynamics.

Another common approach to constructing a trajectory online is graph based plan-
ning, whereby a hierarchical tree of parameterised paths are spanned across the drivable
area of the track [45; 46; 47]. These approaches calculate the cost of each path based on
its geometry and select the path associated with the least cost. Since the effect of model-
mismatch can be exaggerated when extreme control actions are taken, the graph-based
approach by Stahl et al. [45] ensured continuous and smooth paths by parameterising
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them as cubic polynomials in a curvilinear coordinate frame attached to the track cen-
terline, known as the Frenet frame. Their method successfully controlled the Devbot 2.0
Roborace development vehicle shown in Figure 2.3 at speeds of up to 212 km/h.

Figure 2.3: The DevBot 2.0 vehicle used by Stahl et al. [45] in the Roborace.

2.1.2 Control

Controllers allow a trajectory to be executed on hardware by computing control commands
that minimise the error between the vehicle’s current and desired state. The use of
feedback controllers to follow the trajectory directly addresses the need for robustness
towards vehicle model error. At this level of abstraction, typical control commands are
steering angle and longitudinal acceleration, which are sent to low-level controllers to
actuate the motors and brakes [7].

Classical controllers separate steering and longitudinal acceleration control. While
longitudinal control is typically performed using a PID controller, methods to perform
steering control to track the path vary. Pure pursuit is a simple steering controller pre-
sented by Coulter [48] that steers the vehicle towards a target point on the path that is
always some distance ahead of it. The steering angles are based on the geometric prop-
erties of the vehicle. Although the method is effective at low speeds, it does not take
into account a dynamic model of the vehicle, which leads to sub-optimal performance at
higher speeds.

The approaches by Becker et al. [49] and Hoffman and Montemerlo [50] also steer the
vehicle towards a target point on the path ahead of the vehicle, but compute steering
angles based on a dynamic model of the vehicle. Becker et al. [49] reported a four-fold
improvement in path tracking error over the pure pursuit algorithm on an F1tenth race
car, while the controller by Hoffman and Montemerlo [50] was implemented on the winning
vehicle of the DARPA Grand Challenge in 2005. The vehicle used by Hoffmann et al.
[50] is shown in Figure 2.4.

Model predictive control (MPC) is a state-of-the-art classical control technique [9; 51;
56; 57; 58; 59]. When used as a path tracking controller, the objective of the MPC is
to minimise the error between the vehicle’s actual and planned trajectory [58]. How-
ever, many MPC approaches use linearised vehicle models [51] because the computation
requirements for an MPC that utilises a non-linear vehicle model is too demanding for
hardware onboard a scaled vehicle to execute [9]. Furthermore, the MPC cost function
is considered too inflexible for complex manoeuvres such as racing with multiple vehicles
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[30]. Research efforts into improving the performance of MPCs under model-mismatch
conditions are focused on learning a vehicle model online, such that the error between the
vehicle model and real vehicle dynamics is minimised [9; 59].

Figure 2.4: The controller by Hoffmann et al. [50] was implemented on a modified Volkswagen
Touareg called Stanley. Hoffmann et al.’s vehicle won the DARPA grand challenge in 2005.

2.2 End-to-end approaches
The limitations of optimisation techniques from classical methods has led to research in
learning-based systems that use data to formulate a decision-making policy to control the
vehicle [30]. Many learning-based approaches use an end-to-end architecture, whereby a
decision making agent, whose policy is typically represented by a deep neural network
(DNN), predicts actuator commands directly from sensor data, thus performing the task
of the entire classical architecture. This end-to-end approach is illustrated in Figure 2.5.
The two machine learning paradigms by which the neural networks in end-to-end systems
are trained are imitation learning (IL) and reinforcement learning (RL).

Sensors Actuators

End-to-end agent

Driving architecture

Figure 2.5: The end-to-end autonomous driving architecture, whereby an agent maps directly
from sensor data to actuator commands.

2.2.1 Imitation learning

Imitation learning is a supervised learning technique that aims to learn a mapping from
sensor data to control actions, by using examples generated from an expert as training
data [9; 24; 25; 60]. Imitation learning approaches that solve the autonomous racing
problem typically rely on an MPC to provide expert training data.

Tatulea-Codrean et al. [9] used an IL algorithm to train a DNN that mimics a non-
linear MPC expert. Sampling an action from the neural network was less computationally
expensive than sampling from the non-linear MPC. As such, the use of a DNN made
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physical deployment tractable given the computational constraints of the F1tenth vehicle
that was used as the hardware platform.

The IL approach by Pan et al. [24] demonstrated a convolutional neural network
(CNN) that is capable of learning a mapping between images taken by a camera mounted
to the front of the vehicle, and control actions. Their approach mimics an MPC expert
that has access to a more expensive set of sensors which included a LiDAR. By using
only camera images as input to the CNN, Pan et al. [24] were able to circumvent the
need for expensive LiDAR sensors. Furthermore, the IL algorithm performed high speed
manoeuvres in a difficult off-road setting where vehicle dynamics modelling inaccuracies
are likely to occur due to the difficulty of modelling the track surface.

Lee et al. [25] used IL to train an ensemble of Bayesian neural networks (BNNs) to
create a policy that was robust to sensor failure, which was not possible with previous
classical approaches. An MPC expert was used to generate training data. The vehicle
and track used by both Lee et al. [25] and Pan et al. [24] are shown in Figure 2.6.

(a) (b)

Figure 2.6: The (a) 1/5 scale vehicle and (b) track used by both Lee et al. [25]. and Pan et al.
[24].

The use of end-to-end IL methods necessitates the involvement of an expert MPC
to generate the necessary training data [61]. Consequently, the application of IL ap-
proaches is restricted to scenarios in which MPCs already demonstrate a high degree of
proficiency. As such, IL methods do not enhance the sim-to-real capabilities of classical
approaches with respect to modeling mismatch. Instead, they increase the feasibility of
deploying MPC policies on actual vehicles that are subject to computational limitations
and potential sensor malfunctions [25; 61].

2.2.2 Reinforcement learning

Reinforcement learning is a method that aims to train decision-making agents to maximize
a scalar reward signal through direct interaction with their environment [62]. In the
context of training agents to control racing cars, RL approaches typically use DNNs
to represent the decision-making policy [7]. DNNs offer several advantages when used
within an RL framework, including the ability to map complex inputs such as camera
images to control outputs [16; 26; 28; 29], as well as the ability to sample actions with
low computational cost compared to other methods such as MPC [14]. Unlike imitation
learning (IL) methods, RL algorithms do not require expert training data and can find
optimal strategies with minimal human intervention, making them suitable for challenging
scenarios such as multi-vehicle racing [10; 11]. Interestingly, many research efforts into
RL applied to racing are focused on solving video games.
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Reinforcement learning applied to racing video games

Jaritz et al. [28] and Perot et al. [29] present research efforts that use model-free RL
to train an agent to race in the video game World Rally Championship 6. Model-free
RL algorithms enable agents to learn to make decisions based solely on trial and error
experience, without using a model of the vehicle or environment. Both studies focus on RL
agents that learn a mapping between the game screen and control output by representing
the policy as a CNN with long-short-term memory (LSTM) layers. Despite the agents’
ability to drive for some distance along the track, Jaritz et al. [28] reported that the
vehicle collided with the track boundary an average of 5.44 times per kilometer.

The video game Gran Turismo Sport (GTS), shown in Figure 2.7, has been the subject
of several research efforts that showcase model-free RL agents can outperform humans
[10; 11; 30] in some race settings. Fuchs et al. [30] use a DNN to map a hand-crafted
set of features to control outputs in a racing scenario where there is a single vehicle on
the track. This agent outperforms even the best competitive GTS players. Fuchs et al.
[30] also considers the effect of model-mismatch on the agent by varying the road-surface
friction coefficient after training. There is significant uncertainty associated with the road-
surface friction value due to its dependence on the weather and the difficulty of measuring
it at every point along the track [63]. As such, robustness to road-surface friction is a
pertinent sim-to-real issue. The agent by Fuchs et al. [30] makes contact with the track
boundary when model mismatched in friction are considered.

Wurman et al. [11] and Song et al. [10] also consider GTS racing scenarios, but
with multiple vehicles. Both approaches achieve better than human performance using
a similar set of input features and DNN design as Fuchs et al. [30]. This demonstrates
the ability of RL agents to learn policies that solve complex tasks such as overtaking.
However, all three approaches that solve GTS allow the vehicle to scrape against the
boundary of the track or collide with other vehicles, which is an unrealistic assumption
to make for RL agents that are deployed onto physical cars.

Figure 2.7: A screenshot of Song et al.’s agent overtaking multiple vehicles in the video game
GTS [10].

Cai et al. [64] present a model-free RL approach to controlling a race car during
high-slip drifting manoeuvres in the Speed Dreams simulator. The agent controls the
vehicle beyond the friction limit of the tires. While their approach demonstrates that RL
agents can learn to control vehicles with complex non-linear dynamics, their DNN maps
an unrealistic set of input features (e.g., the derivative of the angle between the vehicle’s
heading and forward velocity vector) to control actions.
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These RL techniques have shown excellent performance when applied to racing games.
However, they make unrealistic assumptions that render them infeasible for real-world
driving scenarios. The most significant challenges to applying these approaches on phys-
ical vehicles are the lack of safety considerations and the availability of unrealistic input
feature sets.

Reinforcement learning applied to realistic racing scenarios

A number of RL related research efforts do consider more realistic driving scenarios, as
well as techniques that improve the sim-to-real capabilities of RL agents. For instance,
Niu et al. [31] address the issue that DNNs do not have perfect prediction accuracy and
can select unsafe actions that lead to crashes, even after deployment. Their approach
uses a model-based safety controller that acts as a safeguard mechanism to prevent the
agent from selecting unsafe actions on a vehicle simulated with the open racing simulator
(TORCS). Their model-free RL agent did not crash during training or testing with the
safeguard mechanism in place. Niu et al.’s [31] approach may alleviate the sim-to-real
gap by allowing an RL agent to train directly on the physical hardware without risking a
crash. However, their approach is not validated on a physical vehicle.

The effectiveness of model-based RL in real-world applications is demonstrated by
Brunbauer et al. [34], who deploy an agent that learns to control the physical F1tenth
vehicle shown in Figure 2.8. Their agent learns to race using the Dreamer algorithm [65],
whereby a learned observation model is used to predict agent-track interactions. The
agent can then learn a policy based purely on ‘imagined’ sequences using the observation
model, without interacting with the track.

Figure 2.8: The F1tenth vehicle used by Brunbauer et al. [34]. The red area indicates the field
of view of the LiDAR scanner on the vehicle.

Hsu et al. [16] deployed a model-free RL agent that takes camera images as input
onto a physical F1tenth vehicle. They apply conditioning for action policy smoothness
(CAPS) [66] as a policy output regularisation strategy. Policy output regularisation aims
to prevent jerky and extreme vehicle control actions by adding the difference between
actions selected on consecutive time steps to the cost function of the policy update.
Extreme steering and acceleration control actions cause the vehicle to operate closer to the
friction limits of the tires than with smooth control actions, and can lead to uncontrollable
and dangerous behaviour. This issue becomes more pertinent when considering scenarios
in which model mismatches are present [33].

Hsu et al. [16] also employed domain randomisation by adding noise to the input cam-
era images. Domain randomisation involves varying the simulation environment slightly
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during training. This prevents the agent from forming a policy that overfits to a sin-
gle simulation environment. Moreover, it is more likely that the data encountered by
the agent during training includes the distribution of data encountered after deployment
when domain randomisation is used [12]. The standard end-to-end agent’s average lap
completion rate, along with agents trained using solely policy output regularisation or
solely domain randomisation was 0%. However, the average lap completion rate increased
to 42% when both domain randomisation and policy output regularisation techniques
were used.

Ivanov et al. [15] trained a model-free RL agent to steer the F1tenth vehicle shown
in Figure 2.9 around a corner using only a LiDAR sensor as input. They identified their
perception model (i.e., the simulated LiDAR sensor) as a major source of uncertainty
because the track reflectivity was unknown. Although they applied domain randomisation
techniques by randomising LiDAR measurement noise, they achieved an 83% success rate
rounding the corner using their best method.

Figure 2.9: Ivanov et al.’s F1tenth vehicle [15].

Chisari et al. [33] also utilized domain randomisation and action smoothing techniques
to enable a model-free RL agent to control 1:43 scale cars in their study. Rather than
adding noise to the sensor readings, they apply domain randomisation by adding noise
to the vehicle dynamics model parameters. Without domain randomisation, the agent
was unable to complete even a single lap on the physical car. When they compared their
baseline reinforcement learning agent which incorporated only domain randomisation to
an MPC, the MPC outperformed their agent in terms of both lap time and track boundary
violations. However, their agent that used domain randomisation and output policy
regularization demonstrated a 30% reduction in track boundary violations compared to
the MPC method, although it had an 8.1% slower lap time.

Table 2.1 summarizes the end-to-end RL approaches reviewed. While these end-to-
end RL algorithms have delivered impressive results in video games, practical imple-
mentations have been limited to small-scale vehicles, primarily using the F1tenth racing
platform. Furthermore, results have shown that end-to-end agents often fail under model-
mismatch conditions, even when sim-to-real practices such as domain randomisation are
implemented.

2.3 Partial end-to-end approaches
Approaches to designing autonomous driving algorithms that synthesise the classic and
end-to-end techniques are now considered. In these approaches, the modular structure of
classic approaches is utilised. However, rather than implementing techniques associated
with classic approaches in each of the driving algorithm components, these components
may be combined with or replaced by a DNN. Two popular partial end-to-end design
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Author(s) Year Physical
vehicle

Sim2real research contribution

Jaritz et al. [28] 2018 -

Perot et al. [29] 2017 -

Fuchs et al. [30] 2021 Test effects of model inaccuracy in
simulation.

Song et al. [30] 2021 -

Wurman et al.
[11]

2021 -

Cai et al. [64] 2021 -

Niu et al. [31] 2020 Safety module based on learned vehicle
model prevents agent from selecting
unsafe actions.

Brunnbauer et
al. [34]

2021 F1tenth -

Hsu et al. [16] 2022 F1tenth Domain randomisation while training.
Control action smoothing.

Ivanov et al.
[15]

2020 F1tenth Domain randomisation while training.

Chisari et al.
[33]

2021 1 : 43
scale cars

Domain randomisation while training,
policy refinement after deployment.
Control action smoothing.

Table 2.1: A summary of end-to-end reinforcement learning approaches for autonomous racing.

philosophies are to use a DNN to perform the task of the planner [17; 18; 19; 23], or the
task of the controller [14; 21]. The resulting driving software architectures are shown in
Figure 2.10.

2.3.1 Learned controller

In the partial end-to-end configuration with a learned controller, the autonomous driving
system leverages classical perception and planning algorithms. In this setup, a DNN
serves as the controller by learning the mapping between the vehicle’s current state and
desired state to issue actuator commands [7].

Evans et al. [21], used an RL agent to modify the control output of a pure pursuit path
follower that tracks a global path, with the goal of avoiding previously unseen obstacles on
the track. Their experiments were performed on a simulated F1tenth setup. The proposed
partial end-to-end agent is able to avoid 94% of unseen obstacles without maintaining an
obstacle map, while maintaining a smoother path than the baseline end-to-end agent.

In a study by Ghignone et al. [14], a simulated F1tenth vehicle’s path tracking con-
troller was replaced with a model-free RL agent. During training, domain randomisation
was applied by varying the tire friction coefficient. The results showed that the approach
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Sensors Perception Planner Actuators

Learned
controller

(a)

Sensors Perception Control Actuators

Learned
planner

(b)

Figure 2.10: The two configurations of the partial end-to-end pipeline are (a) a classic planner
in conjunction with a learned controller, and (b) a learned planner in conjunction with a classic
controller. Both configurations require a perception module to localise the vehicle.

led to 6.7-fold and 2.7-fold improvements in the number of track collisions under model-
mismatch conditions compared to an end-to-end agent and a classical MPC approach,
respectively. Figure 2.11 showcases the performance difference between the end-to-end
and partial end-to-end agents by displaying the paths taken by both agents rounding a
corner multiple times. The partial end-to-end agent visibly swerves less and collides with
the track boundary fewer times than the end-to-end agents. These findings demonstrate
the benefits of decoupling the planning and control tasks for learning-based systems.
Specifically, decoupling planning and control in learning-based systems can enhance their
robustness towards model mismatch.

(a) (b)

Figure 2.11: Distributions of paths taken by (a) an end-to-end and (b) a partial end-to-end
agent to round a corner multiple times during an experiment by Ghignone et al. [14].

2.3.2 Learned trajectory planner

In a partial end-to-end configuration with a learned planner, the autonomous driving sys-
tem uses classical perception and control algorithms in conjunction with a DNN planner.
The DNN planner is trained to map perception data (i.e., vehicle state and track informa-
tion) to trajectories. These trajectories are then tracked by classical controllers, enabling
the vehicle to race autonomously [7].

Weiss and Behl [18; 20] conducted an extensive examination of partial end-to-end
systems in which a deep neural network (DNN) replaces the planner. Specifically, they
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utilized an IL algorithm to train a DNN to generate trajectories that were tracked using a
pure pursuit controller. They applied this approach to a realistic Formula One (F1) video
game, which allowed them to use human experts playing the video game as training data.
Through experimentation, they discovered that generating trajectories using Bézier curves
resulted in high performance. Their proposed partial end-to-end method significantly
outperformed the end-to-end baseline agent. In particular, the end-to-end agent was
unable to finish a lap without crashing, while their approach successfully completed laps.

Capo et al. [17] employed a model-free RL agent to learn the task of planning in the
TORCS simulator. Specifically, the agent was trained to produce a single point in front
of the vehicle, given a hybrid input consisting of a bird’s-eye view of the car as well as the
vehicle’s state. This approach exhibited significant improvement over end-to-end agents.
Capo et al. [17] explain that this outcome is unsurprising since the partial end-to-end
system has embedded driving knowledge via the low-level controller.

Table 2.2 presents a summary of the partial end-to-end methods reviewed. While par-
tial end-to-end systems have shown superior performance compared to end-to-end systems
in simulation, their performance on physical cars is yet to be evaluated. Furthermore,
there are relatively few research efforts into partial end-to-end systems compared to end-
to-end approaches.

Author(s) Year Learning
method

Learned
component

sim2real approach

Weiss and Behl
[18; 19; 20]

2020 IL Planner -

Capo et al. [17] 2022 RL Planner -
Evans et al.

[21]
2021 RL Controller -

Ghignone et al.
[14]

2022 RL Controller Randomise vehicle model
parameters while training

Table 2.2: A summary of partial end-to-end approaches for autonomous racing.

2.4 Evaluation of existing approaches
Classical approaches lead learning-based approaches in terms of real-world driving capa-
bilities. The fact that several classical approaches achieve high-speed control of full-size
physical vehicles indicates that they are robust towards model mismatches and the sim-
to-real transfer [45; 67]. This robustness is achieved through the decoupling of planning
and control tasks. Furthermore, both planners and controllers are designed to account for
uncertainty in the vehicle dynamics. Planners are designed to generate trajectories that
conform to the physical constraints of the vehicle [39; 41; 45]. Meanwhile, controllers are
responsible for ensuring robustness to model-mismatch by guiding the vehicle towards the
trajectory determined by the planner using feedback loops [48; 49; 50]. Additionally, a re-
cent research trend is improving the vehicle dynamics model online, so that the modelling
error is eliminated [9; 59].

In contrast, many learning-based and RL systems are implemented in an end-to-end
manner [10; 30]. Furthermore, a significant portion of research in the area of end-to-end
RL has focused on model-free techniques for training the agent [16; 33], which excludes
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the possibility of enhancing the policy by learning an accurate vehicle model online like
classical approaches. Instead, the general approach taken by end-to-end RL methods
to increase robustness towards model mismatch is to introduce slight variations to the
simulation used during the training process using domain randomisation [15; 16; 33].

A popular strategy for domain randomisation is to introduce noise to the vehicle pa-
rameters [33]. However, the optimal policy is highly sensitive to the vehicle model param-
eters, especially those pertaining to road surface friction. As such, the policy discovered
through domain randomisation is likely to be suboptimal for most scenarios. Domain
randomisation is also commonly used in conjunction with policy output regularisation to
smooth the control actions [16; 33]. However, approaches that employ these techniques
[15; 16; 33] still violate track boundaries, indicating that they do not guarantee the safety
of the vehicle.

Partial end-to-end systems present a promising solution for increasing robustness to-
wards model-mismatch by utilising the decoupled structure of classic approaches For in-
stance, Ghigone et al. [14] showed that their learning-based system exhibited excellent
robustness to model-mismatch by training an RL agent to learn the task of the controller.
However, the advantages of learning-based systems are their ability to learn complex be-
havior, and relegating the RL agent to the task of path following largely negates this
benefit. Furthermore, classical controllers can reliably achieve path following [48; 49; 50].

Several partial end-to-end approaches [17; 18; 19; 20] have utilized a partial end-to-end
structure whereby an RL agent is used for planning in conjunction with a classic controller
for path tracking. These systems benefit from the agent’s heuristic while constructing
the plan, while also leveraging the reliability of classical controllers to follow the path [7].
These systems have consistently outperformed end-to-end systems by a significant margin
in simulation studies. However, their results have not been validated under conditions
where model mismatches are present. Thus, a research gap exists to determine whether a
partial end-to-end system that includes a learned planner and a classic controller can offer
better performance under model-mismatch conditions than current end-to-end learning-
based systems.

To determine whether the performance of current common RL (i.e., end-to-end) sys-
tems can be improved by combining an RL planner and classic controller in a classic
algorithm structure, this thesis will cover the theoretical foundations of RL agents, the
development and implementation of a partial end-to-end system, as well as an end-to-end
system. Furthermore, our work will compare the performance of these two systems under
practical model-mismatch conditions. This research seeks to contribute to the existing lit-
erature by providing insight into the potential benefits of using partial end-to-end systems
over current end-to-end systems.
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Chapter 3

Reinforcement learning

Reinforcement learning (RL) is a paradigm of machine learning concerned with training an
agent to make sequential decisions in an environment in order to maximise a reward signal.
This chapter begins with an introduction to Markov Decision Processes (MDPs), which
provide the formal framework for modelling the sequential decision-making problem that
reinforcement learning aims to solve. A comparison of different reinforcement learning
methods is then given. After careful consideration, the twin delay deep deterministic
policy gradient (TD3) RL method is chosen for implementation. TD3 is particularly
reliant on deep neural networks (DNNs). Consequently, the theoretical backgorund of
DNNs are discussed, followed by an in-depth explanation of the TD3 method itself.

3.1 Markov decision processes
The Markov Decision process is a popular mathematical framework for modelling discrete-
time decision-making processes where the outcomes are partly random and partly under
the control of the agent (i.e., the decision maker). MDPs are useful for studying opti-
misation problems whereby the goal is for the agent to learn a sequence of actions that
maximise a reward signal. Such optimisation problems are commonly found in the fields
of robotics, automated control, and manufacturing [68]. The ability of MDPs to model
sequential problems is useful for the autonomous racing problem, where the outcome of
the race is determined by a sequence of control actions, and the exact vehicle dynamics
model is often uncertain.

Within an MDP, the learner and decision maker is called an agent. Everything out-
side of the agent constitutes the environment. The agent and environment interact in
a sequence of discrete time steps, t = 0, 1, 2, 3, · · ·, which is represented in Figure 3.1.
At every time step t, the agent receives a representation of the environment known as
the state (denoted as St), on which basis it selects an action At. Furthermore, the envi-
ronment represents a set of state transition probabilities that are dependent only on the
previous state and action. At the next time step t+ 1, the agent receives a scalar reward
Rt+1, along with a new state St+1, which is sampled from the environment [69]. This
agent-environment interaction is repeated, giving rise to a trajectory

S0, A0, R1, S1, A1, R2, S2, A2, R3, · · · . (3.1)

Within the MDP framework, the objective of the agent is described in terms of the
reward signal: it must formulate a policy π(a|s) that maximises the sum of discounted

16
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Agent

Environmentt+ 1

RewardState
St Rt

St+1

Rt+1

Action
At

Observation

Figure 3.1: The agent environment interaction within an MDP. Adapted from Sutton and
Barto [69].

rewards over the course of its entire trajectory. This sum of discounted rewards is called
the return, and is denoted Gt,

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

T∑
k=t+1

γk−t−1Rk, (3.2)

where T denotes the final time step in the trajectory, and γ is a discount factor that
determines the weighting of future rewards [69].

3.2 Taxonomy of reinforcement learning
A taxonomy of RL algorithms is shown in Figure 3.2. Broadly speaking, there are two
classes of RL techniques; model-based and model-free. Model-free RL methods aim to
learn a policy solely through direct trial-and-error interactions with the environment,
without utilising a representation of the environment dynamics. On the other hand,
model-based reinforcement learning involves learning a model of the environment dynam-
ics, which the agent then uses to plan ahead before taking an action [70]. Due to the
complexity involved in learning the dynamics of a race car, we opted to limit the scope
of the project to encompass only model-free methods.

Within model-free techniques, a relevant distinction that can be made is that of value-
based and policy gradient methods. Value-based RL methods focus on estimating the
action-value function, which represents the expected return of being in a particular state
taking a specific action. In these methods, the policy is derived from the action-value
function. For instance, a greedy policy always selects the action associated with the
highest action-value. However, a limitation of value-based methods is that they require
the action-space to be discretised [69]. In the context of autonomous racing, where precise
control actions are necessary for maintaining vehicle safety, discretised action-spaces fall
short in providing the required level of fidelity for control.

Meanwhile, policy gradient techniques form a class of RL methods that explicitly rep-
resent the agent’s policy as a function. These methods directly optimise the policy, which
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serves as a mapping between states and actions, to maximise performance. Represent-
ing the policy as a differentiable function such as a DNN allows for the representation
of continuous state and action spaces [71]. We have therefore chosen to employ policy
gradient methods in this study. Specifically, we use a state-of-the-art policy gradient
method known as twin delay deep deterministic policy gradient (TD3) [72]. Due to this
algorithm’s reliance on DNNs to represent the policy, we briefly discuss DNNs before
detailing the algorithm itself.

Reinforcement
learning

algorithms

Model based Model free

Value based
Policy

gradient,
TD3

Figure 3.2: A taxonomy of reinforcement learning algorithms.

3.3 Deep neural networks
Deep neural networks (DNNs) are computational models which can represent complex
relationships in data. We present the theory surrounding DNNs in the context of super-
vised learning. In supervised learning, the goal is to approximate a functional mapping,
which is denoted as y = f(x). However, the exact function f(x) is unknown, and instead,
we have a data set

D = {(x[1], y[1]), (x[2], y[2]), · · · , (x[n], y[n])} (3.3)

consisting of examples where f(x) was evaluated at inputs x[i] to produce corresponding
outputs y[i]. The goal of an DNN is to define an mapping ŷ = f̂(x,θ) which approximates
f(x) with parameters θ. The values of θ that result in the best approximation are learned
using the provided dataset examples [73]. Furthermore, in the context of applying DNNs
to the TD3 algorithm, we are particularly interested in a subset of supervised learning
known as regression, whereby both the input and output variables are continuous.

Taking inspiration from neural networks in the human brain, the basic component com-
prising DNNs are artificial neurons, which are analogous to their biological counterpart.
These artificial neurons apply a non-linear function to their inputs, and are organised in
layers. We focus our discussion on feedforward neural networks (FNNs), which are a type
of DNN whereby information is passed through the layers of the DNN in sequential order.
Furthermore, we limit the discussion to fully connected layers, in which each of the inputs
of neurons in a given layer is connected to he outputs of each of the neurons through a
weight, denoted with w. An example of a feedforward DNN with fully connected layers
is shown in Figure 3.3. According to Ng et al. [74], the weights connecting each neuron
in the kth layer to the preceding layer are given by the matrix

W(k) =

w11 · · · w1d
... . . .

wm1 wmd

 , (3.4)
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where m is the number of neurons in the kth layer, and d is the number of inputs to
each neuron (i.e., the number of neurons in the preceding layer). Furthermore, each
neuron takes a bias, denoted with b, as input. The biases of neurons in the kth layer are
represented as a vector

b(k) = [b1 . . . bm]
⊺, (3.5)

The weights and biases of all the layers in the network make up its parameters, and are
denoted with θ.

x1

...
xj

...
xd





b(1) b(2)

W(1)

ŷ

W(2)

W(3)

Figure 3.3: A three layer feedforward DNN with three fully connected layers: an input and a
hidden layer of three units each, and an output layer of one unit. The weight and bias connections
of the kth layer are denoted W(k) and b(k) respectively. Furthermore, the DNN receives an input
vector x = [x1, . . . , xd], and output ŷ.

The inputs to the kth layer of a DNN are processed in two steps to produce an output.
First, a pre-activation function a(k)(x) adds the biases and product of the weight matrix
and the vector output of the preceding layer (denoted as h(k−1)):

a(x) = b(1) +W(k)h(k−1)(x), (3.6)

The output of the kth layer is then calculated by applying an activation function, denoted
as gk(a), element-wise to the result of the pre-activation from Equation 3.6:

h(k)(x) = g(k)(a(k)(x)). (3.7)

Popular choices for activation functions include a linear function whose output is identical
to its input

g(a) = a, (3.8)

the rectified linear unit (ReLU), which takes the maximum between zero and the weighted
sum of its inputs

g(a) = max(0, a), (3.9)

as well as the hyperbolic tangent

g(a) = tanh(a). (3.10)

The process of evaluating an input x to generate an output ŷ = f̂(x, θ) is known as
forward propagation. During forward propagation, Equations 3.6 and 3.7 are applied to
every layer sequentially from first to last [73], as shown in Algorithm 1. In this algorithm,
the input to the DNN is set as the 0th layer of the network, and the output of the DNN
corresponds to the output of the final layer.
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Algorithm 1: Evaluating a single example input x via forward propagation.
Adapted from Goodfellow et al. [73].
Input: An input x, DNN with parameters {W,b} ∈ θ
Output: DNN output ŷ

1 h(0) ← x
2 for k = 1, · · ·, K do
3 a(k) ← b(k) +W(k)h(k−1)

4 h(k) ← g(k)(a(k))

5 end
6 ŷ ← h(K)

3.3.1 Gradient-based learning

The process through which the optimal set of parameters are determined such that f̂(x,θ)
approximates the mapping between input and output data as accurately as possible is
called training. Training is accomplished by incrementally adjusting the parameters of
the DNN, such that a cost function, denoted as J , is minimised.

The cost function measures the error between the DNN predicted output ŷ = f̂(x,θ)
and target examples of the true function y = f(x). A popular cost function that we
consider in this study is the mean squared error (MSE) over a batch of data samples,

J(y,x,θ) =
1

N

N∑
i=1

(yi − f̂(xi,θ))2, (3.11)

where y = [y1, y2, . . . , yN ] is a vector of training data (often referred to as the target),
and x̂ = [x1, x2, . . . , xN ] is a vector of input values. When this cost function is minimised
over all the available training data, the neural network becomes a better approximator of
the true function f(x).

The iterative process of adjusting the DNN parameters such that the cost function
decreases is known as gradient descent. In gradient descent, the partial derivative of the
cost function with respect to the DNN parameters are computed at every time step. The
parameters are then adjusted slightly so that the cost decreases, such that the parameters
at the next time step are

θt+1 = θt − α∇θtJ(θt), (3.12)

where α is a scalar controlling the magnitude of the updates, and is known as the learning
rate.

A popular gradient descent method that we consider in this study, which is based on
Equation 3.12, is adaptive moment estimation (Adam), introduced by Kingma and Ba
[75]. Adam computes adaptive learning rates for each parameter in the DNN by keeping
track of a decaying average of past gradients, referred to as the momentum.

3.4 Twin delay deep deterministic policy gradient
The twin delay deep deterministic policy gradient (TD3) algorithm by Fujimoto et al.
[72], is a popular RL technique applied to solve robotics problems due to its capability
to handle continuous action-spaces. In TD3, the policy, which is denoted as πϕ(s) and
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commonly known as the actor, is represented as a DNN with parameters ϕ. To update
the actor parameters such that the policy improves, gradient ascent is performed with
respect to a performance measure J(ϕ),

ϕt+1 = ϕt + α∇ϕJ(ϕt). (3.13)

The performance measure J is defined in terms of an action-value function (denoted
Qθ(s, a)), which is the expected return E[Gt] from the current state to the end of the
episode, given that a specific action is selected in the current state, after which the policy
πϕ is followed. This action-value function is known as a critic and is represented by a
DNN with parameters θ. In TD3, the idea is to set the performance measure equal to
the action-value function

J(ϕ) = Qθ(s, a)|a=πϕ(s). (3.14)

Updating the actor parameters as in Equation 3.13 will then result in a policy that
maximises the expected return, thus solving the MDP. TD3 is presented in Algorithm 2.

In the first two lines of this algorithm, the actor and two critic DNNs are initialised
as πϕ and Qθq , respectively. The actor is parameterised by ϕ, and the critics by θq,
where the subscript q indicates the critic number. Two critics are utilised to combat a
phenomenon known as overestimation bias, whereby states with a low real return are
evaluated as having a high expected return.

Subsequently, target networks are initialised for each critic and the actor. These target
networks are identical in structure to their corresponding counterparts, and are indicated
with a prime symbol. Therefore, the target actor and critics are denoted as π′

ϕ and Q′
θq

,
respectively. These target networks are updated at a slower rate than their counterparts.
According to Mnih et al. [76], utilising these target networks to update the action-value
function increases training stability.

Next, a replay buffer, denoted by B, is initialised as an empty array to store the agent’s
experiences. These experiences are stored as a tuple

et = (st, at, rt, st+1), (3.15)

where t is the time step of the experience. By maintaining a history of experiences, each
experience can be sampled multiple times to update the parameters of the actor and
critics. This approach also helps to break correlations between samples, preventing the
DNN parameters from converging to a suboptimal local minima [76].

After initialising the actor, critics, and replay buffer, the TD3 algorithm executes for
M number of episodes. Each of these episodes represents a trajectory of state, action, and
reward sequences, as shown in Equation 3.1. At each step of the episode, the algorithm
samples an action from the agent, after which the environment provides the next state
and reward. Subsequently, the critics are updated to improve the accuracy of action-value
estimation. Additionally, the policy and target networks are updated every d time steps.
These processes are now explained in more detail.

In line 6, an action is sampled from the actor using

at = πϕ(st) + ϵ, ϵ ∼ N (0, σ), (3.16)

where πϕ(st) is obtained by forward passing the state through the actor DNN. To encour-
age exploration, Gaussian noise with a mean of 0 and a standard deviation of σ is added
to each action. After sampling the new state, denoted as st+1 and reward, denoted as rt
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Algorithm 2: The twin delay deep deterministic policy gradient (TD3) algo-
rithm, adapted from Fujimoto et al. [72].
1 Initialise critic networks Qθ1 , Qθ2 and actor network πϕ with

parameters θ1,θ2 and ϕ
2 Initialise target networks Qθ′

1
, Qθ′

2
and πϕ′ with weights

θ′
1 ← θ1, θ′

2 ← θ2, and ϕ′ ← ϕ
3 Initialise experience replay buffer B

4 for episode = 0, M do
5 for t=0, T do
6 Select an action with random exploration noise

at ∼ πϕ(s) + ϵ, ϵ ∼ N (0, σ)
7 Execute action at, observe reward r and new state st+1

8 Store transition tuple (st, at, rt, st+1) in B

9 Sample mini-batch of N transitions (si, ai, ri, si+1) from B
10 Select target actions for every sample:

ã← πϕ′(si+1) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
11 Set TD target: y ← ri + γminq=1,2Qθ′

q
(si+1, ã)

12 Update critics by minimising the loss:
θq ← argminθq(

1
N

∑N
i=0(yi −Qθq(si, ai))

2)

13 if t mod d then
14 Update ϕ by the deterministic policy gradient:

J(ϕ) = 1
N

∑
Qθ1(si, a)|a=πϕ(si)

15 Update target networks:
16 θ′

q ← τθq + (1− τ)θ′
q

17 ϕ′ ← τϕ+ (1− τ)θ′

18 end
19 end
20 end

from the environment in line 7, the agent’s experience tuple is stored in the replay buffer
in line 8.

The process of updating the critics occurs in lines 9 to 12. Firstly, a batch of N
experiences is sampled from the replay buffer. Each experience is represented as a tuple
comprised of a state si, action ai, reward ri and subsequent state si+1. For each of these
experiences, the target actor is used to select target actions associated with the subsequent
state,

ã← πϕ′(si+1) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c), (3.17)

after which Gaussian noise is added to the target action with upper and lower magnitude
bounds of c. The critic DNNs are then updated towards a TD target vector, denoted as
y, in line 12. Each element in the TD target vector corresponds to a sampled experience
i, and is computed by

yi ← ri + γ min
q=1,2

Qθ′
q
(si+1, ã). (3.18)
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The cost to be utilised in the gradient descent step for the critics, which we denote as
J(θ), is computed as the MSE between the TD target and the action-values of the sampled
experiences, as evaluated by the critics themselves:

J(ϕ) =
1

N

N∑
i=0

(yi −Qθq(si, ai))
2. (3.19)

Note that the cost is computed twice by taking the MSE between the target and both
critics. The parameters of both critics are then updated using gradient descent with the
objective of minimizing the cost function represented in line 12. Utilising two critics in
this manner aims to overcome the issue of overestimation bias of action-values.

The updates to the actor and target DNNs occur every d time steps to reduce the
variance of their updates. The update to the actor parameters is performed by gradient
ascent with respect to the performance measure J(ϕ). This performance measure is
defined as the average of the first critics evaluation of the sampled states, where the
action is given by the current policy πθ, over the N experiences sampled from the replay
buffer:

J(θ) =
1

N

∑
Qθ1(si, a)|a=πϕ(si). (3.20)

Therefore, updating the policy maximises the performance measure, as well as the esti-
mated return for each action.

Lastly, in lines 15 to 17, the target network parameters ϕ′ and θ′ are updated towards
ϕ and θ using a soft update rule,

θ′ ← τθ′ + (1− τ)θ,
ϕ′ ← τϕ+ (1− τ)ϕ′,

(3.21)

where τ ≪ 1 is the soft update rate that prevents the target DNN parameters from
changing too quickly, which in turn stabilises learning.

3.5 Summary
This chapter presented the theoretical foundation of the Markov Decision Process (MDP),
which serves as the formal mathematical framework for the problem that Reinforcement
Learning (RL) aims to solve. We also explored the field of RL, with particular emphasis
on the TD3 algorithm.

Within an MDP, the agent interacts with an environment that is defined by a set
of state transition probabilities. However, there are many cases (such as autonomous
racing) where the state transition probabilities are difficult to represent explicitly. In these
cases, simulators are used to represent them implicitly by generating the state transition
according to the current state and selected action. In the next chapter, we discuss how
F1tenth autonomous racing is modelled as a simulator environment, such that TD3 can
be applied to train RL agents to learn how to race.
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Chapter 4

Modelling the autonomous racing
problem

For the autonomous racing problem to be solved using reinforcement learning, it needs to
be modelled such that it can be represented as an environment within the MDP framework.
To this end, we implement a simulator that generates a state transition according to a
model of the vehicle dynamics, taking the agent’s selected action as input. We begin this
chapter with discussion of the requirements and rules for F1tenth autonomous racing.
An overview of the vehicle dynamics is then given, after which our autonomous racing
simulator is detailed.

4.1 Requirements of F1tenth autonomous racing
We have chosen to model an F1tenth race setting because it is a well-researched platform
with a standardised vehicle model and hardware requirements. F1tenth racing utilises a
one-tenth scale remote control (RC) car chassis as a vehicle platform. An example of an
F1tenth vehicle is shown in Figure 4.1. These vehicles are equipped with all the elements
that are necessary for autonomous navigation, including a front-facing LiDAR sensor,
an Nvidea Jetson module for on-board computing, a servo motor for controlling the front
wheels, and a DC motor for controlling the rear wheels. The front wheels are only used for
steering, while the rear wheels are driven. However, the standardised F1tenth simulator
is incompatible with fully end-to-end systems due to its inclusion of a velocity controller.
We therefore chose to develop an in-house simulator that excludes the velocity controller,
which allows us to compare our system to a fully end-to-end system.

The race rules that we consider in our simulator are as follows: a single vehicle com-
petes to complete a single lap of a racetrack in a time trial setting. The vehicle may be
started anywhere along the length of the track. The start and finish line then coincides
with the starting position of the vehicle. If the vehicle makes contact with the track
boundary, which is assumed to be detectable by the LiDAR scanner, the lap is considered
failed and the lap time is not counted. We also operate under the assumption that the
track is known.

24
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LiDAR

Steering controlled
by servo motor

Rear wheels driven
by DC motor

Figure 4.1: An example of an F1tenth vehicle [6], showing the position of the sensors and
motors.

4.2 Vehicle dynamics
We start the discussion of our simulator by detailing the vehicle dynamics model that
was utilised to accurately represent the motion of the vehicle. An F1tenth vehicle was
modelled using the single-track bicycle model by Altoff and Würshing [77]. This model
takes vehicle slipping into account, and is accurate even when the vehicle is driven close to
its handling limits, thus making it suitable for the racing context. The basic assumption
of the model is that the car is a rigid body, with the two front wheels consolidated into a
central wheel. Similarly, the rear wheels are also consolidated into a single center wheel.

Furthermore, the model discretises time, such that each time step k is ∆t seconds
long:

t = k ·∆t, (4.1)

where the time is denoted as t. This discretisation is useful in the context of MDPs, since
MDPs themselves are discrete-time. The inputs to the single-track bicycle model at each
time step are the current state, denoted as x, and control actions, which are denoted u.
The output of the single-track bicycle model is then the time derivative of state, and is
denoted as ẋ. At every time step k, Euler’s method was applied to integrate ẋ, thereby
determining the state at the next time step.

The state x is represented as a 7-dimensional vector

x = [sx, sy, δ, υ, ψ, ψ̇, β]
⊺. (4.2)

A description of each variable within the state vector, along with its unit and reference
direction is given in Table 4.1. Additionally, the control inputs to the state space model
are represented by the vector u. These inputs are a steering rate, denoted as δ̇ (measured
in rad/s), and a longitudinal acceleration, denoted as along (measured in m/s):

u = [δ̇, along]
⊺. (4.3)

The aforementioned state variables and control inputs in illustrated in Figure 4.2.
Altoff and Würshing [77] assume that the vehicle is equipped with motors capable

of achieving the desired motion specified by the control inputs, so long as the control
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Description Symbol Unit Reference direction
x-Coordinate sx m Right, from bottom left corner to vehicle CoG
y-Coordinate sy m Up, from bottom left corner to vehicle CoG

Steering angle δ rad Anti-clockwise, from vehicle heading to steering
wheel direction

Longitudinal
velocity

v m/s Direction of heading

Heading ψ rad Anti-clockwise, from x-axis to vehicle longitudinal
axis

Heading rate ψ̇ rad/s Anti-clockwise
Slip angle β rad Anti-clockwise, from heading to direction of motion

Table 4.1: A description of each state space variable, along with its symbol, unit and reference
direction. A depiction of each of these state variables on a diagram of the vehicle is shown in
Figure 4.2.

x

y sx, sy

ψ

lr

lf
latitude

longitude

v

β

δ

CoG

Figure 4.2: The single-track vehicle dynamics model with state variables. The centre of gravity
(CoG) is depicted as being lf m away from the front axle, and lr m from the rear axle. Further-
more, the longitude and latitude axes are parallel and perpendicular to the forward direction.

inputs are within the physical limitations of the actuators. The following constraints are
therefore applied to the steering angle, steering rate, and velocity:

δ̇ ∈ [δ̇, δ̇], δ ∈ [δ, δ], υ ∈ [υ, υ]. (4.4)

Here, an underline denotes the minimum allowable value, while an overline denotes the
maximum allowable value.

The vehicle’s limited engine power and braking capability impose a constraint on longi-
tudinal acceleration. Additionally, the maximum achievable acceleration and deceleration
is influenced by wheel spin. To model this acceleration constraint, the switch velocity, de-
noted as vS, is introduced. This velocity represents the threshold above which the engine
power is insufficient to induce wheel spin. After taking the switch velocity into account,
the acceleration constraint is expressed as

along ∈ [a, a(v)], a(v) =

{
amax

vS
v

for v > vS

amax otherwise,
(4.5)
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where amax is the absolute maximum acceleration that can be achieved without wheel slip,
a is the maximum deceleration, and a is the maximum acceleration that the vehicle can
achieve, taking wheel slip into account. A comprehensive description of each constraint,
along with its corresponding units, is provided in Table 4.2.

Name Symbol Unit Value
Minimum steering angle δ rad −0.4189
Maximum steering angle δ rad 0.4189

Minimum steering rate δ̇ rad/s −3.2
Maximum steering rate δ̇ rad/s 3.2

Minimum velocity v m/s −5
Maximum velocity v m/s 20

Maximum acceleration amax m/s2 9.51
Switching velocity vS m/s 7.319

Table 4.2: Constraint parameters of a standard F1tenth vehicle.

Practically, the constraints from Equations 4.4 and 4.5 are achieved by applying the
case statements

δ̇ =


0 for (δ ≤ δ AND δ̇ ≤ 0) OR (δ ≥ δ AND δ̇ ≥ 0) (condition C1),
δ̇ for NOT C1 AND δ̇ ≤ δ̇,

δ̇ for NOT C1 AND δ̇ ≥ δ̇,

δ̇ otherwise,

along =



0 for (v ≤ v AND along ≤ 0) OR (v ≥ v AND along ≥ 0)

(condition C2),
a for NOT C2 AND along,d ≤ a,

a(v) for NOT C2 AND along,d ≥ a(v),

along otherwise,

(4.6)

to the input vector u, before applying them as input to the state space equations.
After applying these constraints to the input vector u, non-linear state-space equations

with inputs u and x are applied. Altoff and Würshing [77] define the state-space model
as a piece-wise function that is dependent on the velocity. For large velocities, a dynamic
bicycle model denoted by f1(x,u) is used, as it accounts for tire slip and accurately
represents the motion close to the physical limits of the vehicle. However, this dynamic
bicycle model becomes singular for small velocities. Therefore, a kinematic bicycle model
f2(x,u) that does not take tire slip into account is used for velocities slower than 0.1 m/s.
The piece-wise defined dynamics model is then

ẋ = f(x,u) =

{
f1(x,u) if |v|≥ 0.1 m/s,
f2(x,u) else.

(4.7)
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The dynamic bicycle model f1(x,u) is described by the set of equations

ṡx = υ cos(ψ + β),

ṡy = υ sin(ψ + β),

δ̇ = δ̇,

υ̇ = along,

ψ̇ = ψ̇,

ψ̈ =
µm

Iz(lr + lf )
(lfCS,f (glr − alonghcg)δ + (lrCS,r(glf + alonghcg)

− lfCS,f (glr − alonghcg))β − (l2fCS,f (glr − alonghcg) + l2rCS,r(glf + alonghcg))
ψ̇

v
),

β̇ =
µ

υ(lr + lf )
(Cs,f (glr − alonghcg)δ − (CS,r(glf + alonghcg) + CS,f

(glr − alonghcg))β + (CS,r(glf + alonghcg)lr − CS,f (glr − alonghcg)lf )
ψ̇

υ
)− ψ̇,

(4.8)

and the kinetic bicycle model f2(x,u) by

ṡx = υ cos(ψ + β),

ṡy = υ sin(ψ + β),

δ̇ = δ̇,

υ̇ = along,

ψ̇ =
υ cos(β)

lwb

tan(δ),

ψ̈ =
1

lwb

(along cos(x7) tan(δ)− x4 sin(β) tan(δ)β̇ +
υ cos(β)

cos2(δ)
δ̇),

β̇ =
1

1 + (tan(δ) lr
lwb

)2
· lr
lwb cos2(δ)

δ̇,

(4.9)

where m is the vehicle mass, Iz is the moment of inertia about the z axis of the vehicle
(i.e., a vertical axis that passes through the CoG), lf is the distance from the CoG to
the front axle, lr is the distance from the CoG to the rear axle, and hcg is the height of
CoG. Furthermore, the parameters CS,f and CS,r are the cornering stiffness coefficients of
the front and rear tires, respectively. The tire cornering stiffness coefficient is the ratio
between the lateral force acting on the tire, and its slip angle, which is the angle between
the direction the wheel is pointing, and its direction of travel. Additionally, the road
surface friction is denoted µ. The values for these vehicle parameters were identified for
a standard F1tenth vehicle [6], and are summarised in Table 4.3.

The state space Equations 4.8 and 4.9 yield the derivative of the state with respect to
time. Consequently, to determine the state at the next time step, we employ a numerical
integration

xk+1 = xk + ẋ∆t, (4.10)

known as Euler’s method. This method allows us to incrementally update the state by
adding the product of the state derivative and the time step, which is sufficiently accurate
when ∆t is small. We chose ∆t as 0.01 seconds.
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Symbol Description Unit Value
m Mass kg 3.74
Iz Moment of inertia about z axis kg 0.04712
lf Distance from CoG to front axle m 0.1587
lr Distance from CoG to rear axle m 0.17145
hcg Height of CoG m 0.074
CS,f Cornering stiffness coefficient (front) 1/rad 4.718
CS,r Cornering stiffness coefficient (rear) 1/rad 5.4562
µ Road surface friction coefficient - 1.0489

Table 4.3: Vehicle model parameters for the single track model. The parameters were identified
for a standard F1tenth vehicle.

4.3 Simulation environment
The vehicle single track vehicle dynamics model discussed in Section 4.2 was utilised
to create a custom F1tenth simulator that adheres to the rules specified in Section 4.1.
The simulator runs an initialisation procedure at the start of each episode, after which
it is sampled at every time step. Algorithm 3 details the procedure that the simulator
executes at the beginning of an episode. This procedure takes as input a bird’s-eye image
of the racetrack, as well as the coordinates, velocity, and heading at which to initialise
the vehicle.

In line 1 of the episode start procedure, the simulator generates an occupancy grid
from the provided image. The occupancy grid is represented as a binary array, with each
element corresponding to a specific coordinate on the track. This occupancy grid is used
to detect whether the vehicle has collided with the track boundary during a lap.

Algorithm 3: The simulator initialisation procedure.
Input: An image of a track, starting position, velocity and heading: [sx, sy, υ, ψ]

1 Generate occupancy grid
2 Find centerline
3 Start vehicle at random point along centerline
4 Set start/ finish line

Once the occupancy grid is generated, the simulator proceeds to determine the cen-
terline of the track. The centerline refers to a line that stretches around the track and
maintains an equal distance from either side of the track boundaries. To represent the
centerline, a cubic spline [78] is employed.

Subsequently, the vehicle is initialized with an x and y coordinate, velocity, as well
as heading. Typically, this involves selecting a random point along the length of the
centerline and applying a small offset in the x and y directions. The remaining state
variables (i.e., the steering angle, heading rate and slip angle) are initialised with a zero
value. Following this, the start and finish lines are defined as perpendicular to the track’s
centerline, intersecting with the initial coordinates of the vehicle.

Once initialised, the simulator is sampled at discrete time steps to forward simulate
the vehicle dynamics according to the control inputs. This is done using the single-track
bicycle model from Section 4.2. The simulator receives an input action ak at time step k
and produces outputs at time step k + 1. The output of the simulator is an observation,
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denoted ok+1, and reward, denoted as rk+1, which is consistent with the MDP environment
definition. The interaction between the autonomous racing algorithm and simulator is
shown in Figure 4.3. Additionally, the procedure that the algorithm executes at every
time step is detailed in Algorithm 4.

Autonomous
racing

algorithm

Simulator

ak = [δd, along,d]ok, rk

ok+1, rk+1

k ← k + 1

Figure 4.3: The interaction between the racing algorithm and simulator at every time step is
analogous to that of the agent and MDP.

The input to the simulator at every time step is a desired steering angle δd, and a
desired longitudinal velocity, along,d, where the subscript d indicates the desired value pro-
vided by the autonomous racing algorithm. The observation that it outputs encompasses
a LiDAR scan with L equispaced beams spanning a 180-degree field of view, as well as
the vehicle’s pose. The LiDAR scan is a vector whose elements correspond to the range
measurement of one of the LiDAR beams. The vehicle’s pose comprises several state
variables. Specifically the x-coordinate sx, the y-coordinate sy, longitudinal velocity v
and heading ψ. The observation is therefore denoted as a vector

ok = [sx, sy, δ, υ, ψ︸ ︷︷ ︸
Pose

, l0, l1, l2, · · ·L︸ ︷︷ ︸
LiDAR scan

]. (4.11)

Before outputting the observation, a small amount of noise with a zero mean can be
added to each element in the observation vector. The standard deviation of noise added
is discussed in the following chapters.

Algorithm 4: The simulator execution at every time step.
Input: Control actions δ̇d and alongd at time step k.
Output: An observation ok+1, reward rk+1 at time step k + 1.

1 Simulate servo motor: δ̇ = δd−δ
|δd−δ| δ̇,

2 Update state: xk+1 = xk + f(xk,uk)∆t
3 Generate LiDAR scan: [l0, l1, · · ·L]
4 Sample the observation: ok+1 = [sx, sy, δ, υ, ψ, l0, l1, l2, · · ·L]
5 Check for collisions
6 Get distance travelled: ∆D = Dk+1 −Dk

7 Generate reward: rk+1 = r(sk, ak)

The vehicle dynamics are simulated in line 1 of Algorithm 4. When simulating these
dynamics, we abstract the longitudinal acceleration controller and assume that the vehicle
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can accelerate at the desired rate, so long as the desired rate is within the bounds of the
upper and lower acceleration limits specified by Equation 4.5. The desired acceleration
along,d then serves as the control input along to the state space model. However, the
steering dynamics are not abstracted. Instead, the rate of change of steering angle by
steering servo motor is calculated as

δ̇ =
δd − δ
|δd − δ|

δ̇. (4.12)

The constraints from Equation 4.6 are applied to the longitudinal acceleration and steering
rate, after which Equations 4.7 and 4.10 are used to calculate the new state in line 2.

After updating the state using the state space model, we generate the LiDAR scan
and sample from the state variables to create the observation. The simulator then checks
the vehicle’s position against the occupancy grid to see if a collision has occurred. If the
vehicle has collided with the track boundary, a terminal state is reached and the episode
ends. Additionally, the episode also ends if the vehicle has completed one lap. To ascertain
whether a lap is complete, we calculate the distance travelled from the start along the
centerline between the subsequent previous time step as

∆D = Dk+1 −Dk, (4.13)

where distance Dk represents the point on the centerline closest to the vehicle at time
step k. The ∆D values at each time step are accumulated, and if the sum is equal to or
greater than the track length, the vehicle has completed one lap. An illustration of the
quantity ∆D is shown in Figure 4.4. The distance travelled along the centerline is also
useful in calculating the reward signal

rk+1 = r(xk, ak), (4.14)

which appears in line 7 of Algorithm 4, and whose details are discussed in the next chapter.

CenterlineDk+1
Dk

(sx, sy)k (sx, sy)k+1

∆D

Figure 4.4: An F1tenth vehicle moving along the track centerline. The red section of the
centerline indicates ∆D.

4.4 Summary
This chapter introduced the racing scenario, vehicle modelling, as well as simulator. By
allowing F1tenth vehicles to race alone on the track, the setting that we consider provides
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an opportunity for autonomous racing algorithms to compete in a time-trial style environ-
ment. Furthermore, the F1tenth vehicle is modelled using single-track bicycle dynamics
by Altoff and Würshing [77], which accurately predicts the motion of the vehicle close to
the handling limits. The dynamics model is incorporated into a simulator that encom-
passes both the race car dynamics and the track environment. By discretizing time, the
simulator conforms to the time-discrete framework of the MDP. At each time step, the
simulation receives a control input from the autonomous racing algorithm and generates
an observation corresponding to the updated state of the environment.

Approaches to solving the autonomous racing problem that utilise an end-to-end de-
sign have an agent whose inputs and outputs are directly passed from and given to the
simulator. In the next chapter, we utilise our racing simulation within an MDP environ-
ment to train such an end-to-end RL agent to race.
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Chapter 5

End-to-end autonomous racing

Having introduced our simulation environment, we formulate an end-to-end solution
method in which a reinforcement learning (RL) agent directly predicts controller com-
mands based on observation information. This end-to-end agent is employed as a baseline
to compare our partial end-to-end algorithm against, as similar end-to-end approaches
are commonly used to solve the racing problem [10; 15; 16; 26; 28; 29; 30; 31; 32; 33; 34].

We begin this chapter by discussing the design of the end-to-end racing algorithm.
Subsequently, we show how the TD3 RL algorithm is used to train an end-to-end agent,
followed by a detailed exposition of evaluation procedures. We then experimentally deter-
mine the optimal values for each hyper-parameter for an agent racing on a relatively simple
race track, before presenting agents capable of driving on more complex race tracks. The
performance of end-to-end agents under conditions where vehicle modelling errors are
present is also investigated, along with the effectiveness of domain randomisation as a
technique to improve performance under these conditions.

5.1 End-to-end racing algorithm
Our end-to-end autonomous racing algorithm is composed of an RL agent and a velocity
constraint. The agent maps an observation sampled from the simulator to desired lon-
gitudinal acceleration (along,d) and steering angle (δd) control commands. The velocity
constraint then modifies the acceleration commands to ensure that the vehicle remains
within safe velocity bounds. The steering angle from the agent and acceleration from the
velocity constraint component are passed to the simulator described in Chapter 4. This
end-to-end framework is depicted in Figure 5.1.

Importantly, the simulator and velocity constraint components are grouped together
in the environment. This is because the definition of the MDP given in Section 3.1 solely
encompasses an agent and an environment. In fact, to ensure conformity between the
end-to-end algorithm and the MDP definition, all of the racing algorithm components
apart from the agent are considered as part of the environment, and executed in unison
with the rest of the environment. Furthermore, due to the simulator’s time step being
chosen as 0.01 seconds, the environment components are sampled at a frequency of 100
Hz. The agent is sampled at a slower rate of fagent Hz.

The end-to-end agent, which comprises a neural network, is shown in Figure 5.2. To
ensure uniformity across all observation vector elements, each element in the input vector
is normalized to the range [0, 1]. The neural network’s design consists of three fully
connected layers, with m1, m2, and 2 neurons in the input, hidden, and output layers,

33
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End-to-end
agent

Velocity
constraint

Simulator

Racing algorithm

Environment

Observation

along,d along,d

δd

Figure 5.1: The end-to-end racing algorithm, which is comprised of an RL agent which out-
puts control actions, and a velocity constraint. The velocity constraint and simulator are both
considered part of the environment.

respectively. The first two layers are ReLU-activated, while the output layer is activated
by a hyperbolic tangent function to normalize the neural network output to the range
(−1, 1). While the number of neurons in the first two layers is determined empirically,
the two neurons in the output layer correspond to the steering and acceleration actions.
Scaling factors are applied to their outputs so that the selected steering and acceleration
actions fall within the range (δ, δ) and (a, a) from Table 4.2, respectively.

Scale

Scale

O
bs

er
va

ti
on

⊺




anorm ∈ (−1, 1)

δnorm ∈ (−1, 1)

along,d ∈ (a, a)

δd ∈ (δ, δ)

Neural
network actor

Figure 5.2: The end-to-end agent. The outputs of the neural network are scaled to the ranges
of along and δ in Table 4.2.

While the steering angle is passed directly to the simulator, the longitudinal action
is first modified by the velocity constraint component to ensure that the velocity of the
vehicle remains within safe bounds,

along,d ←


0 for v ≥ vmax,

0 for v ≤ vmin,

along,d otherwise,
(5.1)

before being passed to the simulator. In Equation 5.1 vmax and vmin are the imposed
maximum and minimum allowable velocities.
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5.2 Applying TD3 to end-to-end autonomous racing
We applied the TD3 RL algorithm from Section 3.4 to train the end-to-end agent. Several
adaptations to the original TD3 algorithm were made to ensure its compatibility with the
end-to-end racing algorithm. The adapted TD3 is shown in Algorithm 5.

Algorithm 5: Twin delay deep deterministic policy gradient
Input: Table 5.1 parameters
Output: Trained actor DNN πϕ

1 Initialise critic networks Qθ1 , Qθ2 and actor network πϕ with
parameters θ1,θ2 and ϕ

2 Initialise target networks Qθ′
1
, Qθ′

2
and πϕ′ with weights

θ′
1 ← θ1, θ′

2 ← θ2, and ϕ′ ← ϕ
3 Initialise experience replay buffer B

4 while MDP time steps < M do
5 Reset simulator (start new episode)
6 for t=0, T do
7 Sample action with exploration noise from end-to-end agent,

at = [along,d, δd]← scale(πϕ(ot) + ϵ), ϵ ∼ N (0, σaction)
8 for n=0, N do
9 Modify along,d according to Equation 5.1 to limit velocity

10 Simulator executes action at
11 Observe environment step reward rt,n
12 Update MDP one step reward: rt = rt + rt,n
13 Sample observation with noise,

ot ← ot + ϵ, ϵ ∼ N (0, σobservation)
14 end
15 Store transition tuple (ot, at, rt, ot+1) in B

16 Sample mini-batch of B transitions (oi, ai, ri, oi+1) from B
17 Select target actions:

ã← πϕ′(ot+1) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
18 Set TD target: yi ← ri + γminq=1,2Qθ′

q
(oi+1, ã)

19 Update critics by minimising the loss: Jθq ← 1
N

∑N
i (yi −Qθq(oi, ai))

2

if t mod d then
20 Update ϕ by the deterministic policy gradient:

∇ϕJ(ϕ) =
1
N

∑N
i ∇aQθ1(oi, a)|a=πϕ(oi)∇ϕπϕ(oi)

21 Update target networks:
22 θ′

q ← τθq + (1− τ)θ′
q

23 ϕ′ ← τϕ+ (1− τ)θ′

24 end
25 end
26 end

Note that in the context of racing, agents receive only partial information about the
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state of the environment. This is because the pose and LiDAR scan do not fully capture
the environment state. Hence, the racing environment is only partially observable. As
such, the input to a racing agent is therefore an observation, denoted as o, rather than
the complete environment state s. This notation conforms to the notation used for the
output of the simulator in Chapter 4. However, we use the same notation for time steps
as in Chapter 3, denoting a time step as t, rather than k.

In line 1 of Algorithm 5, the actor (πϕ) and critics (Qθ1 and Qθ2) are initialised. The
end-to-end agent shown in Figure 5.2 is the actor πϕ. For simplicity, the critics have
an identical structure which is analogous to that of the actor. We therefore describe
the details of only one critic, which is depicted in Figure 5.3. The critic DNN receives a
vector input comprised of observation and control actions normalised to the range (−1, 1).
It comprises three fully connected layers. The input and hidden layers are identical to
the actor, having m1 and m2 neurons with ReLU activation functions, respectively. The
output layer comprises a single neuron with a linear activation function. The output of
this layer is the action-value, and is denoted Qθ(o, a). Additionally, the target networks
are initialised identically to their counterparts.

Observation⊺

anorm

δnorm


 Qθ(s, a)

Neural network critic

Figure 5.3: The critic DNN. Its input is a vector containing a normalised observation and
action pair, and its output is an action-value.

After initializing the replay buffer in line 3, the TD3 algorithm enters a while loop
which executes a number of episodes (lines 5-22). However, rather than limiting the
number of episodes, we set a limit on the number of MDP time steps, denoted as M , as
it is a more accurate indicator of the training time and the number of actor and critic
updates. Each episode starts by resetting the simulator and ends when the simulator
indicates that the vehicle has crashed or finished.

In line 7 of Algorithm 5, an action is sampled from the end-to-end agent by forward
passing the observation through the actor DNN. Gaussian noise with a zero mean and a
standard deviation of σaction is added to the normalised output (anorm and δnorm), which
is then scaled to generate a longitudinal acceleration and a steering angle.

The action sampled from the agent in line 7 is executed by repeatedly sampling the
environment (lines 8-13). Our implementation for sampling the environment differs from
the standard implementation of TD3 given in Algorithm 2. This is because the sample rate
of the components inside the environment is higher than the agent, whereas the definition
of the MDP given in Section 3.1 requires that the agent and environment are sampled
at the same rate. As such, the environment components will be sampled multiple times
in between agent sampling periods. We therefore define an MDP step as N environment
samples, where

N =
100

fagent
. (5.2)
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In Equation 5.2, N is a whole number. The environment is sampled by applying the
velocity constraint from Equation 5.1 to limit the agent’s selected longitudinal action,
and then executing one simulator step. This is followed by sampling the reward signal
from the simulator in line 11.

The reward signal is designed to closely approximate the objective of minimizing lap
time for high reward discount rates. Specifically, the is rewarded agent for the distance
it travels along the centerline between the current and previous time step, while being
penalised by a small amount on every time step, as described by Fuchs et al. [30]. In
addition, a large penalty is imposed on the agent if it collides with the track boundary.
As a result, the reward signal is expressed as the piece-wise function

(5.3)r(st, at) =

{
rcollision if collision occurred
rdist(Dt −Dt−1) + rtime otherwise.

Here, rcollision, rdist, and rt represent the penalty for collisions, the reward for distance
traveled, and the penalty for each time step, respectively. Notably, this reward signal is
similar to those used in numerous prior works [10; 15; 29].

The reward signal is accumulated over the sequence of N steps during which the
environment is sampled in line 12. In line 15, the transition tuple is stored, which consists
of the observation before sampling the environment N times, as well as the observation
and accumulated reward after sampling the environment N times.

The remaining steps of Algorithm 5 are identical to the standard implementation of
TD3 described in Algorithm 2. Specifically, a mini-batch of B transitions is sampled from
the replay buffer in line 16. Next, the target actor network is employed to select actions
for each observed sample, which in turn are used to update the critics. To ensure the
stability of the learning process, the actor and the target networks are updated every d
steps from lines 20 to 23. Furthermore, the target networks are updated via a soft update
which is controlled by the target update rate parameter τ .

After the training procedure is completed, Algorithm 6 is utilised to evaluate the
trained agents. Under evaluation conditions, training is halted and the weights of the
DNNs are not updated. Furthermore, no exploration noise is added to the agents selected
actions. However, Gaussian noise is added to the observation vector to mimic practical

Algorithm 6: Evaluating the end-to-end algorithm without exploration noise,
and with observation noise.
Input: Trained actor DNN πϕ
Output: Lap times, collisions over 100 laps

1 Initialise actor DNN πϕ with weights ϕ from training
2 for episode = 1, 100 do
3 for t=0, T do
4 Select control action at = [along,d, δd] ∼ scale(πϕ(ot + ϵ))
5 for n=0, N do
6 Modify along,d according to Equation 5.1 to limit velocity
7 Simulator executes action at
8 end
9 end

10 end
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sensor data in simulation. This Gaussian noise has standard deviations of 0.025 m for
x and y coordinates, 0.05 rads for heading, 0.1 m/s for velocity, and 0.01 m for LiDAR
scan. Each agent completed 100 laps under these evaluation conditions.

5.3 Empirical design and hyper-parameter values
The optimal values for the hyper-parameters introduced in Sections 5.1 and 5.2 cannot be
derived, and require experimentation to be determined empirically. Furthermore, hyper-
parameters are sensitive to the track. The following five sections of this chapter detail the
experiments that were undertaken to determine a locally optimal set of hyper-parameters
for agents racing on a relatively simple track named Porto. The selected hyper-parameters
are listed in Table 5.1. Additionally, the average learning curve for 10 agents racing on
this track using this set of hyper-parameter is shown in Figure 5.4.

Hyper-parameter Symbol Value
Algorithm

Maximum time steps M 1.5 · 105
Target update rate τ 5 · 10−3

Replay buffer size B 5 · 105
Replay batch size B 400

Exploration noise standard
deviation

σaction 0.1

Reward discount rate γ 0.99
Agent samples between

network updates
d 2

Agent sample rate fagent 5 Hz
Target action noise standard

deviation
σ̃ 0.2

Target action noise clip c 0.5
Reward signal
Distance reward rdist 0.25

Time step penalty rtime 0.01
Collision penalty rcollision −10

Observation
Number of LiDAR beams L 20

Neural network
Learning rate α 10−3

Neurons in input layer m1 400
Neurons in hidden layer m2 300
Velocity constraints

Minimum velocity vmin 3 m/s
Maximum velocity vmax 5 m/s

Table 5.1: Selected values of hyper-parameters for the end-to-end racing algorithm on the Porto
track.

To select each hyper-parameter value, we repeatedly trained agents using Algorithm
5 with various values of the hyper-parameter under consideration while keeping all other
hyper-parameters fixed at the values listed in Table 5.1. When evaluating agents, we are
particularly interested in the rate at which they successfully complete laps, as well as their
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lap time during and after training. Furthermore, to ensure consistency in the results, we
trained and evaluated multiple agents for each set of hyper-parameters. Specifically, we
chose to train three agents for each hyper-parameter set due to time constraints.
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Figure 5.4: Average learning curve for 10 end-to-end agents trained on the simple Porto track.

5.4 TD3 hyper-parameters
We performed experiments to determine values for the TD3 algorithm hyper-parameters
that result in good performance for the Porto track. These hyper-parameters were the
number of MDP time steps M , agent sample rate fagent, target update rate τ , replay
buffer size B, replay batch size B, standard deviation of exploration noise σaction, reward
discount rate γ, and agent samples in-between DNN updates d.

First, an appropriate number of time steps to train the agent was determined. The
objective for determining the length of the training time was to ensure that the agent
demonstrated satisfactory performance under evaluation conditions by racing quickly and
consistently avoiding crashes. Ending training too soon may result in poor agent per-
formance, while training for too many time steps may result in unnecessarily prolonged
training times. To achieve this, a set of three agents with the hyper-parameters listed in
Table 5.1 were trained. These agents were evaluated using Algorithm 6 at 100 episode
intervals during training. The percentage of failed laps and lap time under evaluation
conditions are depicted as a function of training time in Figure 5.5.

We observe that during the early stages of training, both lap time and success rate
improved rapidly. However, it takes a considerable amount of time before the agent con-
sistently completes all of its laps under evaluation conditions. Considering these results,
we determined that 1.5 · 105 MDP time steps is an appropriate length for training an
end-to-end agent.

The optimal value for the rate at which actions are sampled from the agent, denoted
as fagent, was then determined. We investigated agent sample rates in the range of 3 Hz
to 50 Hz. For each sample rate investigated, three agents were trained with the remaining
hyper-parameters set equal to those listed in Table 5.1. Figure 5.6 shows the average
failed laps and lap time of agents racing under evaluation conditions as a function of
fagent. From this figure, we observe that agents trained with sampling rates higher than
5 Hz tend to crash, as well as race slowly. This outcome may be attributed to the fact
that when a higher sampling rate is used, the agent needs to learn longer action sequences
to complete a lap, leading to a more complex learning problem. The value of fagent was
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Figure 5.5: Percentage of failed laps (left vertical axis) and lap time (right vertical axis) of
three agents tested under evaluation conditions at 100 episode intervals during training.

set to 5 Hz as it resulted in the minimum number of failed laps during evaluation. It is
notable that 5 Hz is a relatively slow sampling rate compared to classical controllers. For
instance, Li et al. [79] develop path tracking controllers with sampling rates up to 100
Hz.
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Figure 5.6: Training time (left vertical axis) and percentage of failed laps (right vertical axis)
of three trained end-to-end agents racing under evaluation conditions on the Porto track, with
sampling rates ranging from 3 Hz to 50 Hz.

The optimal value for the batch size B was determined by training and evaluating
agents with batch sizes of 50, 100, 150, 200, 400, 600, and 1000 samples. Three agents
were trained for every batch size, while holding the remaining hyper-parameters constant
at the values listed in Table 5.1. The average lap time and percentage of failed laps of
agents under evaluation conditions are shown as a function of batch size in Figure 5.7.
From this figure, we observe that lap time and failed laps under evaluation conditions are
minimised when the batch size is set to 400. Based on these results, we selected a batch
size of 400 samples for our agents.

An experimental analysis was then conducted to select the reward discount rate, de-
noted γ. To determine the value for γ, we assessed the performance of agents with reward
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Figure 5.7: Percentage of failed laps and lap time under evaluation conditions of end-to-end
agents with batch sizes from 50 to 1000. The percentage of failed laps is mapped onto the left
vertical axis, while the lap time is mapped onto the right vertical axis.

discount rates of 0.95, 0.98, 0.99 and 1 during training. For each of these reward discount
rate values, three agents were trained with their remaining hyper-parameters set equal to
those listed in Table 5.1. The percentage of failed laps and lap times during training, as
well as the learning curves for these agents are shown in Figure 5.8.
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Figure 5.8: (a) The percentage of failed laps and (b) lap time of completed laps during training,
as well as (c) the learning curves of three end-to-end agents with reward discount rates ranging
from 0.9 to 1.

When viewing the performance during training, these agents appear to perform sim-
ilarly. However, the TD3 algorithm has no mechanism for decreasing the exploration
noise added to every action with training time. Figure 5.8 is therefore an indicator of
the performance of each agent with exploration noise added to every action. As such,
we also considered the performance of each agent under evaluation conditions where no
exploration noise is present. The percentage of failed laps and lap times for agents trained
with each learning rate is shown in Table 5.2. The table show that a discount rate of 0.99
yields agents that successfully complete all of their laps. Based on this finding, a discount
rate of 0.99 was selected.
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Reward
discount rate

(γ)

Failed laps
[%]

Average
lap time [s]

Standard
deviation

of lap time
[s]

0.95 2.33 6.12 0.28
0.98 0.33 6.51 0.28
0.99 0.00 6.07 0.20
1 0.33 5.94 0.11

Table 5.2: Percentage failed laps and average lap times under evaluation conditions for end-to-
end agents trained with reward discount rates ranging from 0.9 to 1.

Values for the hyper-parameters τ , σaction, and d were determined by repeating the
tuning procedure used for γ. That is, one hyper-parameter was varied while holding the
others constant. For each hyper-parameter set, three agents were trained. The selected
hyper-parameter was based on the agents’ average performance during training and evalu-
ation. For conciseness, the experimental results for these hyper-parameters are presented
in Appendix A. Values of 5 · 10−3 for τ , 0.1 for σaction, and 2 for d yielded agents with the
best performance.

After determining locally optimal hyper-parameters for TD3, we compared the perfor-
mance of our implementation of the TD3 algorithm to a standard implementation of the
popular Deep Deterministic Policy Gradient (DDPG) algorithm [15; 17; 31]. The percent-
age of failed laps, lap time and learning curves of agents trained using both algorithms
are depicted in Figure 5.9. The results reveal that TD3 outperforms DDPG by a sub-
stantial margin in terms of both crashes and lap time. Moreover, we have observed that
the training stability of TD3 is superior to that of DDPG, as evidenced by the smoother
learning curve of TD3 in contrast to the more erratic curve of DDPG.
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Figure 5.9: (a) The percentage of failed laps and (b) lap time of completed laps during training,
as well as (c) the learning curves of three end-to-end agents that were trained using TD3 and
DDPG.
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5.5 Reward signal
Having experimentally determined locally optimal values for the TD3 hyper-parameters,
we investigated the reward signal. Our objectives were to choose reward signal parameter
values that yielded agents that (a) race safety while (b) minimising lap time. This was
a challenging task, considering that these two objectives are in conflict with each other.
Further complicating the task is that the lap time alone is too sparse a signal to allow
the agent to learn effectively [28; 29]. The reward signal from Equation 5.3 was therefore
designed to approximate a signal that minimises lap time, while also providing continuous
rewards to the agent. Specifically, the reward signal described in Equation 5.3 rewards the
agent for the distance it travelled along the centerline between the current and previous
time step, and penalises the agent a small amount on every time step [30]. Additionally,
the agent receives a large penalty for colliding with the track boundary.

To motivate the use of a time step penalty rtime and to prove that our reward signal
approximates a minimisation of lap time, we examine the total reward accumulated over
a successful episode,

Rtotal =
T∑
t=1

(rdist(Dt −Dt−1) + rtime) , (5.4)

which is the quantity that the agent learns to maximize when no reward discounting is
assumed. In this equation, the subscript t indicates a time step, T is the final time step
of the episode, and Dt is the distance travelled along the centerline at time t. Expanding
the summation from Equation 5.4 yields

Rtotal = rdist ((D1 − 0) + . . .+ (DT −DT−1)) +
T∑
t=1

rtime

= rdistDT + Trtime.

(5.5)

To simplify the expression for total reward, rtime was set equal to −∆t, or −0.01. Addi-
tionally, T was substituted as

T =
lap time

∆t
. (5.6)

By substituting Equation 5.6 into Equation 5.5, we get Rtotal as

Rtotal = rdistDT − lap time. (5.7)

From this equation, we can see that in order to maximise the cumulative reward, the
agent must minimise lap time. This is because Dt and rdist are constants. Therefore,
the reward signal from Equation 5.3 approximates a signal that minimises lap time for
sufficiently large reward discount factors. Interestingly, if no time step penalty is applied,
then every successful lap yields the same reward regardless of lap time.

To experimentally confirm the result from Equation 5.7, we trained and evaluated
three agents with rtime set to −0.01, then repeated the training procedure for three agents
without the time step penalty. For each of these agents, the remaining reward signal
components and hyper-parameters were set equal to the values listed in Table 5.1. Setting
rtime to −0.01 improves the average evaluation lap time of agents from 9.26 seconds to
6.07 seconds, compared to agents that did not receive the penalty. Furthermore, we tuned
the other reward signal terms relative to the rtime value of −0.01.

We now present the tuning procedure for the distance reward rdist, as well as the
collision penalty rcollision. We initially determined a plausible range of rdist values to train

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. END-TO-END AUTONOMOUS RACING 44

our agents with. Intuitively, a lower bound for rdist exists that results in a policy that
completes laps. If rdist is set beneath this lower bound, the agent can only accumulate
negative reward by continuing to race, and the optimal action is to crash immediately.
We estimated this lower bound by considering that the agent should be able to achieve
positive reward at every time step, such that

rdist(Dt −Dt−1) + rtime > 0. (5.8)

Solving the inequality in Equation 5.8 for rdist gives

rdist >
−rtime

(Dt −Dt−1)
, (5.9)

where Dt and Dt−1 are unknown. To obtain the smallest value for rdist, the largest value
possible for (Dt −Dt−1) is estimated by considering a case whereby the vehicle travels at
maximum speed parallel to the centerline, such that

(Dt −Dt−1) = vmax∆t. (5.10)

After substituting the expression from Equation 5.10 into Equation 5.9 and setting rtime

equal to −∆t, the minimum value for rdistance is found to be

rdist >
1

vmax
. (5.11)

Substituting the value for vmax as 5 m/s (see Table 5.1, as well as Section 5.8) into
Equation 5.11 yields an estimated minimum rdist of 0.2.

Using this value as a guide for the region in which to search for rdist, we trained agents
with rdist values of 0.1, 0.25, 0.3 and 1. For each rdist value, three agents were trained
with their remaining hyper-parameters equal to those listed in Table 5.1. The percentage
of failed laps and average lap time of completed laps during training for these agents
are shown in Figure 5.10. Unsurprisingly, the agent with rdist set to 0.1 (i.e., less than
the estimated minimum) learns that terminating the episode immediately is the optimal
behaviour, as its failure rate remains at 100 percent.
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Figure 5.10: (a) The percentage of failed laps and (b) lap times of completed laps during
training of end-to-end agents with rdist values ranging from 0.1 to 1.
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Figure 5.10 also reveals that larger values of rdist result in worse performance in terms
of failed laps and lap time. When rdist is set to a larger value, the time step penalty
becomes less significant. As such, the agent is less incentivised to minimise lap time.
Conversely, when rdist is set close to the estimated minimum value, the time step penalty
becomes significant, and the agent must optimise lap time to receive positive rewards.
The value for rdist was chosen as 0.25, as agents that were trained with this value had the
lowest crash rate while also achieving competitive lap times.

After setting the value for rdist, the penalty imposed on the agent when it collides with
the track boundary was fine-tuned. Initially, we investigated whether the agent could ac-
quire the racing skills without facing any penalties for collisions. However, agents trained
with such a reward signal crashed on 4% of their laps during evaluation. Consequently,
further experiments were conducted that considered negative rcollision values.

To identify a suitable range within which we could conduct experimental searches for
an optimal value, we operated on the premise that rcollision should be substantial compared
to the positive reward an agent can receive in an episode. As shown in Figure 5.4, agents
attain an average reward value of 2 in episodes where crashes do not occur. Consequently,
we trained agents with collision penalties ranging from −2 to −10. As before, three agents
with hyper-parameter set equal to those listed in Table 5.1 were trained for each rcollision

value. The percentage of failed laps and average lap times under evaluation conditions
for agents trained with these values for rcollision are presented in Table 5.3. We selected
rcollision as −10, as it is the only penalty that results in no failed laps.

rcollision Failed laps
[%]

Average lap
time [s]

Standard
deviation of
lap time [s]

0 4.00 5.69 0.16
−2 1.33 5.63 0.17
−4 1.00 5.69 0.17
−8 1.33 6.11 0.47
−10 0.00 6.07 0.20

Table 5.3: Percentage failed laps and lap times under evaluation conditions for agents trained
with rcollision values from ranging from 0 to −10.

Interestingly, the effect of increasing the collision penalty can be seen in the path taken
by the agent. Figure 5.11 shows the paths taken by agents with rcollision set to −4 and
−10. The agent with the lower collision penalty races close to the edge of the track, while
the agent that is penalised more heavily takes a much more conservative path by staying
clear of the track boundaries, instead preferring to drive near the centerline of the track.

5.6 Observation space
We also conducted investigations to determine which combination of elements in the
observation space vector resulted in optimal performance. This was done by training
and evaluating agents that received (a) only the pose, (b) only a LiDAR scan, and (c)
a combination of vehicle pose and LiDAR scan in their observation. For each of these
observation space combinations, three agents with hyper-parameters listed in Table 5.1
were trained. The performance of these agents during training, in terms of percentage of
failed laps, average lap time, and average reward is shown in Figure 5.12.
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Figure 5.11: The paths taken by agents trained with rcollision values of −4 and −10.
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Figure 5.12: (a) The percentage of failed laps and (b) lap time of completed laps during
training, as well as (c) the learning curves showing episode reward for end-to-end agents with
different observation spaces.

From this figure, agents utilising each of the observation spaces converge to a similar
value for all three evaluation metrics. However, agents that receive a LiDAR scan train
significantly faster than agents without a LiDAR scan in their observation. Specifically,
the LiDAR scan allows the agent to learn to avoid track boundaries without needing
to sample collision experiences at every point along the track boundary. This is clearly
demonstrated in Figure 5.13, which shows all of the locations where an agent observing
only the pose, and an agent observing both the pose and a LiDAR scan crashed during
training. Agents without LiDAR scans crashed 5183 times, whereas agents observing
LiDAR scans crashed only 464 times during the same training period.

After determining that including the LiDAR scan in the observation improves training
performance, we assessed agents utilising each observation space under evaluation condi-
tions. The agent that utilised both the LiDAR scan and pose in the observation did not
crash during evaluation, whereas agents with either only a LiDAR scan or pose failed to
complete laps 0.67% and 6.00% of the time, respectively. Based on these results, both a
LiDAR scan and the vehicle pose were included in the observation.

Given that a LiDAR scan is included in the observation, another parameter to consider
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(a) Only pose (b) Pose and LiDAR

Figure 5.13: Crash locations of agents with (a) only the pose and (b) both the pose and LiDAR
scan during training.

is the number of LiDAR beams to include. To determine the number of LiDAR beams
that result in optimal performance, agents with LiDAR scans consisting of 5, 10, 20, and
50 were trained and tested. These beams are equally spaced, and have a field of view
of 180◦. As before, three agents with hyper-parameters from Table 5.1 were trained for
every value of L LiDAR beams. Figure 5.14 displays the percentage of failed laps and lap
times during training, as well as the learning curves of these agents. The results indicate
that increasing the number of LiDAR beams above 20 does not significantly impact the
performance of agents in terms of any of the measured criteria. We therefore chose to
incorporate 20 LiDAR into the observation space.
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Figure 5.14: (a) The percentage of failed laps and (b) lap time of completed laps during
training, as well as (c) the learning curves showing episode reward for end-to-end agents with
different numbers of LiDAR beams during training.

The simulation environment described in Section 4.3 allows for the addition of noise to
the observation vector. The tests conducted thus far have not included noise in the agents’
observations. However, noise is added to the observation vector to increase the realism
of the simulation when racing under evaluation conditions. It is therefore important to
determine whether adding noise to the observation elements during training benefits the
performance of the agent under evaluation conditions. Specifically, we trained three agents
without any noise in the observation vector, and another three with added Gaussian noise
which had standard deviations of 0.025 m for x and y coordinates, 0.05 rads for heading,
0.1 m/s for velocity, and 0.01 m for LiDAR scan.
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The agents trained with noise achieved an average lap time of 6.77 seconds while
completing 98.67% of the laps under evaluation conditions. In comparison, agents trained
without noise completed all laps with an average time of 6.09 seconds. It is noteworthy
that the agents trained with observation noise completed laps in a more erratic manner
than agents trained without noise. Examples of paths completed by agents trained with
and without noise are shown in Figure 5.15. This was despite the presence of noise under
evaluation conditions. We therefore chose to train agents without observation noise.
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Figure 5.15: Path and velocity profiles of end-to-end agents that were trained with and without
noise added to the observation vector.

5.7 Neural network hyper-parameters
Next, an investigation was conducted to determine the optimal DNN layer configuration
for the actor and critics. In this experiment, the layer configuration of the actor and
both critics were varied together, such that the input and hidden layers for all three
DNNs remained identical in structure. The input and hidden layers of these DNNs were
initially specified to be 400 and 300 units, respectively. Three agents were then trained
with input and hidden layers that were 100 units larger and smaller than the initial DNN
configuration. The remaining hyper-parameters of these agents were set equal to those
listed in Table 5.1. The percentage of failed laps, lap times, and learning curves while
training these agents are depicted in Figure 5.16.

The experimental results from Figure 5.16 indicate that increasing or decreasing the
number of units in the input and hidden layers leads to a deterioration in performance,
particularly in terms of lap time. As a result, the input layer size was selected as 400
units, and the hidden layer size was selected as 300 units for both the actor and critic
DNNs.

Additional experiments were conducted to determine the optimal learning rate α. The
same value for α was used for the actor and critic DNNs. During this experiment, we
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Figure 5.16: (a) The percentage of failed laps and (b) lap time of completed laps during
training, as well as (c) the learning curves showing episode reward for end-to-end agents with
different DNN layer sizes.

trained three agents with learning rates of 10−4, 10−3 and 2·10−3, and the remaining hyper-
parameters set equal to Table 5.1. The performance of these agents under evaluation
conditions is shown in Table 5.4. The percentage successful laps and lap time of agents
were maximised and minimised, respectively, when the learning rate was set to 10−3.

Learning rate
(for actor and
both critics), α

Successful
evaluation
laps [%]

Average
evaluation
lap time [s]

Standard
deviation of
test lap time

[s]
1 · 10−4 100 6.09 0.17

1 · 10−3 100 6.07 0.20

2 · 10−3 98.67 7.29 0.53

Table 5.4: Evaluation results of end-to-end agents with actor and critic DNN learning rates
between 1 · 10−4 and 2 · 10−3.

5.8 Velocity constraint
In our final hyper-parameter tuning investigation, we conduct experiments to determine
the minimum and maximum allowable velocities. Limiting the velocity is a common
technique to ensure safe operation of the vehicle. For example, Ivanov et al. [15] restrict
the torque applied to the vehicle’s driving motors, thereby limiting its maximum speed to
2.4 m/s. Hsu et al. [16] adopt less conservative bounds, enforcing minimum and maximum
speed limits of 1.125 and 9.3 m/s, respectively.

To determine the maximum safe velocity, we trained and evaluated the behaviour of
agents with vmax values of 5, 6, 7, and 8 m/s. Figure 5.17 illustrates the velocity and
slip angle profiles of the agents as they complete one lap under evaluation conditions.
Interestingly, agents tend to maintain the maximum velocity around the track. This
behaviour likely occurs because even small values of along,d result in large changes in
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velocity in-between agent samples. Further exacerbating this effect is the slow rate at
which actions can be sampled from the agent.
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Figure 5.17: The velocity profile and slip angle of agents with different maximum velocities
during one test lap.

Figure 5.17 shows that agents with a maximum velocity greater than 5 m/s experi-
ence slip angles larger than 0.2 radians, which is considered both dangerous and unreal-
istic drifting behavior. Furthermore, the dynamic bicycle model from Chapter 4 makes
assumption that tire stiffness varies linearly with lateral force. This assumption is only
valid for slip angles below 0.2 radians [80]. Allowing the agent to select large velocities
enables it to exploit the simulation in an unrealistic manner to achieve fast lap times.
Therefore, the vehicle’s maximum speed was set to 5 m/s, which was the fastest velocity
that did not result in end-to-end agents that drive dangerously and exploit the simulator
by operating the car at large slip angles.

When there was no minimum velocity constraint in place, the agent would often choose
to bring the car to a standstill during training, resulting in excessively long training times.
The minimum speed was therefore set to 3 m/s to prevent this behaviour. Importantly,
this constraint did not significantly affect the agent’s performance.

5.9 End-to-end racing without model uncertainty
Having determined a set of hyper-parameters that yield optimal performance in terms of
both safety and lap time for the end-to-end agent racing on the Porto track, we trained
and evaluated ten agents with these hyper-parameters. These agents completed 98.9% of
evaluation laps with an average lap time of 6.05 seconds, achieving better performance
than any other hyper-parameter set that was tested. In fact, varying any of the hyper-
parameters resulted in decreased performance, showing that the selected hyper-parameter
values are at least locally optimal. Figure 5.18 provides a visualization of one of these
agents’ laps, highlighting the path taken with a color map representing the agent’s velocity.
Notably, the agent maintained maximum velocity for the majority of the track length.
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Nevertheless, the trajectory is smooth and the agent successfully navigated around the
circuit.
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Figure 5.18: The path and velocity profile taken by an end-to-end agent completing Porto in
the anti-clockwise direction.

So far, the focus has been on the relatively simple Porto track. However, the analysis
was expanded to encompass more realistic racing scenarios by training agents to navigate
scaled versions of actual Formula 1 tracks. Specifically, Circuit de Barcelona-Catalunya
in Spain and the Circuit de Monaco in Monaco were selected. These tracks are not
only considerably larger but also feature sharper corners and more complex geometries
compared to the Porto track.

When selecting hyper-parameters for the larger tracks, a tuning procedure similar to
the one presented for the Porto track was utilised. That is, the hyper-parameters were
systematically varied one at a time, while keeping the other hyper-parameters constant.
This hyper-parameter tuning procedure resulted in the following adjustments to Table
5.1 for agents racing on these longer tracks: the number of MDP time steps (M) was
increased to 2.5 · 105, agent sample rate (fagent) was increased to 10 Hz, and the reward
signal values for rdist and rcollision were changed to 0.3 and −2, respectively. The average
learning curves for 10 agents trained to race on each of the tracks using the given hyper-
parameters are shown in Figure 5.19. Importantly, we observe that these agents maximise
reward on each of their respective tracks.
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Figure 5.19: Learning curves for end-to-end agents trained on Porto, Circuit de Barcelona-
Catalunya and Circuit de Monaco.
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Agents trained to race on Circuit de Barcelona-Catalunya completed their laps 56.30%
of the time and achieved an average lap time of 47.39 seconds under evaluation conditions.
Figure 5.20 shows the path and velocity profile taken by an agent completing Circuit de
Barcelona-Catalunya under evaluation conditions. Similar to the findings on the Porto
track, agents racing on the Circuit de Barcelona-Catalunya selected maximum velocity for
the majority of the track, even when navigating sharp corners. Furthermore, an interesting
phenomenon emerged on the Circuit de Barcelona-Catalunya that was not present on the
shorter Porto track: agents tend to exhibit a slaloming behavior, which is characterized
by a winding path. This slaloming effect is quite severe, occurring at nearly every section
of the track.
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Figure 5.20: The path and velocity profile taken by an end-to-end agent completing Circuit de
Barcelona-Catalunya

When assessing agents trained to race on Circuit de Monaco, we found that agents suc-
cessfully completed their laps on 56.20% of their attempts, achieving an average lap time
of 47.39 seconds. Figure 5.20 depicts one example of the path and velocity profile taken
by an agent that successfully completed the Circuit de Monaco under evaluation condi-
tions. Interestingly, the slaloming is also present on the Circuit de Monaco, indicating
that slaloming tends to be a common issue for end-to-end agents navigating long tracks.
Slaloming can negatively impact the performance of an agent under model-mismatch con-
ditions.

5.10 End-to-end racing with model uncertainty
Up to now, results have been presented for end-to-end agents that were trained and
evaluated in identical environments. However, it is important to assess the performance
of agents tasked with driving in situations where the vehicle model does not match the one
utilised during training. During this initial investigation, we introduced model mismatches
by modifying the vehicle model parameters after training, but prior to executing the
evaluation process outlined in Algorithm 6. This adjustment allows us to gain insights
into how the agent performs in a more realistic setting where variations in the vehicle
model are present.

Our initial focus was on investigating the impact of altering the road surface friction
coefficient on the evaluation performance of trained agents. Friction is influenced by
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Figure 5.21: The path and velocity profile taken by an end-to-end agent completing Circuit de
Monaco

various dynamic factors, including temperature and precipitation, making it challenging
to predict accurately. Consequently, it is likely that model mismatches in the road friction
coefficient occur. Figure 5.22 presents a comparison of paths taken by agents evaluated
with (a) the nominal friction value of 1.04, and (b) a friction value of 0.6 (equivalent to
wet asphalt conditions) on a section of the Monaco track. The slip angles of the agents are
visualized by color-mapping them onto their respective paths. When evaluated with the
nominal friction value, the agents display slaloming behavior, resulting in maximum slip
angles of approximately 0.2 radians throughout most areas of the track. In contrast, agents
evaluated with decreased friction exhibit drifting behavior, characterized by slip angles
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Figure 5.22: Trajectory and slip angle of an end-to-end agent racing on Circuit de Monaco
with (a) the nominal road-surface friction value of 1.03, and (b) a decreased road-surface friction
value of 0.6.
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exceeding 0.4 radians. The drastic increase in slip angle indicates that the learned policy
of standard end-to-end agents is dangerous under conditions where model mismatches are
present.

Notably, Figure 5.22 illustrates an instance where an agent with decreased friction
crashes shortly after executing a drift maneuver. This observation emphasizes the impact
of friction on the agents’ handling capabilities and reinforces the significance of creating
algorithms that are robust to errors in the vehicle model parameters.

5.11 Training with domain randomisation
A commonly used technique to enhance robustness against modelling errors is domain
randomisation, which involves randomising simulation parameters during training. The
agent is then tasked with finding a single policy that performs optimally across different
parameter settings [12]. Previous autonomous racing studies have explored various ap-
proaches in this regard. Chisari et al. [33] introduced Gaussian noise to the lateral force
experienced by the tires at each time step, while Ghignone et al. [14] initialized each
episode by adding Gaussian noise with a standard deviation of 0.0375 to the road surface
friction coefficient, which remained constant throughout the episode.

In this investigation, we adopted the approach of Ghignone et al. [14], and modified
the training procedure by sampling the friction value used during every episode from a
Gaussian distribution. This Gaussian distribution had a mean of 1.0489 (the nominal
friction value). Two agents were trained to race on the Porto track; one with a friction
coefficient standard deviation of 0.01 and another with a standard deviation of 0.05. These
agents were then tasked with completing 100 laps under evaluation conditions, with the
mean value of 1.0489 used in every episode.

While agents trained with a friction coefficient standard deviation of 0.01 successfully
completed 51% of their laps, agents trained with a standard deviation of 0.05 completed
only 34% of their laps under evaluation conditions. These results indicate that domain
randomisation has an adverse effect on the agents’ performance, even when the agent
is only tasked with racing under conditions where the average friction value is present.
Figure 5.23 illustrates the paths taken by these agents during evaluation, and clearly
indicates their inability to learn smooth driving behavior.

Standard deviation of road surface
friction coefficient during training

0.01 0.05

Figure 5.23: Paths taken by agents trained with randomised road-surface friction coefficients
on the Porto track under evaluation conditions. During this evaluation lap, the friction coefficient
was set to the nominal value of 1.0489.

Our findings suggest that the optimal policy for autonomous racing is highly sensitive
to the friction coefficient of the road surface. Agents struggle to adapt their policies
to changing friction values effectively, resulting in poorer performance. This sensitivity
highlights the challenge of developing a single policy that performs optimally across a
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range of friction coefficients, demonstrating the limitations of domain randomisation in
the racing context.

5.12 Summary
In this chapter, we have motivated the design of an end-to-end autonomous racing al-
gorithm. Agents utilising this algorithm were trained to race effectively on the Porto
track, successfully completing all of their laps under evaluation conditions. However, this
performance did not scale to larger tracks such as Circuit de Barcelona-Catalunya or Cir-
cuit de Monaco. On these longer tracks, the performance of the agents was hindered by
slaloming, and they did not complete all of their laps.

The presence of slaloming is particularly concerning when considering scenarios in
which model mismatches are present. In fact, during a preliminary investigation into the
effect of model mismatch on the performance of end-to-end agents, we observed collisions.
This is indicative of the limitations of end-to-end algorithms under conditions where model
mismatches are present, and emphasises the need for algorithms that exhibit robustness
against modeling errors.

In the next chapter, we introduce our partial end-to-end solution, which aims to en-
hance robustness towards modeling errors and address the challenges posed by the sensi-
tivity of the optimal policy to vehicle model parameters.

Stellenbosch University https://scholar.sun.ac.za



Chapter 6

Partial end-to-end autonomous racing

Having designed the baseline end-to-end agent and motivated the need for driving algo-
rithms that are robust towards modelling errors, we now introduce our partial end-to-end
algorithm. This approach separates the planning and control tasks, which enables a plan-
ner agent to generate a desired trajectory, which is then tracked using a set of steering and
velocity controllers. By decoupling the planning and control aspects, our algorithm aims
to enhance robustness against modelling errors that commonly arise during the transfer
from simulation to real-world environments. Furthermore, by planning a path relative to
the track, partial end-to-end agents are embedded with environment knowledge, which
results in a performance advantage during training and evaluation.

The chapter begins with a detailed description of the partial end-to-end algorithm.
Subsequently, we outline the implementation of the TD3 algorithm to train the agent
effectively. Next, the process of determining the optimal hyper-parameters for the partial
end-to-end algorithm to ensure the system operates at its peak performance is shown.
The performance of the partial end-to-end algorithm is then assessed in scenarios where
no modeling errors are present, allowing us to gauge the algorithm’s performance under
ideal conditions. Additionally, a comparative analysis is conducted, contrasting our cho-
sen partial end-to-end architecture with alternative variations of the partial end-to-end
approach. These variations include architectures with either solely a velocity controller
or a steering controller.

6.1 Partial end-to-end racing algorithm
Our partial end-to-end algorithm has the decoupled the structure of classical algorithms,
and is comprised of a planner RL agent, a steering and a velocity controller, as well as a
velocity constraint, as depicted in Figure 6.1.

Given that the simulator provides a LiDAR scan and the vehicle’s pose, the need for
a perception algorithm to map the environment and localize the vehicle is eliminated.
The output from the simulator is therefore passed directly to the agent. Applying the
findings from Section 5.6, the observation space of the partial end-to-end agents consists
of a LiDAR scan with 20 beams and vehicle pose. The agent maps this observation to an
action space that comprises a path (represented by a series of x and y coordinates), and
desired velocity (denoted as vd) at a rate of fagent Hz.

A pure pursuit steering controller is used to generate desired steering commands (de-
noted as δd) that track the path. Meanwhile, a proportional feedback velocity controller
generates desired acceleration commands, denoted along,d, to ensure the vehicle main-
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Figure 6.1: The partial end-to-end racing algorithm, which consists of an RL agent that outputs
a plan comprised of a path (i.e, a series of x and y coordinates) and desired velocity, a steering
and a velocity controller, as well as a velocity constraint. δd, vd, and along,d denote the desired
steering angle, longitudinal velocity and longitudinal acceleration respectively.

tains the desired velocity. Furthermore, the velocity constraint component, as introduced
in Equation 5.1, limits the desired acceleration so that the vehicle operates within safe
speed limits. To keep the comparison between partial and fully end-to-end agents fair,
the allowable velocity range for the partial end-to-end agent is set between 3 and 5 m/s.
Furthermore, the steering and velocity controllers, as well as velocity constraint operate
at the 100 Hz sample rate of the simulator introduced in Section 4.3. It is important
to note that these components are treated as part of the environment to conform to the
definition of the MDP.

6.1.1 Planner agent

The partial end-to-end planner agent, which is built using a DNN, is presented in Figure
6.2. Similar to the end-to-end agent, the observation vector is normalized within the
range of [0, 1]. The DNN consists of three fully connected layers. The input layer has
m1 neurons, followed by a hidden layer with m2 neurons. Finally, the output layer has 2
neurons. The ReLU activation function is applied to the first two layers, while the output
layer is activated using a hyperbolic tangent function. The use of a hyperbolic tangent
function ensures that the outputs of the neural network are normalized within the range
of (−1, 1). One output of the DNN, denoted as vnorm, is scaled to the desired longitudinal
velocity range (vmin, vmax) to yield the desired longitudinal velocity vd. The other output,
denoted as p, is utilized to construct the path that the vehicle will follow.

6.1.2 Path generation method

Partial end-to-end approaches adopt different methods to generate a path based on the
output of the neural network. One common approach is to employ a predefined function
that takes the neural network’s output as parameters. For instance, Weiss et al. [19]
utilize bezier curves, where the control points of the curves correspond to the output of
the neural network. Similarly, Capo et al. [17] predict the offset of a single point ahead
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Figure 6.2: The partial end-to-end agent. The outputs of the DNN both have the range (−1, 1).
The output denoted vnorm corresponds to the desired longitudinal velocity and is scaled to the
range (vmin, vmax). The other output, denoted p, is used to construct the path.

of the vehicle in relation to the track centerline using the neural network’s output. On
the other hand, classical approaches such as [81; 44; 82] utilize multiple motion primitives
generated by forward simulating the vehicle dynamics to construct a path. However, these
methods rely on direct access to the vehicle model, which is not available in our case as
we are using model-free RL agents. Hence, we are limited to the former approach.

We chose to utilise the Frenet frame [45] to generate a path from the DNN output p.
The Frenet frame is a curvilinear coordinate system where the horizontal axis is fixed to
the centerline of the track. In this frame, distance along the horizontal axis corresponds to
distance along the centerline, and is denoted as s. Additionally, the vertical axis represents
the perpendicular distance from the centerline, and is denoted as n. We define the origin
of the Frenet frame to coincide with the starting line.

To illustrate the Frenet frame, Figure 6.3 shows an example trajectory of an agent
racing anti-clockwise around the Porto track. This figure presents the agent’s trajectory
in both Cartesian coordinates and Frenet coordinates. It is worth noting that within the
Frenet frame, navigating around the track is equivalent to traveling along the horizontal
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Figure 6.3: An example trajectory of an agent racing anti-clockwise around Porto, in (a)
Cartesian coordinates, and (b) Frenet coordinates.
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axis. Additionally, the track boundaries are conveniently expressed as vertical distances
from the centerline. As a result, it is easier to create paths that avoid the track boundaries
in Frenet coordinates compared to Cartesian coordinates. This advantage proves valuable
because crashes can be prevented by constraining the action space to exclude trajectories
that intersect with the track boundaries.

Our approach to generating paths involves solving a predefined third-order polyno-
mial function with specific constraints inside the Frenet coordinate system. Figure 6.4
illustrates this process, where the steps are as follows:

1. Convert the vehicle coordinates and heading into the Frenet frame, denoting the
distance along the centerline as s0 and the perpendicular distance from the centerline
as n0.

2. Determine the heading of the vehicle in the Frenet frame, denoted as ψ0, by sub-
tracting the heading of the path at the Cartesian coordinate corresponding to s0
from the vehicle heading.

3. Construct a third-order polynomial within the Frenet frame, given by

f(s) = As3 +Bs2 + Cs+D, (6.1)

which is bounded horizontally by s0 and s1, where s1 is chosen to be 2 meters ahead
of s0 along the centerline.

4. Apply the following constraints to the polynomial:

a) The path must pass through the vehicle’s center of gravity (CoG), satisfying
f(s0) = n0.

b) At s0, the path is parallel to the vehicle’s heading, which satisfies f ′(s0) =
tan(ψ0).
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Figure 6.4: An illustration of the process of generating the polynomial path in the Frenet frame.
(a) The vehicle coordinates are converted into the Frenet frame, then (b) a path is constructed
within the Frenet frame, after which (c) the path is converted into Cartesian coordinates.
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c) The perpendicular distance of the path from the centerline at s1 is n1, where n1

is obtained by scaling the DNN output p by the track width. This is enforced
by setting f(s1) = n1.

d) At s1, the path is parallel to the centerline of the track, resulting in f ′(s1) = 0.

5. Extend the path with a horizontal line at (s1, n1) to prevent the vehicle from reaching
the end of the path before sampling a new path.

6. Convert the path from Frenet frame coordinates to Cartesian coordinates for com-
patibility with the steering controller.

By scaling p to the width of the track, the paths that are generated do not intersect
with the track boundary. In this way, agents are ‘embedded’ with knowledge about the
track, which may enable them to train faster and with fewer collisions than model-free
end-to-end agents that have no knowledge of the environment.

6.1.3 Steering controller design

The pure pursuit steering controller is popular amongst partial end-to-end methods [21;
18]. The popularity of this controller, combined with the fact that it does not require a
vehicle dynamics model, guided our decision to implement it as the path tracker. Our
implementation of pure pursuit is based on the work by Sakai et al. [78].

A pure pursuit controller facilitates the steering of the vehicle towards a designated
target point on the planned path, as depicted in Figure 6.5. The target point is determined
by a specified look-ahead distance, denoted as ld, which is calculated using

ld = ks · v + Lc, (6.2)

where ks is the look-ahead gain, Lc is a constant distance, and v is the longitudinal velocity
of the vehicle in m/s. The look-ahead distance is adjusted according to the velocity based
on the finding by Patnaik et al. [83] that larger look-ahead distances are required for
higher velocities to maintain stability. Furthermore, ld is measured from the center of the
rear axle.

The desired steering angle δd is then computed as

δd = tan−1

(
2L sin(α)

ld

)
, (6.3)

where L is the wheelbase of the vehicle, and α is the angle between vehicle’s heading and
look-ahead distance vector. This ensures that the rear wheel travels in a circular arc to
the target point, under the assumption that no slipping occurs. The target point and
steering angle is recomputed using Equations 6.2 and 6.3 at a rate of 100 Hz.

6.1.4 Velocity controller design

The velocity controller is implemented in a similar manner to the proportional controller
integrated into the official F1tenth simulator [6]. It takes the current vehicle velocity and
the desired velocity vd, determined by the planner agent, as inputs. It then calculates

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. PARTIAL END-TO-END AUTONOMOUS RACING 61

Target point

Planned path
δd

α
L

ld

Figure 6.5: A depiction of the pure pursuit controller, which steers the vehicle towards a target
point on the path. The symbols ld, L, α and δd represent the look-ahead distance, wheelbase,
angle between the vehicle’s heading and look-ahead distance vector, and desired steering angle
respectively. Furthermore, the blue line represents the path the rear wheels travel to reach the
target point.

the desired longitudinal acceleration along,d using proportional control according to the
following conditions:

along,d =

{
kv

amax
vmax

(vd − v) if vd ≥ v

kv
amax
vmin

(vd − v) if vd < v.
(6.4)

Here, kv represents the controller gain, and amax is the maximum longitudinal acceleration
as listed in Table 4.2. Importantly, at this layer of abstraction, it is assumed that the
vehicle has a lower-level controller that accurately tracks acceleration commands [7; 84].
Furthermore, like the steering controller, the velocity controller is sampled at a rate of
100 Hz.

6.2 Applying TD3 to partial end-to-end racing
To enable the partial end-to-end agent to train using TD3, similar steps were followed
as for the end-to-end agent. Specifically, we incorporated the following modifications to
Algorithm 5: Line 7, in which an action is sampled from the agent, is changed to

at = [vd, path]← scale(πϕ(ot + ϵ)), ϵ ∼ N (0, σaction). (6.5)

to account for the fact that partial end-to-end agents output a velocity and path, rather
than an acceleration and steering angle.

Lines 8 to 14 of Algorithm 5 employ a for loop that performs N environment samples
for every MDP time step. Since the steering and velocity controller, as well as the velocity
constraint, are included in the definition of the environment for the partial end-to-end
agent, these components execute at line 8. Specifically, the desired steering angle (δd),
and desired longitudinal acceleration (along,d) is sampled using Equations 6.3 and 6.4,
respectively. The velocity constraint component then limits the velocity using Equation
5.1. The remainder of Algorithm 5 were unmodified for use with the Partial end-to-end
agent.
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Besides the modifications to the TD3 algorithm, two important considerations when
implementing TD3 are the designs of the critics and the reward signal. The architecture
adopted for the critic DNN is analogous to that of the actor. It accepts a normalized
observation and action as input and outputs the action-value. It comprises three layers,
the first two of which are identical to the actor (i.e., the input and hidden layers comprise
m1 and m2 neurons with ReLU activation functions, respectively). Furthermore, the
output layer has a single neuron with a linear activation. Lastly, the reward signal from
Equation 5.3, which was used for the end-to-end agent, was adopted for use with the
partial end-to-end agent.

After implementing these changes to the TD3 algorithm, Algorithm 6 was adapted to
evaluate partial end-to-end agents. This was done by substituting Equation 6.5 into line 4,
which samples an action from the agent. Additionally, Equations 6.3 and 6.4 were added
in-between lines 2 and 3 to sample control actions. By incorporating these adjustments,
both end-to-end and partial end-to-end agents were evaluated under identical conditions.
Specifically, no exploration noise was added to the actions selected by the partial end-to-
end agent, while Gaussian noise was introduced to its observation. As with the end-to-end
agent, this Gaussian noise had standard deviations of 0.025 m for x and y coordinates,
0.05 rads for heading, 0.1 m/s for velocity, and 0.01 m for each element of the LiDAR
scan.

6.3 Empirical design and hyper-parameter values
The partial end-to-end algorithm, as well as modifications to TD3, have been introduced
with symbolic hyper-parameter values. As with the end-to-end algorithm, these values
were tuned experimentally for optimal performance. The values that were determined as
locally optimal for all three tracks (i.e., Porto, Barcelona-Catalunya, and Monaco) are
listed in Table 6.1.

To determine these hyperparameters, the same tuning procedure as for the end-to-end
agent was followed, with the addition of hyper-parameters associated with the velocity
and steering controller. This procedure involved repeatedly training agents using the
algorithm described in Section 6.2 with various values of the hyper-parameter under con-
sideration, while keeping all of the other hyper-parameters fixed at the values listed in
Table 6.1. Furthermore, three agents were trained for every hyper-parameter set to ensure
consistency in the results.

Since the hyper-parameter tuning procedure was discussed in detail for end-to-end
agents in Chapter 5, the complete hyper-parameter tuning procedure for parameters that
were already shown will not be presented in this chapter. However, the process of tuning
the agent sampling rate (fagent) is demonstrated as a representative sample of the hyper-
parameter tuning procedure. Figure 6.6 illustrates the results obtained while training
agents on the Barcelona-Catalunya track with sampling rates ranging from 2 Hz to 20 Hz.
The figure shows the percentage of failed laps, lap time, and reward achieved by these
agents. It is worth noting that agents utilising each sample rate achieved a 0% failure
rate within the first 50 training episodes. Furthermore, with the exception of agents
utilizing a 5 Hz agent sampling rate, the lap time of all other agents convergence to
approximately 47.3 seconds. Similarly, the reward of all agents, except those using a 5 Hz
agent sampling rate, converged to a value of 22.5. These results indicate that our partial
end-to-end algorithm design is more robust towards hyper-parameter changes than the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. PARTIAL END-TO-END AUTONOMOUS RACING 63

Hyper-parameter Symbol Value (Porto and
Barcelona-
Catalunya)

Value
(Monaco)

Algorithm
Maximum time steps M 5 · 104 5 · 104

Target update rate τ 5 · 10−3 5 · 10−3

Replay buffer size B 5 · 105 5 · 105
Replay batch size B 400 400

Exploration noise standard
deviation

σaction 0.1 0.1

Reward discount rate γ 0.99 0.99
Agent samples between

network updates
d 2 2

Agent sample rate fagent 10 Hz 10 Hz
Target action noise standard

deviation
σ̃ 0.2 0.2

Target action noise clip c 0.5 0.5
Reward signal
Distance reward rdist 0.2 0.25

Time step penalty rtime −0.01 −0.01
Collision penalty rcollision −5 −5

Observation
Number of LiDAR beams L 20 20

Neural network
Learning rate α 10−3 10−3

Input layer size m1 400 400
Hidden layer size m2 300 300

Velocity constraints
Minimum velocity vmin 3 m/s 3 m/s
Maximum velocity vmax 5 m/s 5 m/s

Velocity controller
Gain kv 0.5 0.5

Steering controller
Look-ahead gain ks 0.1 0.1

Look-ahead constant Lc 1 m 1 m

Table 6.1: Experimentally determined values of hyper-parameters for the partial end-to-end
agents trained to race on all three tracks.

end-to-end algorithm. Additionally, the agent sampling rate was chosen conservatively as
10 Hz.

6.4 Steering controller tuning
To determine optimal values for the pure pursuit steering controller’s look-ahead gain (ks)
and look-ahead constant (Lc) (as in Equation 6.2), a series of experimental evaluations was
conducted. Initially, the focus of these evaluations was on assessing the impact of varying
Lc while keeping ks constant on the tracking capabilities of the pure pursuit controller.
During the first experiment, the vehicle was tasked with following a straight line, while
exclusively sampling actions from the pure pursuit controller. A constant speed of 3 m/s
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Figure 6.6: (a) The percentage of failed laps and (b) average lap time of completed laps during
training, as well as (c) the average learning curves of three partial end-to-end agents utilising
agent sampling rate (fagent) values ranging from 2 Hz to 20 Hz.

was assigned to the vehicle. Furthermore, the look-ahead gain ks was set to a small value
of 0.1, based on the finding by Patnaik et al. [83] that it should not be the dominant
term in determining the look-ahead distance. The vehicle was initially positioned parallel
to the path, with a distance of 0.5 m separating them. The experiment was repeated for
Lc values between 0.2 and 2 meters.

The paths taken by the vehicles in this experiment are visually represented in Figure
6.7. We observed that while shorter look-ahead distances result in smaller tracking errors,
they also cause steering oscillation. On the other hand, longer look-ahead distances
result in less oscillation but larger tracking errors. While an Lc value of 0.2 m produced
extreme oscillations, controllers with an Lc value of 2 m took excessively long to reduce
the positional error between the vehicle and path.

Based on these findings, agents were trained to race on the Barcelona-Catalunya track
with look-ahead constants of 0.5, 1, and 1.5 meters, while setting the remaining hyper-
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Figure 6.7: Trajectories taken by vehicles utilising a pure pursuit steering controller following
the straight blue line.
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Figure 6.8: (a) The percentage of failed laps and (b) lap time of completed laps during training,
as well as (c) the learning curves of partial end-to-end agents with different pure pursuit look-
ahead distances racing on Circuit de Barcelona-Catalunya.

parameters equal to those listed in Table 6.1. The average lap time, percentage of failed
laps and average cumulative episode reward during training for three agents trained with
each look-ahead distance are graphed in Figure 6.8.

From Figure 6.8, partial end-to-end agents trained with look-ahead constant greater
than 1 meter did not effectively learn to reduce their failure rate to 0%, whereas agents
trained with look-ahead constants of 0.5 and 1 meters do. When comparing the agents
trained with look-ahead constants of 0.5 and 1 meters, it is worth noting that the agents
with an Lc of 1 meter achieve a slightly faster average lap time. In terms of overall
performance, the agents trained with a look-ahead constant of 1 meter outperform the
other agents and achieve the highest reward. The look-ahead constant Lc was therefore
selected as 1 meter.

To verify that the pure pursuit steering controller is working, we compared the paths
executed by agents with a look-ahead distance of one meter, to the paths that were
selected by the RL agent. A comparison of these two paths is illustrated in Figure 6.9,

Path sampled
from agent

Vehicle position at
agent sample time Path driven

Figure 6.9: The path driven by a partial end-to-end agent on a section of Circuit de Barcelona-
Catalunya, along with planned paths sampled from the agent.
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which shows that the paths chosen by the agent do not coincide with the path travelled
by the vehicle. This is because the pursuit controller utilises a geometric, rather than
a dynamic model of the vehicle, and is less accurate at higher speeds. Interestingly, the
agent outputs a path that approaches the track’s edge, leading to a driven path that
remains close to the center. Thus, the planner agent appears to be ‘compensating’ for the
controller tracking performance. This is attributed to the fact that the agent is trained
with the controllers in place.

6.5 Velocity controller tuning
Alongside the steering controller hyper-parameters, the velocity controller gain is also an
important parameter to tune to optimise the performance of the vehicle. The velocity
controller gain kv (found in Equation 6.4) was tuned experimentally by training agents to
race on Barcelona-Catalunya with kv values of 0.5, 1 and 2. The percentage successful laps
and average lap time that three agents achieved while utilising each of the kv values and
racing under evaluation conditions are given in Table 6.2. From this table, we observe
that each agent completed all of its laps and that the differences in lap time between
agents are minimal.

Velocity
controller
gain, kv

Successful
laps [%]

Lap time [s]

0.5 100 48.37

1 100 48.34

2 100 47.34

Table 6.2: Results from agents racing under evaluation conditions using different values for the
velocity controller gain (k).

A qualitative evaluation of the trajectories taken by agents utilising each velocity
controller gain was therefore conducted. The paths followed by agents employing differ-
ent controller gains on the final section of Barcelona-Catalunya is shown in Figure 6.10.
Agents utilizing controller gains of 0.5 and 1 exhibit similar trajectories, while those using
a controller gain of 2 tend to understeer at some corners. This behavior is evident at the
final corner, where the agent with a controller gain of 2 approaches the outer edge of
the track. As a result, we opt for a controller gain of 1 to balance vehicle safety and
performance.

6.6 Racing without model uncertainties
Having determined a locally optimal hyper-parameter set for the partial end-to-end algo-
rithm, we proceeded to assess its performance in comparison to the end-to-end baseline
under conditions without model-mismatches. Figure 6.11 presents the average training
performance, in terms of failed laps and lap time, of 10 partial end-to-end, as well as 10
fully end-to-end agents trained on the Barcelona-Catalunya and Monaco tracks. A trend
is observed across both tracks: the partial end-to-end agents achieve a near 0% failure rate
early in training, while the end-to-end agents continue to experience crashes throughout

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. PARTIAL END-TO-END AUTONOMOUS RACING 67

Velocity controller gain, kv
0.5 1 2

Figure 6.10: Paths taken by partial end-to-end agents utilising controller gain (kv) values of
0.5, 1 and 2 on the final section of Barcelona-Catalunya.

the training process. However, it is worth noting that both the partial and fully end-to-end
agents achieve similar lap times for the laps that are successfully completed.
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Figure 6.11: (a) Percentage of failed laps and (b) lap time of partial and fully end-to-end
agents during training. Dashed lines indicate agents trained to race on Barcelona-Catalunya,
while solid lines indicate agents trained to race on Monaco.

Based on these results, utilising a trajectory planning approach coupled with a con-
troller offers distinct advantages over end-to-end methods during training. In particular,
many collisions can be avoided by constraining the generated paths such that they do
not intersect with the track boundary. Thus, partial end-to-end agents have embedded
knowledge of the track and can avoid the boundaries. This is exemplified in Figure 6.12,
which depicts the locations where an end-to-end, as well as a partial end-to-end agent
crashed during one training run. Whereas the end-to-end agent experienced 726 crashes
in 1170 training episodes, the partial end-to-end agent encountered only 11 crashes in 113
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training episodes. Moreover, the crashes experienced by the partial end-to-end agent were
as a result of poor tracking performance of the pure pursuit controller at high speeds.

End-to-end Partial end-to-end

Figure 6.12: Locations where the end-to-end and partial end-to-end agents crashed during
training.

The total percentage of successful laps and average lap time for 10 end-to-end and
partial end-to-end agents racing under evaluation conditions on every track is presented in
Table 6.3. From this table, we observe that while end-to-end agents successfully complete
nearly all of their evaluation laps on the simple Porto track, they experience crashes
on the more complex tracks, namely Barcelona-Catalunya and Monaco. On the other
hand, partial end-to-end agents experience a low percentage of crashes on each of the
tracks. Furthermore, partial and fully end-to-end agents execute similar lap times on the
Porto and Barcelona-Catalunya tracks. However, Partial end-to-end agents race slower
on average on the Monaco track. This is due to an outlier partial end-to-end agent that
learned to continuously select the slowest speed. Excluding this outlier, partial end-to-end
agents achieve an average lap time of 35.73, which is competitive with end-to-end agents.

Algorithm

Track End-to-end Partial end-to-end

Successful laps
[%]

Lap time [s] Successful laps
[%]

Lap time [s]

Porto 98.9 6.05 100.0 5.86

Barcelona-
Catalunya

56.3 47.39 99.9 47.12

Monaco 59.2 35.63 100.0 37.91

Table 6.3: Performance of end-to-end and partial end-to-end agents racing on all three tracks
under evaluation conditions.

While Table 6.3 provides the average results across a set of 10 agents, a more compre-
hensive depiction of the distribution of agents’ performances is presented in Figure 6.13.
This figure illustrates a histogram detailing the distribution of successfully completed laps
under evaluation conditions. Each of the partial end-to-end agents completed all of their
laps in their respective scenarios, except for one instance on the Barcelona-Catalunya
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track, where 99 out of 100 laps were successfully completed. In contrast, only a single
end-to-end agent out of the 10 managed to accomplish more than 90 out of 100 laps, when
considering both the Barcelona-Catalunya and Monaco tracks. Furthermore, the range of
evaluation outcomes for the end-to-end agents is large, with certain agents achieving less
than 10 percent completion of their laps. Thus, the partial end-to-end framework allows
agents to train and execute laps more consistently than an end-to-end framework.
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Figure 6.13: Distribution of percentage successful laps completed by agents under evaluation
conditions for the Barcelona-Catalunya and Monaco tracks.

Figures 6.14 and 6.15 illustrate the paths executed by partial end-to-end agents while
racing under evaluation conditions on the Barcelona-Catalunya and Monaco tracks, re-
spectively. The velocities of these agents are color-mapped onto their paths. Furthermore,
the paths taken by end-to-end agents racing on the same track are shown as a light blue
dashed line. We observe from these figures that paths taken by partial end-to-end agents
are smooth compared to end-to-end agents. Notably, no slaloming was observed from any
partial end-to-end agent. Furthermore, the partial end-to-end agents demonstrated the
ability to appropriately decelerate when navigating some sharp corners.
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Figure 6.14: The path and velocity profile taken by a partial end-to-end agent completing
Circuit de Barcelona-Catalunya. For comparison, the path of an end-to-end agent racing on the
same track is depicted with a dashed light blue line.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. PARTIAL END-TO-END AUTONOMOUS RACING 70

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

V
el

oc
it
y

Figure 6.15: The path and velocity profile taken by a partial end-to-end agent completing
Circuit de Monaco. For comparison, the path of an end-to-end agent racing on the same track
is depicted with a dashed light blue line.

In Chapter 5, end-to-end agents that exhibited dangerous slaloming behavior asso-
ciated with high slip angles were observed. This behavior was particularly problematic
when model-mismatches were present, leading to frequent crashes. To ascertain whether
the absence of slaloming behaviour resulted in a reduction in slip angles for partial end-
to-end agents, we recorded the slip angles experienced by agents racing on a section of
Circuit de Monaco. The path and slip angles of both partial and fully end-to-end agents
are plotted in Figure 6.16. From this figure, partial end-to-end agents experience a slightly
smaller peak slip angle than end-to-end agents. Additonally, the slaloming behaviour ex-
hibited by end-to-end agents causes large oscillation in the slip angle throughout the lap.
In contrast, the average slip angle exhibited by partial end-to-end agents is smaller than
that of the end-to-end agent. The absence of slaloming behavior displayed by the partial
end-to-end agents is a promising indication that our technique may offer improvements
over the performance of end-to-end agents when model-mismatches are present.

6.7 Evaluation of alternative partial end-to-end
algorithm architectures

An ablation study was conducted to assess the impact of each individual controller on
the algorithm’s behavior. In this study, agents were trained to race on the Barcelona-
Catalunya track with either solely a steering controller or solely a velocity controller.

To ensure consistency, these partial end-to-end agents were trained using the hyper-
parameters listed in Table 6.1. Furthermore, three agents were trained utilising each
proposed architecture. Figure 6.17 presents the percentage of failed laps and average lap
time during training, as well as the learning curves for agents utilising each architecture.
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Figure 6.16: The paths and slip angles of agents racing on the final section of Circuit de
Monaco.

From this figure, there is a clear distinction between agents with and without a steering
controller when observing the percentage of failed laps. Whereas the failure rate of agents
utilising a steering controller quickly decreases to 0%, agents without a steering controller
(i.e., end-to-end agents and partial end-to-end agents with solely a velocity controller)
continue to crash throughout training. Interestingly, the lap time for all agents, except
for those with only a steering controller, converged to a similar value of approximately 48
seconds. This is because agents relying solely on a steering controller exhibited a tendency
to choose the slowest possible speed. In terms of overall performance, the partial end-to-
end algorithm employing both controllers achieved a higher reward per episode compared
to other agents.
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Figure 6.17: (a) The percentage of failed laps and (b) lap time during training, as well as
(c) the learning curves for agents utilising each algorithm structure, and trained to race on the
Barcelona-Catalunya track.

As part of the ablation study, we qualitatively evaluated the trajectories executed
by each proposed architecture on Barcelona-Catalunya. Figure 6.18 displays the paths
taken by agents using the different architectures. The paths taken by agents without a
steering controller are depicted on the left, whereas the paths taken by agents utilising a
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Algorithm
End-to-end Only velocity Only steering Both

Figure 6.18: The paths taken by agents utilising each algorithm architecture. Paths taken by
agents without a steering controller are depicted on the right, whereas the paths taken by agents
utilising a steering controller are depicted on the left.

steering controller are depicted on the right. It is evident that partial end-to-end agents
without a steering controller exhibit slaloming, similar to that of the end-to-end agent.
Additionally, the behavior of both agents utilizing a steering controller are similar. We
therefore determine that the steering controller is the dominant component in improving
the performance of partial end-to-end agents over end-to-end agents. Furthermore, the
best component configuration for partial end-to-end algorithms includes both steering and
velocity control.

6.8 Summary
By constraining the path using the Frenet frame, partial end-to-end agents are able to
significantly reduce the number of crashes during training and evaluation. In addition to
a significant reduction in crashes, partial end-to-end agents are able to train significantly
faster (in fewer than one-sixth the number of training steps) than end-to-end agents.
Furthermore, when racing under evaluation conditions, partial end-to-end agents execute
smooth trajectories which result in lower slip angles. This is a promising indicator that
the partial end-to-end framework may offer further performance advantages in settings
where model mismatches are present. Therefore, in the next chapter, we will assess the
performance of the partial end-to-end agents under conditions where model mismatches
are introduced intentionally.
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Chapter 7

Racing under model uncertainty

In the previous chapter, we observed that partial end-to-end agents have an advantage
over fully end-to-end agents during both training and testing. However, the comparisons
between the two racing algorithms were conducted under conditions that only accounted
for uncertainty in the agent’s observation by adding noise to the LiDAR scan and vehicle
pose. In addition to this, when considering real-world deployment, uncertainties related to
the vehicle model also emerge, leading to errors in the vehicle model itself. In this chapter,
we compare our partial end-to-end algorithm with the baseline end-to-end algorithm in
scenarios where the vehicle model used for evaluation differs from the one utilized during
training.

Model mismatch is anticipated to pose a greater challenge in the broader context of
road-going autonomous vehicles than racing vehicles because public roads and cars are not
monitored to the same extent as race cars and tracks. However, conducting experiments to
assess the impact of model-mismatch on a simulated F1tenth car yields valuable insights
applicable to the broader road-going problem. Specifically, we can ascertain which types
of model inaccuracies jeopardize vehicle safety and determine the extent to which a given
degree of model inaccuracy affects safety and performance. Accordingly, we investigated
the types and magnitudes of practical modeling errors that are expected to be found in
road-going cars. Our investigations encompass practical modeling errors stemming from
three sources:

1. vehicle mass and mass distribution,

2. tire cornering stiffness coefficient, and

3. road surface friction coefficient.

It is important to note that our notion of model mismatch refers to a discrepancy be-
tween the vehicle model used during training, and the actual vehicle. Therefore, although
online estimation of vehicle model parameters is possible, model mismatch will persist
unless the updated vehicle model can be utilized to either retrain the agent online, or re-
place it with another agent that was trained with a set of vehicle parameters more similar
to the real vehicle. These approaches may be prohibitively expensive for complex policies,
such as those required by road-going vehicles. Furthermore, while model mismatching is
a phenomenon that takes place when deploying agents in the real world, our analysis is
restricted to simulation to prevent unnecessary damage to physical vehicle hardware.

To simulate model-mismatch scenarios, we introduced variations in the vehicle model
between the training and evaluation. Algorithm 6 was then employed to evaluate the

73
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agent’s performance when racing with the modified vehicle model. This approach is similar
to the ones taken by Fuchs et al. [30] and Ghignone et al. [14]. It is important to note
that these experiments were conducted on a single agent for each algorithm architecture.
The selected agents were representative of the median performance of each framework.

7.1 Adding a dynamic mass
A vehicle’s occupants and cargo change its total mass (m), the center of gravity relative
to the front axle (lf ), and moment of inertia (Iz). The parameters m, Iz and lf appear in
the heading rate and slip angle terms of the dynamic bicycle model described by Equation
4.8, which is used for higher speeds. However, only lf appears in the slip angle term for
the kinematic bicycle model in Equation 4.9. This indicates that a dynamic mass has a
greater effect on the vehicle dynamics at higher speeds, where the motion of the vehicle
is accurately represented by Equation 4.8.

To investigate the effect of a model mismatch in vehicle mass, we simulated the addi-
tion of various masses, ranging from 0.3 kg to 1.5 kg, along the longitudinal axis of the
vehicle. Subsequently, the performance of both a partial and fully end-to-end agent was
evaluated using Algorithm 6. The percentage of successful laps achieved by the agents is
plotted as a function of the position of the masses along the length of the vehicle in Figure
7.1. Furthermore, we chose to perform this experiment on the Porto track, because the
difference in performance between the partial and fully end-to-end agents under nominal
(i.e., no model mismatch) conditions were minimal on this track.
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Figure 7.1: The percentage successful laps under evaluation conditions for agents with masses
placed along the longitudinal axis of the vehicle. The front and rear axles are indicated by black
dashed lines.

Our findings indicate that the end-to-end agent exhibited sensitivity to an unaccounted-
for mass on the vehicle, particularly when the mass was positioned toward the back. This
observation is supported by the significant decrease in lap completion rate when the
mass is placed closer to the rear axle. Interestingly, the end-to-end agent displayed some
resilience towards a mass located at the front of the vehicle. In contrast, the partial
end-to-end algorithm demonstrated a higher level of robustness against modeling errors
stemming from unaccounted-for masses. Regardless of the position of the mass placement
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on the vehicle, the partial end-to-end agent successfully completed a large percentage of
its evaluation laps.

In addition to observing the failure rates of agents with an added mass on the vehicle,
we also qualitatively evaluated the behaviour of each agent with a 0.3 kg mass placed
directly above the front axle over one lap of the Porto track. Figure 7.2 shows sample
trajectories of fully and partial end-to-end agents under nominal conditions, as well as
with model-mismatch, over one lap.
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Figure 7.2: The paths, steering angles, longitudinal velocities, and slip angles of fully end-to-
end agents in the left column, and partial end-to-end agents in the right column, over a single
lap of the Porto track. The trajectories of agents with and without the added mass above the
front axle are superimposed for comparison.

In Figure 7.2, it is observed that the end-to-end agent, when racing with an added
mass, begins to deviate from the nominal trajectory at approximately the halfway point.
Initially, the steering angle exhibits slight oscillations. As the agent approaches the corner,
these oscillations intensify, accompanied by a significant spike in slip angle, indicating a
loss of control. Consequently, the velocity decreases to vmin in an attempt to regain control.
However, even after the slip angle returns to the normal range, the agent continues to
exhibit a slaloming behavior. Thus, in addition to the fact that end-to-end agents crash
on 5% of the evaluation laps, their behaviour is still dangerous on laps that are completed.
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In contrast, the partial end-to-end agent did not deviate from the nominal trajectory
in any of the evaluation laps. Decoupling path planning from control therefore provides
stability and robustness to modeling errors in the total vehicle mass for RL approaches.

7.2 Uncertain cornering stiffness
Another practical model mismatch that vehicles encounter is a discrepancy in the cor-
nering stiffness terms (CS,r, CS,f ) which characterises their tires. Tire construction and
dimensions, the type and quality of the tread, and inflation pressure are significant factors
when determining cornering stiffness [80]. Once again, the effect of a cornering stiffness
model mismatch on the vehicle dynamics is more pronounced at higher speeds, as evident
from the absence of tire stiffness terms in the kinematic model applicable at low speeds,
and their inclusion in the dynamic model described by Equation 4.8.

We conducted an investigation whereby we evaluated the performance of agents after
simulating changes in cornering stiffness coefficient for (a) the front tires, (b) the rear tires,
then (c) both the front and rear tires together by the same percentage. These changes
were once again applied in between training and evaluation on the Porto track. During
these experiments, the tire stiffnesses were varied up to ±20% of the nominal values of
4.72 and 5.45 rads−1 for the front and rear tires, respectively. The percentage of successful
laps of agents racing with these mismatched cornering stiffness coefficients are shown in
Figure 7.3.
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Figure 7.3: Success rates under evaluation conditions of agents with mismatched tire cornering
stiffness. Subplot (a) shows the effect of varying only the front tire stiffness, (b) the effect of
varying only the rear tire stiffness, and (c) the effect of varying both front and rear tire stiffness
together.

As is evident from Figure 7.3, the end-to-end agent is sensitive to an increase in
the front cornering stiffness coefficient, while also being sensitive to a decrease in the rear
cornering stiffness coefficient. In addition, when both the front and rear cornering stiffness
coefficients are altered simultaneously, the end-to-end agent tends to experience crashes.
In contrast, the partial end-to-end agent demonstrates resilience to changes in either front
or rear tires. Although it does experience failures when both the front and rear cornering
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stiffness coefficients are decreased together by 20%, the failure rate is comparatively lower
than end-to-end agents.

A decrease in rear cornering stiffness coefficient was identified as the worst-case sce-
nario for the end-to-end agent. To further investigate this, we compared the trajectories
executed by both the partial and fully end-to-end agents on the Porto track, considering
a scenario whereby the rear cornering stiffness coefficient was decreased to 4.36 rads−1.
Figure 7.4 illustrates the trajectories taken by the agents with and without this model
mismatch. In this evaluation, the agents’ starting point is at the bottom of the track.
When model-mismatch in the rear cornering stiffness coefficient is present, the end-to-end
agent exhibits slaloming behavior characterized by significant oscillations in slip angle
from the beginning of the lap. In this instance, the end-to-end agent crashes after the
second turn.
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Figure 7.4: Trajectories of agents racing on Porto with and without a decreased rear cornering
stiffness coefficient CS,r. Trajectories executed by an end-to-end agent are shown in the left
column, while trajectories executed by a partial end-to-end agent are shown in the right column.
Furthermore, the trajectories of agents racing with and without model mismatch are superim-
posed for comparison.

In contrast, the trajectories followed by the partial end-to-end agents, with and with-
out the model mismatch, are very similar. Hence, when there is a model mismatch
in the cornering stiffness, partial end-to-end agents outperform end-to-end agents both
quantitatively (in terms of the number of failed laps) and qualitatively (as evident from
the analysis of their trajectories). Whereas end-to-end agents tend to slalom when model
mismatching occur in the cornering stiffness coefficients, partial end-to-end agents demon-
strate more predictable behaviour. Moreover, they did not deviate from the trajectory
that they would have executed had there been no model mismatch present.

7.3 Discrepancy in road surface friction
In our final model mismatch investigation, we compared the performance of partial and
fully end-to-end agents under conditions where the road surface friction coefficient value
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used to train the agents is erroneous. Accurately determining the road surface friction
coefficient at every point on the road surface is impractical. Moreover, the road surface
friction value for a given road surface is influenced significantly by weather conditions.
For instance, the minimum friction coefficient values for dry and wet asphalt are 0.7 and
0.4, whereas the minimum road surface friction coefficients for dry and wet gravel are
0.6 and 0.3, respectively [63]. As a result, there is a substantial variation of friction
values encountered by vehicles on both public roads and racetracks, making a mismatch
in friction coefficient highly likely to occur.

For this investigation, we perturbed the road surface friction coefficient in between
training and evaluation. Agents were evaluated with road surface friction values ranging
from 0.5 (representing a typical value for wet asphalt) to 1.04 (corresponding to the nomi-
nal training value for F1tenth cars given in Table 4.3) on all three tracks. Importantly, our
simulator assumes a spatially and temporally uniform road friction coefficient throughout
a lap. With this assumption, the worst-case scenario whereby the entire road surface has
a changed friction coefficient is considered.

Figure 7.5 illustrates the percentage of successful evaluation laps for both end-to-end
and partial end-to-end agents when facing a mismatch in the road surface friction coef-
ficient across all three tracks. Under nominal conditions, the end-to-end agents achieved
success rates of 99%, 83%, and 61% for Porto, Barcelona-Catalunya, and Monaco, re-
spectively. However, when considering the worst-case scenario of racing on a wet asphalt
surface, the success rates significantly decreased to 55%, 13%, and 8% for these respective
tracks.

On the other hand, the partial end-to-end agents successfully completed all their
evaluation laps under nominal conditions. When a model mismatch in the road surface
friction coefficient was introduced simulating a wet asphalt surface, the partial end-to-
end agent was still able to complete all of its laps on Circuit de Barcelona-Catalunya.
However, it’s success rate decreased to 87% and 6% for the Porto and Monaco tracks.
The decrease in success rate for the partial end-to-end agent on Circuit de Monaco is
especially severe. However, we observe that only agents racing with a friction coefficient
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Figure 7.5: Success rates under evaluation conditions of agents racing with decreased road
surface friction values. Results for the end-to-end agent racing on all three tracks are shown
in the left subplot, while results for the corresponding results for partial end-to-end agents are
shown on the right. The values of friction corresponding to the nominal training value, dry, as
well as wet asphalt are marked with a black dashed line.
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of less than 0.6 crash at all.
To investigate this large decrease in successful laps further, we observe the locations

where agents crashed while racing on a wet asphalt surface on the Monaco circuit, as
depicted in Figure 7.6. Apart from one crash, all the partial end-to-end agents failed at
one of two corners. Conversely, end-to-end agents crashed at various parts of the track
while racing with a mismatched friction coefficient.

End-to-end
Partial end-to-end

Figure 7.6: Locations where agents crashed while racing on a surface with a friction coefficient
of 0.5 (corresponding to wet asphalt).

The fact that the partial end-to-end agent fails at only two locations on Circuit de
Monaco when racing with a mismatched friction coefficient is an indicator that it executes
trajectories consistently. To illustrate, an example of trajectories executed by both partial
and fully end-to-end agents racing on a section of Circuit de Barcelona-Catalunya is
shown in Figure 7.7. The figure shows the trajectories executed by agents under nominal
conditions, as well as conditions with decreased surface friction. Note that the trajectories
executed by the partial end-to-end agent remain similar when mismatches are introduced.
The most notable difference between trajectories executed by the partial end-to-end agent
on the nominal and slippier surfaces is that the trajectories executed on the slippier
surfaces exhibit reduced curvature, resulting in wider paths being followed by the agents.
In contrast, the trajectories by the end-to-end agent are always erratic. Thus, the partial
end-to-end agent outperformed the end-to-end agent on the majority of road surface
conditions.

7.4 Summary
In this chapter, we conducted a comprehensive comparison between our partial end-to-end
solution and the end-to-end baseline under conditions where model mismatch is present.
Specifically, we introduced model mismatches by using a slightly different vehicle model
for training compared to the one used for evaluating the agents. This approach allowed
us to simulate the uncertainties often encountered in real-world deployments.
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End-to-end Partial end-to-end

Nominal surface Dry asphalt Wet asphalt

Figure 7.7: Trajectories of agents racing on a section of Barcelona-Catalunya under nominal
conditions, as well as with road surface friction values corresponding to dry asphalt and wet
asphalt.

In our investigation, we examined three specific scenarios involving practical model
mismatches: errors in (a) the mass, (b) the tire cornering stiffness coefficient, and (c)
the road surface friction coefficient. Across all three scenarios, end-to-end agents per-
formed poorly, as evident by their tendency to crash, as well as to exhibit erratic behavior
characterized by slaloming. The erratic behaviour of end-to-end agents highlights their
drawbacks in scenarios where model mismatches are present.

In contrast to end-to-end agents, the partial end-to-end agents displayed more pre-
dictable behavior. The trajectories of these agents did not deviate significantly from the
trajectories observed when racing without any model mismatches. This observation held
across all three model mismatch scenarios considered. These results demonstrate that
combining an RL planner with a classic feedback controller is advantageous when con-
sidering scenarios in which practical model mismatches are present. Feedback controllers
not only offer faster operation but also greater predictability than end-to-end agents, as
they are designed to minimize the error between the vehicle and its intended trajectory.
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Chapter 8

Conclusion

Existing learning-based solutions to autonomous racing often fail to integrate insights
from classical approaches, resulting in algorithms that are not robust against practical
model mismatches. Consequently, the performance of many learning-based approaches
deteriorates when faced with such scenarios.

This thesis considered the design and implementation of a learning-based autonomous
racing algorithm that demonstrates robustness towards practical model mismatches by
incorporating insights from classical approaches. In this chapter, we assess the progress
and development of this project based on the aim and objectives outlined in Chapter 1.

8.1 Work completed
The aim of this research project was to develop a learning-based racing algorithm that
is robust towards practical model mismatches that vehicles may encounter during real-
world deployment. To achieve this goal, several key steps were undertaken, including the
implementation of a bicycle vehicle model that accurately captures high-speed dynamics,
the development of a baseline end-to-end learning-based solution for comparative analysis,
and the design of our algorithm. Additionally, an investigation was conducted to evaluate
the performance of both our solution and the baseline approach under conditions involving
model mismatches.

Chapter 5 presents the end-to-end baseline solution, which directly maps observation
data to control commands. When evaluated on the relatively simple Porto track, end-
to-end agents demonstrated competitive performance by successfully completing all of
their laps. However, end-to-end agents exhibited erratic behaviour such as slaloming
when tasked with racing on longer and more intricate tracks. Furthermore, they failed to
complete a significant portion of their evaluation laps on longer tracks.

Additionally, during a preliminary investigation into the robustness of end-to-end al-
gorithms towards a decrease in road surface friction, we observed that the agent tended
to crash. To enhance robustness towards model mismatches in the friction coefficient,
domain randomisation was investigated by adding Gaussian noise to the nominal fric-
tion coefficient at the start of every episode. However, randomising the domain offered
no major benefits in agent performance. The unsatisfactory performance of end-to-end
agents on longer tracks and under model mismatch conditions, combined with the limited
effectiveness of domain randomisation techniques further motivated the development of
our solution.
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Our proposed solution (presented in Chapter 6) introduced a partial end-to-end au-
tonomous driving algorithm that decouples the planning and control tasks. Within the
partial end-to-end framework, an RL agent generates a trajectory comprising a path and
velocity, which are subsequently tracked using a pure pursuit steering controller and a pro-
portional velocity controller, respectively. To facilitate path generation, we allowed agents
to select the constraints of a cubic polynomial function in the Frenet frame, enabling the
consistent generation of smooth and continuous paths.

By specifying the path within the Frenet frame, partial end-to-end agents were able
to execute smooth trajectories and also constrained the agents to select paths that re-
mained within the track boundaries. As a result, training time was reduced significantly,
and the number of collisions during training was minimal compared to end-to-end agents.
Additionally, the partial end-to-end agents successfully completed all evaluation laps un-
der conditions where no model mismatch was present, even on complex circuits such as
Barcelona-Catalunya and Monaco. Thus, even under nominal conditions, partial end-to-
end agents demonstrated substantial advantages over their end-to-end counterparts.

Following the evaluation of the partial end-to-end algorithm under ideal conditions,
we examined its performance in scenarios involving practical model mismatches. These
investigations specifically considered model mismatches in the vehicle mass, cornering
stiffness coefficient, and road surface friction coefficient. In each of the model mismatch
scenarios analysed the partial end-to-end agent consistently outperformed the baseline
end-to-end agent. Notably, the partial end-to-end agents exhibited similar trajectories
before and following the introduction of model mismatches. This trend was particularly
evident when model mismatches related to the vehicle mass and cornering stiffness were
considered. The decoupling of trajectory generation and control, combined with the use
of feedback controllers, therefore offers better performance than an end-to-end approach
to vehicle control in model mismatch conditions.

8.2 Future work
The performance of partial end-to-end agents under nominal conditions, as well as condi-
tions where model mismatches are present, highlights the potential of these algorithms in
developing robust learning-based driving systems that can handle uncertainties in vehicle
dynamics. The next development step is to conduct model mismatch experiments on a
physical vehicle. This would contribute to building a stronger argument for the practical
implementation of these algorithms in real-world driving scenarios.

Although our experiments focused on racing, the results have implications for address-
ing the broader road-going autonomous driving problem. Future work should therefore
investigate the application of partial end-to-end algorithms to road-driving scenarios. For
example, when considering the road-going autonomous driving task, decoupling planning
from control may provide additional benefits, as it allows the planner and controller to be
developed independently of each other. This approach facilitates the use of a single generic
planning agent that can be applied to similar car models, while specific controllers are
developed for each car model. Consequently, it may lead to consistent planning behavior
across a fleet of vehicles, as well as enable easier algorithm development.

Learning-based algorithms are gaining popularity in road-going production cars due
to their scalability. These algorithms present a promising future, in which people who
are incapable of driving have access to their own transportation, the number of road
accidents is reduced, and road congestion is eased due to the optimised driving style of

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 8. CONCLUSION 83

the algorithms. However, there are numerous challenges to the deployment of production
vehicles. One of these challenges is to ensure that learning-based driving algorithms are
robust towards the sim-to-real gap. This includes robustness towards practical model
mismatches. In this project, we have shown that partial end-to-end solution methods for
autonomous driving present a promising solution method for handling scenarios in which
model mismatches are present.
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Supporting results
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Figure A.1: Learning curves showing (a) the failure rate, i.e percentage of episodes that ended
in a crash, (b) the lap time of completed laps, and (b) the episode reward for end-to-end agents
with target update rates ranging from 0.003 to 0.007.

Target update
rate, τ

Successful test
laps [%]

Average test
lap time [s]

Standard
deviation of
test lap time

[s]
3 · 10−3 99 6.85 1.23

5 · 10−3 100 6.07 0.20

7 · 10−3 96 6.94 0.74

Table A.1: Evaluation results and training time of end-to-end agents with target update rates
ranging from 3 · 10−3 to 7 · 10−3.
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Figure A.2: Learning curves showing (a) the failure rate, i.e percentage of episodes that ended
in a crash, (b) the lap time of completed laps, and (b) the episode reward for end-to-end agents
with exploration noise standard deviations ranging from 0.05 to 0.2.

Exploration noise
standard

deviation, σaction

Successful test
laps [%]

Average test
lap time [s]

Standard
deviation of
test lap time

[s]
0.05 96 6.13 0.46

0.1 100 6.07 0.20

0.2 100 7.27 0.67

Table A.2: Evaluation results and training time of end-to-end agents with exploration noise
varying from 0.05 to 0.15.
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Figure A.3: Learning curves showing (a) the failure rate, i.e percentage of episodes that ended
in a crash, (b) the lap time of completed laps, and (b) the episode reward for end-to-end agents
with network update intervals d ranging from 1 to 3.

Number of action
samples between
network updates,

d

Successful test
laps [%]

Average test
lap time [s]

Standard
deviation of
test lap time

[s]
1 99 6.85 1.23

2 100 6.07 0.20

3 96 6.94 0.74

Table A.3: Evaluation results and training time of end-to-end agents with number of action
samples between network updates ranging from 1 to 3.
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