
Solving Sparse-reward Problems in
Partially Observable 3D Environments using

Distributed Reinforcement Learning

by

Jacobus Martin Louw

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Engineering (Electrical and Eletronic)
in the Faculty of Engineering at Stellenbosch University

Supervisor: Prof. HA Engelbrecht

Co-supervisor: Mr. JC Schoeman

December 2021

UNIVERS ITE IT •STELLENBOSCH •UNIVERS ITY

j ou kenn i s v ennoo t • you r know ledge pa r tne r

Plagiaatverklaring / Plagiarism Declaration

1. Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele
eiendom van ander persone asof dit jou eie werk is.
Plagiarism is the use of ideas, material and other intellectual property of another’s
work and to present is as my own.

2. Ek erken dat die pleeg van plagiaat ’n strafbare oortreding is aangesien dit ’n vorm
van diefstal is.
I agree that plagiarism is a punishable offence because it constitutes theft.

3. Ek verstaan ook dat direkte vertalings plagiaat is.
I also understand that direct translations are plagiarism.

4. Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die
internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks
sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.
Accordingly all quotations and contributions from any source whatsoever (including
the internet) have been cited fully. I understand that the reproduction of text without
quotation marks (even when the source is cited) is plagiarism

5. Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aange-
dui, my eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of
gedeeltelik ingehandig het vir bepunting in hierdie module/werkstuk of ’n ander
module/werkstuk nie.
I declare that the work contained in this assignment, except where otherwise stated, is
my original work and that I have not previously (in its entirety or in part) submitted
it for grading in this module/assignment or another module/assignment.

i

Copyright © 2021 Stellenbosch University
All rights reserved

Stellenbosch University https://scholar.sun.ac.za

Abstract

In this study, we address sparse-reward problems in partially observable 3D environments.
The example task is set in a simulation environment where a reinforcement learning (RL)
agent has to deliver a first-aid kit to an immobilised miner using an image observation. We
apply a deep Q-learning algorithm with several modifications to solve this problem. We
first show that it helps the agent to solve problems in the partially observable environment
when the agent’s observation is augmented with a history of previous observations and
performed actions. We then consider three main modifications made to the deep Q-learning
algorithm to address this problem. The first is to dramatically increase the rate at which
new data is generated by using a distributed system. Secondly, we utilise prioritised
experience replay (PER) [39] to repeat transitions of significance more frequently to the
agent. Lastly, we add the n-step return to the algorithm. The work by Hessel et al. [14] and
Horgan et al. [16] shows that these modifications significantly improve the performance of
the deep Q-learning algorithm on the Atari platform. The Atari platform consists mainly
of simple 2D environments; however, we consider performance on a partially observable
3D environment with sparse rewards.

We confirm the results of Fedus et al. [10] and show that better-performing policies
are trained when the replay buffer contains more recently generated data. We show that
prioritising transitions and the n-step return is very important in solving the example
sparse-reward problem. In addition to these modifications we also look into strategies
to improve exploration. We then demonstrate that curriculum learning (CL) or domain
randomisation (DR) can be used to help the agent to solve more challenging problems
where it is difficult to initially receive the reward signal. Lastly, we establish that it greatly
benefits the deep Q-learning agent’s performance when CL is used in combination with
DR to solve larger, more complex problems.

ii

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

In hierdie studie spreek ons skaars-beloningsprobleme in gedeeltelik sigbare 3D-omgewings
aan. In die probleem wat ons as voorbeeld gebruik, moet ’n versterkingsleeragent ’n
noodhulpkissie aan ’n gestrande mynwerker in ’n simulasie-omgewing aflewer. Die agent
moet aksies, gebaseer op ’n kamerabeeld, uitvoer om die taak te verrig. Ons pas ’n
diep-Q-leer algoritme met ’n paar wysigings toe, om die probleem op te los. Ons toon
eerstens aan dat dit die agent help om probleme in die gedeeltlik sigbare omgewing op
te los, indien sy waarneming aangevul word deur vorige waarnemings en uitgevoerde
aksies. Daarna oorweeg ons drie hoofsaaklike wysigings aan die diep-Q-leer algoritme om
hierdie probleem op te los. Eerstens word die spoed waarteen nuwe data gegenereer word
drasties verhoog deur van ’n verspreide stelsel gebruik te maak. Tweedens gebruik ons ’n
geprioritiseerde ervaringsbuffer [39] om belangrike ervarings meer gereeld aan die agent
terug te speel. Laastens voeg ons n-stap opdaterings by die algoritme. Die navorsing deur
Hessel et al. [14] en Horgan et al. [16] toon aan dat hierdie wysigings die werksverrigting
van die diep-Q-leer algoritme op die Atari-platform aansienlik verbeter. Die Atari-speletjies
bestaan hoofsaaklik uit 2D-omgewings, terwyl ons die algoritme op ’n 3D-omgewing met
skaars-belonings toepas.

Ons bevestig die resultate van Fedus et al. [10] en toon aan dat beter gedragspatrone
aangeleer word indien die ervaringsbuffer meer onlangs gegenereerde data bevat. Ons toon
ook dat die prioritisering van ervaring en n-stap opdaterings baie belangrik is om die
skaars-beloningsprobleem in die voorbeeld op te los. Aanvullend tot hierdie wysigings,
ondersoek ons ook strategieë om die verkenning van die omgewing te verbeter. Ons toon
aan dat kurrikulumleer of domein-lukraakheid die agent kan help om meer uitdagende
probleme op te los, waar dit aanvanklik moeilik is om ’n beloning te ontvang. Laastens wys
ons dat dit die diep-Q-leer agent verder bevoordeel indien kurrikulumleer in kombinasie
met domein-lukraakheid gebruik word om groter en moeiliker probleme op te los.

iii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to the following people:

• My supervisor Prof. HA Engelbrecht and co-supervisor Mr JC Schoeman for leading
this study, for the weekly meetings and time allocated to my thesis, as well for their
valuable input. I would also like to thank Prof. HA Engelbrecht for equipping me
with the necessary tools to conduct my research.

• Francois Rossouw for technical advice and support and his willingness to assist with
problems I encountered.

• My family for their unwavering support, guidance, and encouragement throughout
the duration of my project. Without them, this achievement would not have been
possible.

iv

Stellenbosch University https://scholar.sun.ac.za

Dedications

Hierdie tesis word aan my Hemelse Vader opgedra.

v

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Uittreksel iii

Acknowledgements iv

Dedications v

List of figures ix

List of tables xi

Nomenclature xii

1 Introduction 1
1.1 Reinforcement learning . 2
1.2 Partially observable environments . 3
1.3 Sparse-reward problems . 4
1.4 Distributed systems . 4
1.5 Aims and objectives . 5
1.6 Methodology . 6
1.7 Document outline . 7

2 Related work 9
2.1 Applying deep reinforcement learning to the Atari domain 9
2.2 Deep Q-learning from demonstrations . 10
2.3 Curiosity-driven exploration by predicting sequential states 11
2.4 Go-Explore . 12
2.5 Shaping . 13
2.6 Distributed deep reinforcement learning . 15
2.7 Summary . 17

vi

Stellenbosch University https://scholar.sun.ac.za

3 Markov decision processes 18
3.1 Markov chains . 18
3.2 Agent and environment interaction . 19
3.3 Rewards and returns . 20
3.4 Policies and value functions . 21
3.5 Bellman equation . 21
3.6 Policies and value functions that are optimal 22
3.7 Dynamic programming . 24
3.8 Partially observable Markov decision processes 26
3.9 Summary . 27

4 Reinforcement learning 29
4.1 Policy-based and value-based methods . 30
4.2 Monte Carlo methods . 31
4.3 Temporal-difference methods . 35
4.4 Value function approximation . 41
4.5 Summary . 44

5 Artificial neural networks 45
5.1 Feed-forward neural networks . 46
5.2 Convolutional neural networks . 56
5.3 Summary . 59

6 Deep reinforcement learning 60
6.1 Deep Q-learning . 61
6.2 Deep Q-learning with prioritised experience replay 66
6.3 Summary . 68

7 Simulation environment 70
7.1 OpenAI Gym . 70
7.2 Description of simulation environments . 71
7.3 Performance . 73
7.4 Environment modifications . 74
7.5 Summary . 75

8 Implementation of the deep Q-learning algorithm 76
8.1 Hardware and software . 77
8.2 System overview . 77
8.3 Replay buffer for storing experience . 78
8.4 Parameter server for communication . 80
8.5 Learning from experience in the replay buffer 80

vii

Stellenbosch University https://scholar.sun.ac.za

8.6 Generating new experience . 82
8.7 Simulation . 83
8.8 Deep neural network design . 84
8.9 Summary . 89

9 Experiments and results 90
9.1 Experiment 1: Testing modifications on a sparse-reward problem 91
9.2 Experiment 2: Addressing exploration . 103
9.3 Experiment 3: Ability to scale to larger Environments 107
9.4 Summary . 109

10 Conclusion 111
10.1 Summary and contributions . 111
10.2 Future work . 113

List of References 114

Appendices 118

A Links to example videos of resultant agents 119

B Additional results 120

C Detailed algorithms for the implementation 123

viii

Stellenbosch University https://scholar.sun.ac.za

List of figures

1.1 Reinforcement learning: Agent-environment interaction 3
1.2 The robot’s perspective of the sparse-reward problem 5

5.1 Single neuron . 46
5.2 Deep feed-forward neural network . 48
5.3 Operation of the convolutional filter . 58
5.4 Example of a convolutional neural network . 59

6.1 Single stream Q-network compared to the dueling Q-network 66

7.1 Performance of MineRL compared to MiniWorld 73
7.2 Entities of the environment . 75

8.1 Flow diagram of the distributed deep Q-learning algorithm 78
8.2 Artificial neural network architecture . 86
8.3 Partial observability: Mean episode return versus network update steps 89

9.1 Problem one: Top-down illustration of the sparse-reward problem 91
9.2 Ablation study: Mean episode return versus network update steps 93
9.3 Ablation study: Mean episode duration versus network update steps 93
9.4 Ablation study: Completed network update steps per second 94
9.5 Ablation study: Mean episode return versus time 95
9.6 Distributed data generation: Mean episode return versus network update steps 96
9.7 Distributed data generation: Mean episode return versus time 96
9.8 Altering number of actors: Number transitions generated per network update

step . 97
9.9 Different replay ratios: Mean episode return versus network update steps . . . 98
9.10 Altering number of actors: Completed network update steps per second 98
9.11 Different replay ratios: Mean episode return versus time 99
9.12 Prioritisation: Mean reward sampled from replay buffer versus network update

steps . 100
9.13 Prioritisation: Mean episode return versus network update steps 100
9.14 n-step update: Mean episode return versus network update steps 101

ix

Stellenbosch University https://scholar.sun.ac.za

9.15 n-step update: Mean episode return versus time 102
9.16 Problem two: A top-down illustration of the more difficult sparse-reward problem103
9.17 Addressing exploration: Mean episode return versus network update steps . . . 106
9.18 Addressing exploration: Mean episode duration versus network update steps . 106
9.19 Performance on differently sized environments: Mean episode return over net-

work update steps . 108
9.20 Improving performance on the five room environment: Mean episode return

versus network update steps . 109
9.21 Improving performance on the five room environment: Mean episode return

versus time . 109

B.1 Learning rate: Mean episode return versus network update steps 120
B.2 Gamma: Mean episode return versus network update steps 121
B.3 Epsilon: Mean episode return versus network update steps 121
B.4 Replay capacity: Mean episode return versus network update steps 122
B.5 Action histories: Mean episode return versus network update steps 122

x

Stellenbosch University https://scholar.sun.ac.za

List of tables

7.1 Feature comparison of MineRL and MiniWorld 72

8.1 Specifications of the computer used to conduct the study. 77
8.2 Default agent configuration . 88
8.3 Action space of the environment. 88

xi

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Notation similar to the work by Sutton and Barto [45] is used. Capital letters indicate
random variables, while lower case letters are used for values of random variables and also
to indicate scalar functions. Bold lower case letters are used to indicate real-valued vectors.

General

x a scalar x
x a vector x

A matrix A
A> transpose of matrix A
A ∗ B convolution of A and B
A� B element-wise product of A and B

≈ approximately equal
.= equal true by definition
Pr{X = x} probability that the value x is assigned to the random variable X
X ∼ p random variable X sampled from distribution p(x) .= Pr{X = x}

E[X] expectation of a random variable X, i.e. E[X] = ∑
x xp(x)

argmaxaf(a) a value of a which maximises f(a)
R set of real numbers
ε probability of taking an action at random when using ε-greedy explo-

ration strategy
α learning rate
γ discount rate

dy
dx

derivative of y with respect to x
∂y
∂x

partial derivative of y with respect to x
∇xy gradient of y with respect to x

xii

Stellenbosch University https://scholar.sun.ac.za

Markov Decision Processes

a an action
s state
s′ subsequent state
o observation
o′ subsequent observation
r a reward
S set of all nonterminal states
S+ set of all states, including the terminal state
R set of all possible rewards, a finite subset of R
A set of all actions
O set of all observations
∈ is an element of
|A| the cardinality of A

t discrete time step
T final time step of an episode
At action at time t
St state at time t
Rt reward at time t
π policy (decision-making rule)
π(s) a deterministic policy π that returns an action for the state s
π(a|s) probability of taking action a in state s under stochastic policy π

Gt return following time t
Gt:t+n n-step return from t+ 1 to t+ n (discounted)

p(s′, r|s, a) probability of transitions to state s′ with reward r, from state s per-
forming action a

p(s′|s, a) probability of transition to state s′, from state s performing action a
r(s, a, s′) expected immediate reward on transition from s to s′ under action a

vπ(s) value of state s under policy π (expected return)
v∗(s) value of state s under the optimal policy π
qπ(s, a) value of performing action a in state s and then following policy π

xiii

Stellenbosch University https://scholar.sun.ac.za

q∗(s, a) value of taking action a in state s and then following the optimal policy
π∗

V, Vt tabular estimates of state-value function vπ or v∗
Q,Qt tabular estimates of action-value function qπ or q∗
δt temporal-difference (TD) error at t

Function Approximation

f(x;θ) a function of x given parameters θ
w,wt vector of weights at t
wi, wt,i ith component of weight vector
d dimension of w

v̂(s; w) approximate value of a state s given weight vector w

q̂(s, a; w) approximate value of state-action pair s, a given weight vector w

Artificial Neural Networks

θ network parameters
W(i) weight matrix for the ith layer of the network
b(i) bias vector for the ith layer of the network
h(i)() hidden layer for the ith layer of the network
a(i)() pre-activation function for the ith layer of the network
g() activation function
L loss function
J cost function
L number of layers in the network (excluding the input layer)

Deep Q-learning

D replay memory
n n-step return
p priority
ζ prioritisation
η prioritised offset
ρ importance-sampling weight
β importance-sampling correction

xiv

Stellenbosch University https://scholar.sun.ac.za

Acronyms

Adam adaptive moment estimation
ANN artificial neural network
BC behavioural cloning
CL curriculum learning
CNN convolutional neural network
CPU central processing unit
DDQN double deep Q-network
DL distributed learning
DNN deep neural network
DP dynamic programming
DQfD deep Q-learning from demonstrations
DQN deep Q-network
DR domain randomisation
DRL deep reinforcement learning
ER experience replay
FNN feed-forward neural network
FIFO first in first out
Gorila general reinforcement learning architecture
GPI generalised policy iteration
GPU graphics processing unit
ICM intrinsic curiosity module
IDE integrated development environment
IDD independent and identically distributed
IS importance sampling
LSTM long short-term memory
MAE mean absolute error
MC Monte Carlo
MDP Markov decision process
MSE mean square error
PER prioritised experience replay
POMPD partially observable Markov decision process
PPO proximal policy optimisation
ReLU rectified linear unit

xv

Stellenbosch University https://scholar.sun.ac.za

RAM random access memory
RF radio frequency
RGB red green blue
RL reinforcement learning
RNN recurrent neural network
SGD stochastic gradient descent
TD temporal difference
XML extensible markup language

xvi

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Drones and ground robotic vehicles are being used with great success to perform tasks
in areas that are difficult or unsafe for humans to access. We can use drones for aerial
photography which can be valuable for farmers to make crop yield estimates. We can also
use robots in situations where bombs need to be disabled and keep people out of harm’s
way. These tasks can usually be performed by a robot that is controlled by a human
with a radio frequency (RF) remote control. Although these robots have been successfully
utilised, there are scenarios where RF signals cannot reach the robot. An example of such
a problem is where trapped miners need to be rescued in a collapsed mine. Thick layers of
ground and rock separate the miners from the rescue workers. Therefore RF signals are
unlikely to be able to reach a robot inside the mine. The Wolverine V2 robot addressed
this issue by using a fibre cable for communications. The fibre cable made it challenging
to deploy the robot in certain situations, and therefore it was generally unsuccessful [1].
Accordingly, there is a need for robots capable of artificially intelligent decision-making in
situations where the robot cannot be controlled by humans.

Supervised learning can be used to develop artificially intelligent decision-making
systems by replicating expert demonstrations. Similar to traditional supervised learning
that maps features to labels, supervised learning can be used to map situations to actions.
Techniques that directly map situations to actions are often referred to as behavioural
cloning (BC) [3]. According to Hussein et al. [17], a direct mapping between situations
and actions is usually not appropriate to achieve the required behaviour. There are several
reasons why this solution does not work in practice. For example, the demonstration data
may be unreliable, the demonstrated task may be different from the intended task, or there
may be insufficient demonstrations available [17]. Imitation learning addresses these issues
and is closely linked to BC since it also mimics the behaviour of expert demonstrations [17].
In addition, it refines behaviour by performing learned actions and then optimising learned
policies [17]. Imitation learning still requires good demonstration data, which may be
expensive to generate, or may simply not be unavailable.

Reinforcement learning (RL) is a paradigm that is concerned with solving sequential

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION

decision-making problems. RL systems learn by trial and error from their own experience,
therefore expert demonstration data is not required. This enables RL algorithms to exceed
expert performance and operate in areas where there is a lack of human expertise [42].
Recently, deep reinforcement learning (DRL), a combination of RL and deep neural
networks (DNNs), has been used to make progress towards the goal of exceeding human
capabilities in certain areas [42]. In 2015 DeepMind used DRL, along with expert data, to
create the algorithm AlphaGo. AlphaGo was the first algorithm to be able to beat the world
champion in the Go board game. DeepMind continued to develop AlphaGo Zero in 2017.
It solely relied on DRL and was able to win the previously published champion-defeating
AlphaGo 100-0 [42]. This was a monumental achievement, as for decades, the best Go
computer programs were just as good as amateur human players. The idea of RL was
already established in the mid-1900s. With the achievement of AlphaGo, RL again became
a subject of real interest.

Although RL research has had a great deal of success recently, the field continues to
grow, and many challenges remain to be overcome. In this study, we aim to apply RL
algorithms to solve problems in 3D simulation environments. This is challenging since
these environments are usually observed using a first-person camera. For this reason some
important aspects of the environment may be obstructed or out of the camera’s view.

An objective of our research is also to specify long-term goals to RL algorithms. These
goals require long sequences of correct actions to receive credit. This introduces the
sparse-reward problem, which is central to this study. We first discuss the most important
literature relevant to this study. We then define our aims and objectives.

1.1 Reinforcement learning

Here we give an overview of RL based on the work of Sutton and Barto [45]. RL tries
to solve a sequential decision-making problem, which is usually modelled as a Markov
decision process (MDP). We discuss MDPs in more detail in Chapter 3. RL is concerned
with how to choose actions from situations to maximise some notion of a numerical reward
signal. The reward signal is a measure of how good the performed action or sequence of
actions was, and it is used to guide software agents to learn optimal behaviour in a given
situation. In RL, the idea of trial and error is central, since the agent is not instructed
which actions to take and it has no prior knowledge of the task at hand. The agent aims to
discover the consequences of actions through experimentation. Sometimes an action may
not only have an impact on the agent’s current situation but may also have an impact on
the subsequent situations that the agent encounters. Thus, the aspect of delayed reward
signals is also an important concept, as the outcome of specific actions can be experienced
at a later time.

We present the general structure of the agent-environment interaction in an MDP in

2

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION

Agent

Environment

reward
Rt

observation
St

Rt+1

action
At

St+1

Figure 1.1: An illustration of the interaction between the agent and the environment in a
Markov decision process (MDP), adapted from the work of Sutton and Barto [45]. At time step
t, the agent receives an observation St and a reward Rt from the environment. The agent then
performs an action At in the environment. The environment returns an observation St+1 and
reward Rt+1 at time step t+ 1.

Figure 1.1. The environment is the world which is assigned to the agent. It can be set in the
physical world, or it can be in the form of a computer simulator. The latter is very popular
to use for testing RL algorithms as simulations can be run at accelerated speeds [45].
The environment characterises the task at hand by defining the actions available, the
outcome of an action taken in a given situation, and the reward signal function. The
current environmental situation is known as the state of the environment.

The agent begins by receiving the initial state of the environment. The agent reacts to
the state by sending an action to the environment; in return, the agent receives a new
state and reward. The action of the agent is based on the observation received and chosen
according to the agent’s policy, where the policy determines the behaviour of the agent.
The process of acting and receiving observations and rewards in return is recurrent. At
each iteration of this process, the agent adjusts its policy in order to receive more rewards.

1.2 Partially observable environments

In this study, we deal with environments that are partially observable, similar to many
real-world problems. This means that the environment’s state is partially observed at any
given time, which makes it very difficult to know what the true state of the environment
is. Many observations may look similar even if they represent different states and therefore
need to be treated differently. The problem addressed in this study is classified as a
partially observable Markov decision process (POMPD). Monahan [25] states that the
presence of uncertainty and the impact it has on policy optimisation is a key feature when

3

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION

dealing with a POMPD. It is therefore necessary to know what the true underlying state
of the environment is in order to be able to select the best possible action. It is known
to be computationally difficult to estimate the true underlying state as this cannot be
accessed directly [9]. We discuss the POMPD and possible ways to address it in Section
3.8.

1.3 Sparse-reward problems

In addition to the partially observable nature of the environment, the problem addressed
in this study is classified as a sparse-reward problem or a difficult exploration problem.
When an agent encounters an MDP for the first time, the environment is explored with
some exploration strategy, which usually involves performing random actions. In some
cases, non-zero reward signals are scarce, and the agent has to perform numerous correct
actions sequentially to receive a reward. As the required number of correct actions to
be rewarded increases, the probability of taking such a sequence of actions decreases
exponentially. Sometimes rewards are so sparse that the number of environmental steps
of random exploration needed to receive a non-zero reward becomes computationally
intractable. Sparse-reward problems have generally proved difficult to solve, even for a
number of state-of-the-art RL methods [31].

Furthermore, the problem of sparse and delayed rewards also leads to the credit-
assignment problem – the process of distributing credit among the many decisions that
may have contributed to success [45]. RL generally tries to solve the credit-assignment
problem, but it is more problematic when rewards are very delayed.

1.4 Distributed systems

When dealing with major computational problems, one often needs a very powerful
supercomputer to perform all the calculations within a reasonable time. However, such a
computer is not always accessible. Most computers have central processing units (CPUs)
with multiple cores that are capable of performing operations in parallel. Unfortunately
most of the time these cores are not fully utilised.

If the task is of such a nature that the result of the previous step is not needed to
perform the next step, then a distributed system can be used to perform it. Attiya and
Welch [2] define a distributed system as a collection of separate computing devices that
exchange information with each other. The goal of distributed systems is to utilise multiple
processors to perform one large task. Distributed computing utilises more computational
resources, but performance is accelerated.

DRL algorithms generally rely on generating data by themselves and usually require
a large amount of data to learn optimal policies. For example Mnih et al. [24] trained

4

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION

their DRL agent, the deep Q-network (DQN), for 50 million environment frames in total.
This is more or less 38 days of real-time experience [24]. Furthermore, in problems where
rewards are very sparse, many trajectories must be generated to reliably have transitions
that contain non-zero rewards. Using a distributed system can accelerate the rate at which
new data is generated.

1.5 Aims and objectives

Having discussed the most important literature relevant to this study, we formulate our
aims and objectives. We aim to develop an artificially intelligent agent to solve a problem
in a partially observable 3D environment where rewards are sparse. The example task
we use as a test-bed is a collapsed mine where a first-aid kit needs to be delivered to
an immobilised miner. We develop this example problem in a simulation environment as
shown in Figure 1.2.

Figure 1.2: The robot’s perspective of the example sparse-reward problem. The robot, miner
and first-aid kit are located in random rooms in a mine. Obstacles are obstructing the entrances
to the rooms. The robot therefore has to remove the obstacles to navigate the mine. The end
goal is to deliver the first-aid kit to the miner.

The goal of the robot or agent is to deliver a first-aid kit to the miner. It is challenging to
handcraft an agent that can deal with all the obstacles it may encounter while completing
such a task. Therefore, the agent has to learn by itself to achieve this objective. Multiple
sub-tasks must be completed in order to achieve the main objective. The sub-tasks entail
navigating the environment, dealing with obstacles that may obstruct the agent’s way,
obtaining the first-aid kit, and finally delivering it to the miner. The only time the agent
receives credit in the form of a positive reward signal is when the miner receives the first-aid
kit. Therefore the entire policy required to complete this objective must be deduced from
this single reward. The example problem is therefore a sparse-reward problem, which

5

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION

makes it very difficult to obtain an agent with optimal behaviour, as we explained in
Section 1.3.

To reach the objective of this study, we have to overcome numerous challenges. Some
of these challenges include interpreting the red green blue (RGB) camera observation, and
dealing with the partial observability of the environment. Our main objective is to address
solving sparse-reward problems, as long term goals are a common occurrence in most
real-world problems. We investigate several modifications to improve the performance
of the deep Q-learning algorithm in solving the proposed problem. We also investigate
how the exploration strategy of the agent can be improved to encounter rewards more
frequently when they are very sparse. Lastly we investigate how well our approach scales
to larger environments.

1.6 Methodology

We implemented a distributed version of the deep Q-learning algorithm with prioritised
experience replay (PER) [16, 39, 23, 24]. Q-learning is an off-policy algorithm and allows
the agent to learn from experience other than that generated by its latest policy. For this
reason, Q-learning enabled us to use experience replay (ER) which breaks the correlations
in the data. It also makes the algorithm more sample-efficient, since previously generated
experience can be reused to improve the agent’s value function. The ability to reuse old
experience is important when dealing with sparse rewards. The reasoning behind this is
that non-zero rewards are very rarely generated, and therefore the ability to re-sample
important transitions is crucial. Since Q-learning is an off-policy algorithm it naturally
accommodates the use of many alternative data sources. It is therefore a good choice for
solving sparse-reward problems where it is difficult to generate good trajectories.

We added three modifications to the deep Q-learning algorithm. It has been shown
by Fedus et al. [10] that the deep Q-learning algorithm performs better when training
on more recent data. It can take a long time to generate the required amount of data if
this is generated sequentially. Therefore, we distribute the data generation to significantly
increase the rate at which data is generated. We also added a modification to the deep
Q-learning algorithm which is referred to as prioritised experience replay (PER) [39]. This
technique prioritises important transitions and replays these transitions more frequently
to the agent in order to learn more efficiently. Prioritisation is very important since good
trajectories are very scarce if rewards are sparse and the environment is explored using
random actions. Lastly we added the n-step return, since Sutton and Barto [45] state
that it can significantly improve TD learning. We also address exploration by using two
techniques, namely curriculum learning (CL) and domain randomisation (DR). These
methods are respectively discussed in Section 2.5.2 and Section 2.5.3.

6

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION

1.7 Document outline

Chapter 2 constitutes a literature review. The deep Q-learning algorithm by Mnih et al.
[23, 24] is considered as a breakthrough in deep reinforcement learning (DRL). Therefore,
we review the achievements of Mnih et al. [23, 24] on the Atari platform. Since solving
sparse-reward problems are central to this study, we investigate how similar problems were
previously approached. Lastly, we review previously published distributed DRL algorithms.

In Chapter 3 we discussMarkov decision processes (MDPs) – a popular way of modelling
sequential decision-making problems. The MDP describes the problem RL addresses and
therefore it is important to review. We discuss essential concepts of the MDP, such as
policies and value functions. We also review planning methods to obtain optimal behaviour
in MDPs.

Having discussed MDPs, we review reinforcement learning (RL) in Chapter 4. We
review the Q-learning algorithm – a very popular RL algorithm that is central to the deep
Q-learning algorithm. We also discuss how function approximation can be used to solve
problems with large state spaces and action spaces.

In Chapter 5, we review artificial neural networks (ANNs). We describe deep neural
networks (DNNs), how they evaluate inputs and how the parameters of a DNN are adjusted
to make more accurate predictions. The chapter ends with a discussion of the convolutional
neural network (CNN), which is a special type of ANN that is good at extracting features
from images.

In Chapter 6, we review the deep Q-learning algorithm – a Q-learning algorithm that
utilises a DNN to approximate the value function. We review the main contributions made
by Mnih et al. [24, 23] to ensure the stability of the deep Q-learning algorithm. We also
discuss some improvements made to the deep Q-learning algorithm. These improvements
include the double deep Q-network (DDQN) [12], the n-step update, dueling network
architecture [50] and prioritised experience replay (PER) [39].

In Chapter 7, we discuss the simulation environment to perform experiments in. We
consider two 3D environments, namely Minecraft and Miniworld [6]. We compare the
functionality and performance of both environments in order to decide on a test-bed.

In Chapter 8 we discuss our implementation of the deep Q-learning algorithm. We
discuss the functionality of the different components of the system and how they interact
with each other. We then discuss how we address the problem of partial observability by
using frame-stacking and action memory. We also discuss the architecture of the DNN
used for the deep Q-learning algorithm. Lastly we test how well the different solutions
perform to address partial observability.

Having discussed the structure of the system, we perform several experiments to test
the deep Q-learning algorithm in Chapter 9. We first perform an ablation study to observe
how each modification helps to solve a sparse-reward problem. Next, we further investigate
the impact on performance of each modification. We then introduce a problem where it

7

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION

is challenging to explore the environment and investigate how curriculum learning (CL)
and domain randomisation (DR) help to address this issue. Lastly, we test how well the
algorithm scales to problems in larger environments and combines CL and DR to solve
these problems.

In Chapter 10, we summarise the objectives and goals of this study. We then review
the different aspects the study addressed and how well the solutions worked. The thesis
ends with potential future avenues for research.

We include links to videos of the resultant agents of our research in Appendix A.
The videos illustrate the performance of the agent on the different problems we tested
and show how behaviour differs when using different methods of training the agent. We
additionally tested the algorithm on a snake environment and also include a video to
illustrate this result. In Appendix B we show some additional results concerning the
hyperparameters used for the experimental phase of our research. Finally, we include more
detailed algorithms of the distributed deep Q-learning agent we implemented in Appendix
C.

8

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Related work

In this chapter we perform a literature study to review how deep reinforcement learning
(DRL) was previously applied to similar problems. We first review the deep Q-learning
algorithm, which is considered to be a breakthrough in DRL. The main goal of our research
is to solve sparse-reward problems with a DRL algorithm. We therefore focus on approaches
used to address difficult exploration problems. These approaches include using expert-
demonstration data to pre-train policies and utilising alternative exploration strategies to
more frequently encounter rewards. We also review distributed DRL algorithms. At the
end of this chapter we summarise the literature review.

2.1 Applying deep reinforcement learning to the
Atari domain

This study is largely inspired by the work of Mnih et al. [24] where a DRL algorithm was
applied to obtain a computer program that is capable of human-level control on the Atari
2600 platform. In this section we give an overview of the achievements by Mnih et al. [24].
In Chapter 6 we further explain how the deep Q-learning algorithm functions.

In simple sequential decision-making problems where the environment has a finite state
space, a tabular RL method can easily be applied to obtain an optimal policy for the
problem. Tabular methods entail utilising a table to represent the policy or value function
of the agent. In most interesting problems, however, the state space of the environment
is high-dimensional and large. Therefore it is a big challenge to apply RL algorithms to
real-world problems, as it is difficult to find an efficient method to represent the policy
or value function of the agent. For example, applying an RL algorithm to the Atari 2600
platform is very challenging since the observations are in the form of high-dimensional red
green blue (RGB) images.

According to Sutton and Barto [45], striking results have been obtained when combining
RL with backpropagation. Mnih et al. [24] from Google DeepMind developed a remarkable

9

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. RELATED WORK

algorithm that utilised a deep neural network (DNN) to automatically extract features from
a high-dimensional observation. The agent that Mnih et al. [24] developed is called the deep
Q-network (DQN). The algorithm combines Q-learning with a deep convolutional neural
network (CNN). The CNN processes the high-dimensional 2D spatial array observations
that are in the form of images. Additionally, Mnih et al. [23, 24] used a technique referred
to as frame-stacking to address the partial observability of the Atari games. It entails
stacking the last number of frames shown to the agent and holds information such as the
direction and speed of moving objects.

The deep Q-learning algorithm was applied to the Atari platform and great results were
obtained. The results show that a single RL algorithm can obtain top-level performance
in various problems without using features customised to the specific domain. Mnih et al.
[23, 24] trained the DQN agent to play 49 of the Atari 2600 video games. The agent
learned optimal behaviour by only interacting with the game environment. The exact same
algorithm, network architecture and hyperparameters were applied to all the different
games. The DQN agent outperformed the best RL methods of the time in 43 of the
49 games without incorporating additional information about the games like previous
approaches did. The DQN agent also achieved human-level or better performance in 29
of the games. The work by Mnih et al. [24] demonstrates that a single algorithm and
architecture can learn good behaviour to solve numerous different problems with almost no
information of the task at hand. The agent learns by only receiving the pixels as observation
and the game score as a reward signal. Our aim was to also develop an algorithm capable
of making decisions from image observations. Accordingly the problem we address is very
similar to the problem Mnih et al. [23, 24] solved.

2.2 Deep Q-learning from demonstrations

Hester et al. [15] developed an algorithm referred to as deep Q-learning from demonstrations
(DQfD) that utilises expert human demonstrations to assist in training the policy of a
DQN agent. The main goal of DQfD is to accelerate learning by utilising demonstration
data. Many RL algorithms perform random actions to explore the environment. This
technique becomes very unreliable when rewards are very sparse. Therefore alternative
smarter exploration strategies have to be used. Hester et al. [15] used demonstration
data instead of smarter exploration. At the time the DQfD algorithm was published, this
approach achieved a high score on the Atari game, Pitfall, which has very sparse positive
rewards. No approach before DQfD has achieved any positive rewards on this game. We,
therefore, considered to apply DQfD to deal with the challenging exploration problem of
this study. Recall that the objective of our research is to solve sparse-reward problems in
3D environments.

DQfD first pre-trains the network of the agent by only using the demonstration data

10

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. RELATED WORK

with a combination of temporal-difference (TD) and supervised losses. The supervised loss
enables the agent to imitate the demonstration data, and the TD loss allows the agent to
learn a value function. After the pre-training is complete, the agent starts to interact with
the environment and continues learning the value function using RL. The agent uses a
mixture of demonstration data and experiences generated in the environment to update its
network. According to Hester et al. [15], the ratio between expert demonstration data and
self-generated data is essential to improve the performance of the algorithm. Hester et al.
[15] used a technique referred to as prioritised experience replay (PER) [39] to control
this ratio. According to Hester et al. [15] DQfD outperformed the double deep Q-network
(DDQN) using the dueling architecture and PER (discussed in Chapter 6) in 41 of the
42 games tested. Hester et al. [15] also state that DQfD outperformed the best expert
demonstration in 14 of the 42 games tested. This result shows that DQfD is able to surpass
the performance of the expert demonstrations used to train it.

The work by Hester et al. [15] proved that using demonstration data in combination
with deep Q-learning allows for better initial performance in the Atari domain. RL can then
further be applied to improve performance, and in some cases to exceed the performance of
expert demonstrations. Using demonstrations can also help to solve our problem where we
deal with sparse rewards. The problem is that demonstration data is expensive to generate,
and it is, therefore, more appealing to have an agent that is independent of demonstration
data. According to Hester et al. [15] learning from demonstration data can be very difficult.
For example, a human may solve a problem in a way that differs significantly from the
policy that an agent would learn. Furthermore, humans may use certain information to
solve the problem that is not available in the agent’s state representation. Therefore the
policy contained in the demonstration data may not be valid for the agent given the
agent’s state representation. For this reason, we decided against using demonstration data.

2.3 Curiosity-driven exploration by predicting
sequential states

The work by Pathak et al. [33] addressed infrequent, sparse rewards by introducing a
system referred to as the intrinsic curiosity module (ICM). The ICM generates intrinsic
rewards to encourage the agent to perform actions when it has little knowledge of what
the consequences will be. The intrinsic reward is based on how well the agent can predict
the consequences of its actions, i.e. how well the agent can predict the next state given its
current state and the action it has performed.

Instead of predicting in the raw observation space, Pathak et al. [33] extracted a feature
space from the input observation that contains only information that is relevant to the
agent and the action it has performed. They achieved this feature space by training an
ANN to predict the agent’s action given its current state and next state. The idea was that

11

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. RELATED WORK

the ANN would only extract information that is related to the agent or the action taken
by the agent. Accordingly, the ANN would ignore other environmental developments that
the agent was not responsible for, or that did not affect the agent itself. An additional
model was trained to predict the feature representation of a next state given the action and
feature representation of the current state. The prediction error could then be given as an
intrinsic reward to the agent. In this way, the intrinsic reward was used to encourage the
agent’s curiosity. This is a very interesting approach for an alternative exploration strategy.
However, this approach introduced an additional sub-system to the DRL algorithm, which
can complicate the process of optimising the agent.

2.4 Go-Explore

One difficulty of sparse-reward problems is to obtain trajectories in the environment
containing positive rewards. The previously discussed approaches utilised expert demon-
stration data or intrinsic motivation to assist in learning a policy to solve the problem.
An algorithm called Go-Explore, developed by Ecoffet et al. [8], addressed challenging
exploration problems without using expert demonstrations or intrinsic motivation.

Intrinsic motivation suffers from what Ecoffet et al. [8] call detachment. They theorise
that agents with intrinsic motivation do a poor job in continuing to explore promising
areas in their environment. For example, the agent may start to explore a promising area,
but does not finish exploring the area entirely. The agent may by chance explore another
equally promising area, but then fail to finish exploration of the first area, which it has
detached from.

The Go-Explore algorithm consists of two parts that Ecoffet et al. [8] refer to as phases.
The first phase is referred to as phase one: explore until solved and serves as a method to
address challenging exploration. The solution by Ecoffet et al. [8] maintains a memory of
previously visited novel states. During the first phase, the agent samples previously visited
states, but is biased towards newer states that have hardly been visited. The environment
is set to the chosen state, and the agent continues to explore from that state. The idea is
that the agent will sample a state near unexplored states, and will eventually stumble on
novel states. The sequence of actions to obtain a given state from the agent’s initial state
is stored alongside the state in memory. If a better trajectory to a stored state is obtained,
then the state is updated with the new trajectory. The likelihood of the state being chosen
is also reset. The agent repeats this process until it obtains a successful trajectory, i.e. a
trajectory that completes the task.

Once one or more high-performing trajectories are obtained, the algorithm starts
with phase two. This is referred to as phase two: robustify. As the first phase utilised
determinism in the simulator, the trajectories will not be robust to stochastic versions
of the problem. In this phase the algorithm runs imitation learning on the trajectories

12

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. RELATED WORK

obtained in the first phase. The reason for this is to obtain an agent with a more robust
policy that reliably solves the problem. Phase two of Go-Explore was inspired by the work
of Salimans and Chen [38]. Their algorithm entails starting the agent near the last state in
the trajectory and then training the policy of the agent by using an RL algorithm. In this
case Go-Explore used proximal policy optimisation (PPO) to train the agent. Once the
agent has learned to obtain a score similar to or higher than that of the example trajectory,
the agent’s starting state is shifted back to an earlier state. The process repeats until the
agent can solve the problem from the initial state.

The first phase of Go-Explore may be problematic to implement in other domains than
the 2D Atari games it was originally tested on. The reason for this is, to maintain a memory
of previously visited states, the algorithm represents a state as a downsampled 8 × 11
grayscale image. The technique of downsampling states may not be able to differentiate
novel states in all other domains. The first phase also requires a deterministic environment
in order to precisely set the environment to states previously visited. This should not be
a problem, as most RL algorithms are trained in simulation environments. It should be
noted that work in the Atari domain prior to Go-Explore rarely exploited simulators in
such a manner.

2.5 Shaping

According to Sutton and Barto [45], the difficulty of solving sparse-reward problems is not
only due to the scarcity of the reward signal, but also because the policy of the agent is
inadequate to frequently visit rewarding states. The technique of shaping was introduced
by the psychologist Skinner [43], and has been borrowed for the RL paradigm. Sutton and
Barto [45] state that this involves giving the RL agent a sequence of fairly simple problems
that will ultimately lead to a difficult issue of interest. The reward signal changes during
the process of training the agent. Therefore, the agent first receives a non-sparse reward
signal and the reward signal is gradually modified to suit the target problem. The RL
agent encounters problems with increasing difficulty. The knowledge of previous problems
it encountered enables the agent to solve the more difficult problems. Shaping usually
requires domain knowledge of the target problem and therefore the RL algorithm does not
learn optimal behaviour entirely by itself. We now discuss some of the primary methods of
shaping used in RL.

2.5.1 Reward function shaping

A simple solution to the sparse-reward problem is to reward the agent more frequently.
The method of augmenting the native reward function of the MDP with additional rewards
is called reward shaping. It can be very effective to accelerate learning [29]. The idea of
reward shaping is to reward the agent for making approximations to the desired behaviour.

13

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. RELATED WORK

For example, to encourage the agent to navigate to a goal, a positive reward can be
returned when the agent moves closer to the goal. Therefore the agent is guided to the
solution of the problem. The benefit is that the agent does not have to solve a problem
with significantly delayed rewards. However, the shaped reward function must be designed
very carefully to train an optimal policy. This method can restrict the behaviour of the
agent to act on the basis of the shaped reward function, and the agent is not truly free to
find innovative solutions on its own.

The work by Randløv and Alstrøm [35] also showed that agents may enter cycles to
optimise the shaped reward function that are not aligned with the optimal policy for the
target problem. According to Sutton and Barto [45], it is not advisable to reward RL
agents for achieving sub-goals. The agent may learn a strategy to obtain a lot of rewards
without solving the intended task, i.e. this may lead to sub-optimal behaviour.

Designing an optimal shaped reward function can be time-consuming, as it requires
fully understanding the dynamics of the environment. Furthermore, a new reward function
must be handcrafted for every new problem assigned to the agent. Therefore reward
shaping is not viable for learning optimal behaviour on a variety of different tasks.

2.5.2 Curriculum learning

Another method of shaping according to Randløv and Alstrøm [35] is to develop a multi-
stage problem that is trained part by part. This idea is more in line with the definition
of shaping by Sutton and Barto [45]. This approach is referred to as curriculum learning
(CL). A sequence of increasingly complex tasks are specified. The agent is then trained on
a task until it is able to reliably solve it before moving on to the next with the current
policy. The process continues until the agent is able to solve the intended task. The goal is
to improve the learning speed or final performance of the agent. The work by Selfridge
et al. [40] showed that transferring knowledge from a simple version of a problem can help
in learning a more difficult version.

The work by Salimans and Chen [38] used a similar technique to train an RL agent to
play the Atari game, Montezuma’s Revenge. This game is known to be very difficult for
RL agents to solve due to the sparse nature of its rewards. Salimans and Chen [38] used a
single successful trajectory in Montezuma’s Revenge to train the agent. The agent was
trained by presenting the trajectory to the agent in reverse order. The agent starts in a
state close to its final goal and once it reliably solves the problem it is moved back along
the trajectory. The difficulty of the starting state is gradually increased until the agent
encounters the final intended problem.

14

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. RELATED WORK

2.5.3 Domain randomisation

Domain randomisation (DR) refers to randomising different aspects of a simulation
environment during training. DR is often used to transfer models from simulation to
the real world. The work by Tobin et al. [46] used DR to transfer an ANN used for
object localisation from simulation to the real world. Various aspects of the simulation
environment were randomised to enable the model to generalise to the real world. Tobin
et al. [46] found that by randomising the simulation environment enough during training,
the real world may be made to look to the trained model like just another version of the
problem.

In this study, we investigate whether randomising certain aspects of the environment
can aid the agent in solving sparse-reward problems. The goal is to expose the agent to a
greater variety of problems. Similar to CL, the idea is that the agent first learns to solve
easier versions of the problem and then use this knowledge to solve the intended problem.

2.6 Distributed deep reinforcement learning

Next, we investigate distributed DRL methods. The first is a method referred to as general
reinforcement learning architecture (Gorila) and it distributes several components of a
DRL algorithm. We then investigate an algorithm referred to as Ape-X that distributes
data generation and prioritises important transitions.

2.6.1 Gorila

Gorila is an architecture that distributes various components of a DRL algorithm. The
goal of Gorila is to have a scalable architecture that enables one to utilise plenty of
computational resources. Nair et al. [27] used Gorila to implement the deep Q-learning
algorithm of Mnih et al. [23, 24]. According to Nair et al. [27] the performance of the Gorila
DQN surpassed the non-distributed DQN in 41 of the 49 Atari games. Nair et al. [27] also
found that in most games, Gorila decreased the wall-time to obtain the results by an order
of magnitude. Here we give a quick overview of how Gorila distributes components of the
deep Q-learning algorithm.

Gorila employs parallel actors to increase the rate at which new transitions are generated.
Gorila has several parallel actor processes. Each actor process has access to an instantiation
of the same environment. The actors generate trajectories in their respective environments
in parallel. The generated experience is either stored locally in a replay buffer on the
actors’ machines, or in a central distributed database.

Additionally, the architecture has a central parameter server that holds a distributed
main ANN to represent the value function or policy. Each actor contains a replica of the
main ANN in order to perform actions in its respective environment. The parameters

15

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. RELATED WORK

of the actors’ networks are periodically synchronised with the parameters of the central
parameter server.

The architecture also accommodates parallel learners that are trained from the stored
experience (transitions). The learners also have access to copies of the main ANN. The
learners are responsible for computing the desired changes to the parameters of the main
ANN. Accordingly, the learners sample batches of transitions from the replay buffer to
compute the gradients of the network. The gradients indicate how the parameters of the
ANN should be adjusted. The gradients are communicated to the parameter server and
the parameters of the respective learners’ ANNs are periodically updated. The parameters
of the main ANN are split across several machines. Each machine is responsible for
adjusting the values of a subset of parameters. An asynchronous stochastic gradient
descent algorithm is used to modify the main ANN’s parameters using the gradients
received from the learners.

Gorila is a very flexible architecture and allows for an arbitrary number of actors,
learners, and parameter servers. Therefore any component of the architecture can be scaled
in case there is a bottleneck.

2.6.2 Ape-X

In this section, we review a framework by Horgan et al. [16] that is referred to as Ape-X.
Horgan et al. [16] applied it to the deep Q-learning algorithm by Mnih et al. [23, 24]. The
Ape-X framework decouples acting from learning to generate orders of magnitude more
data. Parallel actors generate experience in their own instances of the environment and
perform actions according to a central ANN. Therefore the main focus of this approach
is to generate data at a faster rate. Furthermore, Horgan et al. [16] utilised prioritised
experience replay (PER) to focus on the most important transitions. In contrast to Gorila
by Nair et al. [27], Ape-X utilises a centralised replay buffer, and instead of sampling
uniformly, Ape-X uses prioritised sampling. Since transitions are centralised, transitions
with high priority can benefit the whole system.

Prioritised experience replay (PER) by Schaul et al. [39] assigns maximum priority
to newly acquired transitions. This is done to ensure that newly generated transitions
are sampled. Priorities of transitions are only updated once the learner samples them.
Horgan et al. [16] state that this approach does not scale well with Ape-X. Due to the
large volume of data generated with the Ape-X framework, the learner will not be able
to update priorities of transitions fast enough. Accordingly, this would lead to a focus
on the most recent transitions generated. Therefore, Horgan et al. [16] used the actors
to compute priorities for the transitions they have generated. At the time the Ape-X
paper was published, Horgan et al. [16] state that this approach achieved state-of-the-art
performance in the Atari 2600 games, using a fraction of the wall-time compared to
previous approaches.

16

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. RELATED WORK

2.7 Summary

In this chapter, we reviewed work that addressed problems similar to the problem we
address in our research. We first reviewed the achievements of the deep Q-learning algorithm
by Mnih et al. [23, 24], since it is regarded as a breakthrough in DRL. The deep Q-learning
algorithm is also central to this study. Mnih et al. [23, 24] applied deep Q-learning to 2D
Atari games, whereas we apply the algorithm to a problem in a partially observable 3D
environment with sparse rewards.

We then reviewed several approaches that deal with challenging exploration problems.
We first reviewd DQfD, which utilises expert demonstrations to pre-train the RL agent’s
policy. We will not utilise this approach in this study since, among other reasons, it is
expensive to generate expert demonstrations. We also reviewed a curiosity-driven approach
by Pathak et al. [33]. Although this technique seems very interesting, it adds additional
complexities to the DRL algorithm. We then reviewed the algorithm Go-Explore by Ecoffet
et al. [8]. This approach exploits the characteristics of the simulator to find successful
trajectories. Once a successful trajectory is obtained, Go-Explore uses an approach very
similar to curriculum learning (CL) to solve the sparse-reward problem. We also reviewed
shaping, including reward function shaping, CL and DR. Reward function shaping is
not recommended by Sutton and Barto [45] since it may lead to sub-optimal policies as
discussed in Section 2.5.1. Therefore we do not use this approach in this study. Since CL
and DR are very straightforward to implement, we investigate how these approaches aid
in solving difficult exploration problems.

Finally we reviewed two approaches that distributed DRL algorithms namely, Gorila
and Ape-X. Since the work by Horgan et al. [16] show very good results, we investigate
how this approach can aid in solving the sparse-reward problem we address.

17

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Markov decision processes

In this chapter we review the Markov decision process (MDP) which is a popular way
to model sequential decision-making problems. The MDP is a formulation of a decision
making problem, where actions do not only have an influence on the immediate situation
and reward, but also affect future situations and future rewards. MDPs contain the concept
of rewards that are delayed and therefore the idea of choosing between immediate rewards
and future rewards is important. In this chapter we discuss key MDP-related concepts
such as rewards, returns, value functions, policies, and Bellman equations. This chapter is
largely based on the work by Sutton and Barto [45] and Russell and Norvig [37].

3.1 Markov chains

We start by introducing the Markov chain as a stepping stone to the more general MDP.
A Markov chain consists of number of states

S = s0, s1, . . . , sn (3.1)

and has a transition model that models transitions from one state to another. The transition
model is a probability distribution that specifies the probability of a state given the history
of all previous states, i.e.

Pr{St+1|S0, S1, . . . , St} = Pr{St+1|S0:t}, (3.2)

where S0:t represents the states S0, S1, . . . , St. The problem is that, as t increases, the
history of states S0:t can become very large and computationally intractable. This can
be solved by the Markov assumption which states that the entire history of states S0:t is
contained in a fixed finite number of previous states. The first order Markov assumption
simplifies this even further and assumes that complete state history is contained only in
the current state St. The first order Markov assumption can now be used to simplify the
transition model to

Pr{St+1|S0:t} = Pr{St+1|St}. (3.3)

18

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MARKOV DECISION PROCESSES

Equation 3.3 states that the current state provides sufficient information to make a
prediction about the next state that is independent of all past states [37].

The Markov chain can therefore be used to model many stochastic processes such as
the growth of populations. Unfortunately, these models can only be used to predict future
states based on current states. In addition, there is no way to interact with the model
in order to influence the state of the model. The Markov chain also does not allow for
specifying desirable states in the model.

3.2 Agent and environment interaction

The MDP is a generalisation of the Markov chain and is defined by the following:

• a state space S = s0, s1, . . . , sn.

• an action space A = a0, a1, . . . , an.

• an initial state distribution p0 that models the state in which the MDP starts.

• a state transition model p(s′|s, a) .= Pr{St+1 = s′|St = s, At = a}. It describes the
probability of reaching the state s′ at time step t+ 1, after taking action a in state s
at time step t.

• a reward function r(s, a, s′) .= E[Rt+1 = r|St = s, At = a, St+1 = s′]. It defines the
reward obtained arriving at state s′ at time step t+ 1, after taking the action a in
state s at time step t.

• a discount rate γ ∈ [0, 1], defining the importance of immediate rewards versus future
rewards.

The MDP describes a problem where one can learn to achieve a goal through interaction.
This is the problem reinforcement learning (RL) tries to solve. It usually consists of an
agent and an environment, as shown in Figure 1.1. The agent is also known as the decision
maker or learner and repeatedly interacts with the environment by performing actions.
The environment reacts to the actions of the agent by providing it with new situations
and a reward signal. In an MDP it is presumed that the environment is fully observable,
therefore the agent accurately observes the precise state of the environment. The agent
performs actions that are based on the states the environment presents.

The interaction between the agent and the environment takes place at discrete time
steps, t = 0, 1, 2, 3, In most problems this interaction continues for a finite T time
steps. In continuous tasks T is infinite, but this study is only concerned with episodic tasks
where T is finite. A trajectory of agent-environment interaction is usually in the form of

S0, A0, S1, R1, A1, S2, R2, A2, . . . , ST , RT , (3.4)

19

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MARKOV DECISION PROCESSES

and at time step T the trajectory is completed. At each time step of the trajectory, the
transition model of the MDP is used to obtain the following state and reward. Therefore,
when the agent is in the state s, and takes the action a, the transition model that describes
the dynamics of the MDP returns a probability of reaching the state s′ and receiving the
reward r. Sutton and Barto [45] define the transition model as

p(s′, r|, s, a) .= Pr{St+1 = s′, Rt+1 = r|St = s, At = a}. (3.5)

The transition model uses the first order Markov assumption, therefore the probability
of reaching state s′ and receiving the reward r depends only on the current state s and
action a.

3.3 Rewards and returns

The goal of an RL agent is described in terms of the reward signal that it receives at every
time step. The reward signal is a real number, Rt ∈ R and the objective of the agent is
to maximise the sum of rewards received over time, i.e. the cumulative sum of rewards
received in the course of its trajectory and not just the immediate reward. The sum of all
the rewards received during a trajectory in an MDP is called the return, denoted with Gt.
In the simplest case, the return Gt of a trajectory is the sum of rewards received after the
time step t,

Gt
.= Rt+1 +Rt+2 +Rt+3 + · · ·+RT , (3.6)

where T is the final time step of the trajectory. We now also discuss the idea of discounting
rewards. By using this approach, the agent’s objective is to choose actions in order to
maximise the expected sum of discounted rewards. Sutton and Barto [45] define the
discounted return Gt as

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + . . .

=
∞∑
k=0

γkRt+k+1.
(3.7)

Gamma γ ∈ [0, 1] is the discount rate and determines the value of future rewards by scaling
rewards based on the time step when it is acquired. A value close to 0 favours rewards
that are acquired in the near future, which leads to a myopic evaluation, whereas a value
close to 1 assigns equal importance to all future rewards and leads to a more far-sighted
evaluation. Discounting rewards allows us to favour rewards based on the time they are
received. It also allows the return Gt to be finite in tasks where T =∞. Note that there is
a recursive relationship between returns at successive time steps in Equation 3.7

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . .)
= Rt+1 + γGt+1.

(3.8)

20

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MARKOV DECISION PROCESSES

This recursive relationship is fundamental to RL algorithms and is also present in the
Bellman equation covered in Section 3.5.

3.4 Policies and value functions

In an MDP the agent has to sequentially choose actions to accumulate rewards with the
goal to receive the highest possible return. Unfortunately a fixed sequence of actions will
not solve an MDP due to the uncertainty that is present in the transition model. The
agent therefore needs to find a solution where each state in the MDP is mapped to a
probability distribution that gives the probability of choosing each possible action. Such a
solution is described by Sutton and Barto [45] as a stochastic rule which selects actions
as a function of states, and is defined as policy π. If the agent is following a policy π at
time step t, then π(a|s) is the probability of taking the action a given the state s. The
state-value function vπ(s) is a way to evaluate the quality of a policy. The state-value
function vπ(s) is the expected return Gt if the agent is in state s and then follows a policy
π and is defined by Sutton and Barto [45] as

vπ(s) .= Eπ [Gt|St = s]

= Eπ
[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
, for all s ∈ S.

(3.9)

The state-value function vπ(s) is thus an estimate of how good it is to be in a given state.
The action-value function qπ(s, a) is another way to evaluate a policy π. The action-value
function qπ(s, a) is the expected return Gt if the agent is in state s, takes action a and
then follows policy π. Sutton and Barto [45] define it as

qπ(s, a) .= Eπ[Gt|St = s, At = a]

= Eπ
[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
.

(3.10)

The action-value function qπ(s, a) is therefore an estimate of how beneficial it is to perform
a specified action in a given state and then following the policy π afterwards.

3.5 Bellman equation

The previous section described the policy of an agent, which is used by the agent to
perform actions in an MDP. For a given MDP, the value function is used to describe the
quality of a policy π. In this section we review the Bellman equation. It can be used to
break down the value function to describe the recursive relationship between a state’s
value and the values of the states that follow it [45].

The recursive relationship in Equation 3.8 can be used to decompose the expected
return Gt in Equation 3.9 as the expected immediate reward Rt+1 plus the expected

21

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MARKOV DECISION PROCESSES

discounted return at the next time step γGt+1. Sutton and Barto [45] show that Equation
3.9 becomes

vπ(s) .= Eπ[Gt|St = s]
= Eπ[Rt+1 + γGt+1|St = s]
=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γEπ[Gt+1|St+1 = s′]

]
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(St+1)

]
, for all s ∈ S

= Eπ
[
Rt+1 + γvπ(St+1)|St = s

]
.

(3.11)

The expected discounted return Gt+1 is replaced with the discounted state-value function of
the next state γvπ(St+1). The outer expectation becomes a summation over the variables a,
s′, and r. For each combination of the variables a, s′, and r, the probability π(a|s)p(s′, r|s, a)
is computed. The value between the brackets is weighted by each probability, then a sum
over all possibilities is computed to get an expected value. Equation 3.11 is known as the
Bellman equation for vπ, and is named after Richard Bellman, who developed it in 1957.
It states that the value of a given state is equal to the discounted value of the expected
next state plus the value of the expected received reward. The action-value function can
be similarly decomposed and gives

qπ(s, a) = Eπ
[
Rt+1 + γqπ(St+1, At+1)|St = s, At = a

]
. (3.12)

The Bellman equation can be used to check for optimality and for recursive assignments
during policy evaluation, which is further discussed in Section 3.7

3.6 Policies and value functions that are optimal

Essentially, in order to solve the MDP, a policy is needed that will maximise the received
reward over time. If the expected return of a policy π is greater than or equal to the
expected return of a policy π′ for all states, then the policy π is said to be better than the
policy π′. Therefore Sutton and Barto [45] state that

π ≥ π′ if and only if vπ(s) ≥ vπ′(s), for all s ∈ S. (3.13)

They show that every MDP has a deterministic optimal policy π∗ that is better than or
equal to all other policies,

π∗ ≥ π, for all π. (3.14)

Sutton and Barto [45] state that all optimal policies achieve the same state-value function,

vπ∗(s) = v∗(s), (3.15)

22

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MARKOV DECISION PROCESSES

called the optimal state-value function. Similarly, Sutton and Barto [45] state that all
optimal policies achieve the same action-value function,

qπ∗(s, a) = q∗(s, a), (3.16)

called the optimal action-value function. The MDP is considered to be solved when the
optimal value function is found, as it stipulates the best possible performance in the MDP.
The optimal state-value function v∗(s) yields the maximum expected return for all possible
policies in the MDP and is given by Sutton and Barto [45] as

v∗(s) .= max
π

vπ(s), for all s ∈ S. (3.17)

Similarly, the optimal action-value function q∗(s) yields the maximum expected return for
all policies and is given by Sutton and Barto [45] as

q∗(s, a) .= max
π

qπ(s, a), for all s ∈ S and a ∈ A(s). (3.18)

An optimal policy π∗ can be easily determined once v∗ is obtained. Sutton and Barto [45]
describe the Bellman optimality equation as

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a]

= max
a

E
[
Rt+1 + γv∗(St+1)|St = s, At = a

]
= max

a

∑
s′,r

p(s′, r|s, a)
[
r + γv∗(s′)

]
.

(3.19)

It is said that a state value under optimal policy must be equal to the expected return
for the best action from that state [45]. Similarly the Bellman optimality equation for q∗
according to Sutton and Barto [45] is

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)|St = s, At = a
]

=
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
q∗(s′, a′)

]
.

(3.20)

Sutton and Barto [45] state that by acting greedy with respect to an optimal value function
v∗, an optimal policy π∗ is being followed. This means that with v∗ you have to do a
one-step search to select the best action(s) that gives the maximum expected return. It
is even easier with q∗, as no one-step search is needed and you only have to choose the
action that gives the maximum expected return:

π∗(a|s) =

1 if a = argmax

a∈A(s)
q∗(s, a)

0 otherwise
. (3.21)

23

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MARKOV DECISION PROCESSES

The value functions v∗ and q∗ are optimal for the expected long-term return, and therefore
by acting greedily with respect to them, one is also choosing the best action at every time
step to receive the most reward in the long term.

Solving the Bellman optimality equation is a way to find an optimal policy for the
MDP, and therefore a way to solve the MDP. Sutton and Barto [45] state that it is rarely
feasible to solve it in practice and one should rather use other methods to approximate
solutions.

3.7 Dynamic programming

Dynamic programming (DP) algorithms can be used to obtain optimal policies given a
perfect model that describes the dynamics of the environment. The model refers to the
transition probability distribution and reward function of the environment. The idea of
DP is to break a problem into a series of sub-problems, the solutions to which then can be
combined to solve the original problem [4]. The algorithms discussed in this section rely
on the recursive relationship described with the Bellman equation (Equation 3.11). They
use this recursive relationship to introduce the idea of bootstrapping. Bootstrapping entails
updating a prediction based on another prediction. The main DP algorithms reviewed
to obtain optimal value functions and policies are policy iteration and value iteration.
These methods are referred to as model-based methods as they require a dynamics model
of the environment to obtain optimal behaviour. Generalised policy iteration (GPI) is also
discussed here, which form the basis of the DP methods discussed in the chapter. GPI is
also the basis of the model-free (where no dynamics model is needed) methods introduced
in Chapter 4.

3.7.1 Policy evaluation

Iterative policy evaluation is a method that evaluates a given policy π to obtain its value
function. We refer to the problem of evaluating a policy as the prediction problem. The
Bellman equation, Equation 3.11, is applied to do iterative expectation backups in order to
estimate vπ. At each iteration k of the process, the value of each state, s ∈ S, is updated
using the value of its successor states. A single iteration of iterative policy evaluation to
update the value of a state s is defined by Sutton and Barto [45] as

vk+1(s) .= Eπ
[
Rt+1 + γvk(St+1)|St = s

]
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvk(s′)

]
.

(3.22)

We define a sweep as updating all the states of the state space once. It is said that repeating
this process for k →∞ will converge to vπ [45]. It should be noted from Equation 3.22
that the dynamics model is required, and therefore this is a model-based method.

24

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MARKOV DECISION PROCESSES

3.7.2 Policy iteration

Policies can be evaluated with policy evaluation, but ideally we would also like to be
able to improve a policy. Policy iteration, a model-based method to improve a policy
π, consists of two main steps. The policy π is first evaluated to obtain vπ using policy
evaluation discussed in the previous section. After the policy π is evaluated, it is improved
by defining a new policy that selects the greedy actions with respect to the obtained
state-value function vπ. The new greedy policy π′ is given by Sutton and Barto [45] as

π′(s) .= argmax
a

qπ(s, a)

= argmax
a

E
[
Rt+1 + γvπ(St+1)|St = s, At = a

]
= argmax

a

∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s′)

]
.

(3.23)

After the policy has been improved, the process repeats itself and the newly improved
policy is evaluated again and so forth. If improvement stops, the optimal policy has been
found, i.e.

qπ
(
s, π′(s)

)
= max

a∈A
qπ(s, a) = qπ

(
s, π(s)

)
= vπ(s). (3.24)

Accordingly the Bellman optimality equation has been satisfied,

vπ(s) = v∗(s), for all s ∈ S, (3.25)

which makes π an optimal policy. Sutton and Barto [45] suggest that the optimal policy
π∗ will always be obtained when repeating the policy iteration process.

3.7.3 Value iteration

In Section 3.6 we established that the optimal value function of an MDP stipulates the
optimal performance in the MDP. Acting greedily with respect to the optimal state-value
function v∗ therefore yields the optimal policy π∗. Value iteration is a method where no
explicit policy is needed to achieve the optimal value function of the MDP. If we know the
solution of v∗(s′), then we can find the solution of v∗(s) (where s′ is the successor state to
s). Iterative Bellman backups can be applied to obtain v∗. At each iteration k + 1 of this
process, the value of each state vk+1(s) is updated from the value of its successor state
vk(s′) and is expressed by Sutton and Barto [45] as

vk+1(s) .= max
a

E
[
Rt+1 + γvk(St+1)|St = s, At = a

]
= max

a

∑
s′,r

p(s′, r|s, a)
[
r + γvk(s′)

]
.

(3.26)

Equation 3.26 is essentially policy iteration, but at each iteration, the policy evaluation is
stopped after one sweep.

25

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MARKOV DECISION PROCESSES

3.7.4 Generalised policy iteration

Policy iteration, discussed in Section 3.7.2, consists of two mechanisms that interact with
each other. The first is a process that entails learning the value function of the current
policy, i.e. policy evaluation. The second mechanism is a process that updates the policy
to be greedy with respect to the estimated value function, i.e. policy improvement. In
policy iteration the current process finishes before the other starts. However, each process
does not have to completely finish before the next starts. For example value iteration,
discussed in Section 3.7.3, performs only a single sweep of policy evaluation between each
step of improving the policy. The term generalised policy iteration (GPI) is used to refer to
the concept of policy evaluation and policy improvement procedures interacting in order
to find an optimal policy that is consistent with its greedy counterpart value function.
GPI forms the basis of most RL methods and is used in the model-free control methods
reviewed in Chapter 4.

3.8 Partially observable Markov decision processes

We previously assumed that the environment of the MDP is fully observable, therefore
the agent always knows the exact environmental state. This assumption combined with
the Markov assumption means that an optimal action at any time step only depends on
the agent’s current state. Unfortunately in most real-world problems, the environment is
not fully observable. Furthermore the value function of a state s usually does not only
depend on the state s, but also on how much the agent knows when it is in s. The partially
observable Markov decision process (POMPD) formulates the above variation of the MDP.
The POMPD is defined by the following:

• a finite state space S = s0, s1, . . . , sn.

• a finite action space A = a0, a1, . . . , an.

• a finite set of observations O = o0, o1, . . . , on.

• a state transition model p(s′|s, a) .= Pr{St+1 = s′|St = s, At = a}.

• a reward function r(s, a, s′) .= E[Rt+1 = r|St = s, At = a, St+1 = s′].

• an observation function p(o|s′, a) = Pr{Ot+1|St+1 = s′, At = a}.

• γ is a discount factor γ ∈ [0, 1].

In a POMPD the agent can no longer observe its true state St, only an observation Ot ∈ O
that provides partial information of the state St. For convenience we assume that the
reward Rt is included in the observation Ot.

26

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MARKOV DECISION PROCESSES

Sutton and Barto [45] define the history Ht as the complete sequence of actions, and
observations of a trajectory up to a time step t:

Ht = A0, O1, . . . , At−1, Ot. (3.27)

The idea of a state that satisfies the Markov assumption is that the state summarises the
history and can be used instead of the actual history to make predictions about the future.
If the agent’s observations no longer satisfy the Markov assumption, the actual history
can be used to recover the idea of a state (that satisfies the Markov assumption). A belief
state b(h) is a probability distribution over the latent or hidden states, given the history h,

b(h) =
(
Pr{St = s1|Ht = h}, . . . , P r{St = sn|Ht = h}

)
. (3.28)

The belief state b(Ht = h) can be used to recover a belief of the state St which satisfies
the Markov assumption. As the history becomes longer, this approach does not scale well
computationally and is not recommended by Sutton and Barto [45] to be used in artificial
intelligence applications.

Sutton and Barto [45] recommend the kth-order history approach which is a simple
alternative to approximate an unknown current state St. It entails using only the k last
observations and actions of the agent to represent the state St,

St
.= Ot, At−1, Ot−1, . . . , At−k, where k ≥ 1. (3.29)

Although it is a very simple solution, the agent can perform significantly better than when
only using the latest observation Ot as the current state St [45].

3.9 Summary

In this chapter, we introduced the MDP which is a method to describe the problem RL is
trying to solve. In summary an MDP models a sequential decision-making problem in an
environment that is fully observable and stochastic with a transition model that satisfies
the Markov assumption [37]. Furthermore, an MDP also includes a cumulative reward
function. We also discussed that an optimal policy or value function is needed to solve an
MDP.

Dynamic programming, encompassing methods that require a perfect environment
model, has been reviewed. These methods include policy iteration and value iteration and
are used to obtain optimal policies and value functions in the MDP. Even if an accurate
model of the environment is available, these methods may still be unfeasible due to large
computational requirements. In the next chapter, we investigate methods to find policies
in an MDP that do not require a model that perfectly describes the dynamics of the
environment.

27

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. MARKOV DECISION PROCESSES

We also introduced the POMPD – a variation of the MDP where the environment
returns an observation Ot that does not satisfy the Markov assumption. Most real-world
MDPs are in the form of a POMPD and it is therefore important to consider.

28

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Reinforcement learning

Chapter 3 provided an overview of Markov decision processes (MDPs) as a way of modelling
a sequential decision-making problem. Model-based algorithms to solve MDPs, such as
policy iteration and value iteration, were discussed in Section 3.7. Unfortunately, these
methods need access to a state-transition model and a reward function to compute optimal
policies. In most real-world problems, a perfect model describing the dynamics of the
environment is rarely available and is often too expensive to use or to store. Therefore
methods such as policy iteration and value iteration can very seldom be used. In order to
solve real-world problems, it is essential to be able to achieve an optimal policy and value
function without knowing the underlying model of the environment.

This chapter explores tabular methods that can achieve optimal value functions and
policies by only interacting with the environment. These methods learn optimal behaviour
from experience generated in the environment and do not require knowledge of the dynamics
of the environment. Therefore these methods are termed model-free. In this study, we are
concerned with value-based methods, but first, we differentiate between value-based and
policy-based methods. Monte Carlo (MC) methods, where samples of complete episodes
are needed, are then discussed and used to introduce value-based methods. We then discuss
temporal-difference (TD) methods that utilise bootstrapping in the subsequent section.

For each category, we first consider how a policy π can be evaluated to obtain the value
function vπ. Recall that this is referred to as the prediction problem or as the process of
performing policy evaluation. We then discuss how these methods can be applied to obtain
the optimal value-function v∗ and an optimal policy π∗. We refer to this as the process of
performing control. Both MC learning and TD learning are based on generalised policy
iteration (GPI) – the iterative process of evaluating and improving a policy as discussed
in Section 3.7.4.

In Section 4.4, we discuss why tabular control methods are not feasible to use in problems
with large state spaces and action spaces. As tabular methods do not scale very well,
Sutton and Barto [45] recommend approximating the value functions using a parameter
vector of lower dimensionality. We, therefore, review how function approximation can be

29

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

used in combination with the discussed TD control methods. This chapter is primarily
based on the work of Sutton and Barto [45].

4.1 Policy-based and value-based methods

We first differentiate between the main model-free control categories, namely value-based
and policy-based methods. The goal of value-based methods is to estimate the optimal
action-value function q∗ of an MDP, which allows us to also obtain an optimal policy
π∗. Value-based methods allow for the learning of optimal behaviour using off-policy
experience. Off-policy methods are described by Sutton and Barto [45] as methods that
evaluate or improve a policy different from that used to generate experience. Therefore
the target policy (the policy the agent learns about) can be different from the behavioural
policy (the policy used to generate experience). The advantage of off-policy methods is that
any experience generated by interacting with the environment, regardless of the method
used to explore the environment, can be used to update the value function. There are
also value-based methods where optimisation is performed using on-policy experience, for
example SARSA, which we discuss in Section 4.3.2. According to Sutton and Barto [45],
on-policy methods evaluate or improve a policy using experience that is generated by
the same policy. Therefore the target policy and behavioural policy are the same when
performing on-policy optimisation.

Policy-based methods, such as REINFORCE, aim to directly optimise a parameterised
policy without explicitly representing the value function. According to Nachum et al.
[26], the advantage of this approach is that it directly optimises the objective of interest,
and these methods are usually also stable under function approximation. Furthermore,
according to Silver [41], policy-based methods are suitable to use in continuous or high-
dimensional action spaces, can learn policies that are stochastic and have good convergence
properties. Policy-based methods almost always optimise the agent’s policy using on-policy
experience. According to Nachum et al. [26], the biggest drawback of these methods is that
they are usually not very sample-efficient. Sample efficiency is important since in some
environments it can be very expensive to generate environmental transitions. Value-based
and policy-based methods can be combined, referred to as actor-critic methods, to address
the shortcomings of the different approaches.

In this study, we focus on value-based methods as they naturally accommodate the use
of off-policy experience. Off-policy learning methods can be more sample-efficient as they
allow the use of other sources than on-policy experience for learning. For example, Sutton
and Barto [45] state they can learn from experience generated by an expert human, by
a conventional non-learning controller or reuse experience that the agent has previously
generated. We reuse previously generated data, as mentioned in the discussion of our
approach in Chapter 6.

30

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

4.2 Monte Carlo methods

In this section we review Monte Carlo (MC) methods to introduce value-based model-free
control. MC methods can obtain optimal policies and value functions by learning from
experience which is in the form of entire episodes. These methods, therefore, do not use
bootstrapping and work well for tasks with well-defined returns. Recall that bootstrapping
entails updating an estimate based on another estimate (see Section 3.7). Tasks that can
be separated into episodes are therefore suitable for these methods. We introduce certain
key concepts in this section that are also relevant to other model-free control methods.

4.2.1 Monte Carlo policy evaluation

We first discuss how MC methods can be used for prediction or policy evaluation. It has
been shown by Sutton and Barto [45] that if the agent follows a policy π and encounters a
state s, the average return that follows the state s will converge to the state’s value vπ(s),
as the number of times the state is visited approaches infinity. If an average is tracked
for each action taken in the state s, then the state-action value qπ(s, a) can similarly
be determined. These methods of estimating the value functions are called MC methods
because they entail averaging over many random sample episodes using the actual returns
received [45]. As MC methods use samples of entire episodes for policy evaluation, the
estimate of the value function is unbiased. The drawback is that MC methods have to
wait until the return Gt is known. Therefore values of states can only be updated at the
end of an episode.

Each time a state s is encountered we refer to it as a visit to s. The first time the
state s is encountered, we refer to as the first visit to s. There are two main MC policy
evaluation methods to estimate vπ, namely the first-visit MC method and the every-visit
MC method. It has been shown by Sutton and Barto [45] that the first-visit MC method
estimates vπ(s) as the mean return following the first visits to s. On the other hand, the
every-visit MC method estimates vπ(s) as the mean return following all visits to s. The
first-visit policy evaluation (tabular) procedure adapted from the work by Sutton and
Barto [45] is shown in Algorithm 1. According to Sutton and Barto [45], first-visit MC
and every-visit MC converge to vπ(s) as the number of times s is encountered, approaches
infinity. The result is an unbiased estimate of the expected value.

According to Silver [41], V (s) can also be updated incrementally

V (St)← V (St) + 1
N(St)

[
Gt − V (St)

]
, (4.1)

where Gt is the return after time step t in an episode S1, A1, R2, . . . , ST . The number of
times the state St has been visited is represented by N(St). Methods where an average is
used over all returns achieved following a state St, are appropriate for problems where the
reward function is stationary, i.e. where the reward function does not change over time. In

31

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

Algorithm 1: First-visit MC prediction, adapted from Sutton and Barto [45]. It
is used for estimating V ≈ vπ. An infinite number of episodes are completed. In
every episode when a first visit is made to a state St, the return following state
St is appended to returns(St). This allows us to estimate V (St) by averaging all
the returns obtained after visiting St for the first time. This algorithm can be
transformed to every-visit MC evaluation by removing the if statement in line 9.
1 input: a policy π to be evaluated
2 initialise: value function V (s) ∈ R, arbitrarily, for all s ∈ S
3 initialise: returns(s)← an empty list, for all s ∈ S
4 for each episode do
5 generate an episode following π: S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT

6 G← 0
7 for each step of episode, t = T − 1, T − 2, . . . , 0 do
8 G← G+Rt+1
9 if St not in S0, S1, . . . , St−1 then

10 Append G to returns(St)
11 V (St)← average

(
returns(St)

)
12 end
13 end
14 end

non-stationary problems where the reward function may change over time, it makes sense
to give weight to more recent rewards. It is argued by Silver [41] that it can be useful
to track a running mean and therefore forget old episodes in non-stationary problems.
Equation 4.1 becomes

V (St)← V (St) + α
[
Gt − V (St)

]
, (4.2)

where α is a constant step-size parameter.

4.2.2 Action-value function for model-free policy improvement

In Section 3.7 a model of the environment was required to perform a greedy policy
improvement over a state-value function. Recall that a greedy policy improvement over
vπ(s) is given by

π′(s) = argmax
a

∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s′)

]
. (4.3)

In Equation 4.3 it is clear that the probabilities p(s′, r|s, a), which characterise the
dynamics of the environment, are required to perform the policy improvement. It is
therefore impossible to use Equation 4.3 in model-free settings, where no model is available.
In these applications, the action-value function is handy as it can be used to improve a
policy without having access to the environment’s model. A greedy policy improvement
over qπ(s, a) is given by

π′(s) = argmax
a

qπ(s, a). (4.4)

We therefore use the action-value function in MC control in order to do policy improvements.

32

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

4.2.3 ε-greedy exploration

Acting greedily with regard to the current estimated action-value function allows us to
exploit our current knowledge of the system and allows for the maximisation of the
expected reward on the current step. By selecting nongreedy actions, alternative actions
are explored and allow for improving the estimates of values of the nongreedy actions.
Alternative actions may be better than what current knowledge estimates to be best. After
discovering better actions, these can be exploited to produce greater reward in the long
run. There is, therefore, a conflict between exploration and exploitation as it is not possible
to perform both with a single action.

MC methods use samples of experienced episodes to update value functions and to
improve policies. Sufficiently exploring all possible state-action pairs with MC methods
can be problematic. By selecting only actions that are estimated to be the best, i.e.
always performing greedy actions, alternative actions, which may be better, are never
selected. We must therefore ensure that the algorithm continues to explore alternative
state-action pairs. According to Sutton and Barto [45] we can solve this problem by starting
episodes with randomly sampled state-action pairs (with all state-action pairs having a
none-zero probability of being sampled). This guarantees that all state-actions pairs will
be encountered an infinite number of times for an infinite number of episodes. Sutton
and Barto [45] define the above assumption of randomly initialising state-action pairs at
the start of an episode as exploring starts. In simulated environments, exploring starts
can often be implemented, but this method is usually not feasible to use with real-world
problems.

An alternative way to address the problem of maintaining exploration is to have a
stochastic policy that has a non-zero probability of selecting all possible actions in each
state. In applications where exploring starts cannot be used, the ε-greedy exploration
strategy is convenient to use. It is a very simple, effective exploration strategy that ensures
continual exploration [23]. Silver [41] defines the ε-greedy strategy as

π(a|s) =

ε/|A(St)|+ 1− ε if a∗ = argmax

a
Q(s, a)

ε/|A(St)| otherwise
, (4.5)

where |A(St)| is the cardinality of the action space. Every time the agent performs an
action, it has a probability of 1− ε of selecting the greedy action, else (with a probability
of ε) the action is randomly sampled.

4.2.4 Monte Carlo control

We proceed to discuss MC control where an optimal value function v∗ and optimal policy
π∗ are obtained by using entire sample episodes for optimisation. On an episode-by-
episode basis, MC control methods combine the policy evaluation and policy improvement

33

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

steps of generalised policy iteration (GPI)(see Section 3.7.4). An iterative process can be
implemented that estimates the action-value function of a policy and then improves the
policy with regard to the estimated action-value function. As MC control works on an
episode-by-episode basis, the action-value function and policy are only updated every time
an episode is completed.

Algorithm 2 shows the pseudo code of an ε-greedy on-policy MC control algorithm. It

Algorithm 2: Monte Carlo Control: On-policy first-visit MC control using
ε-greedy exploration, adapted from the work by Sutton and Barto [45]. The algo-
rithm estimates the optimal policy π∗. A policy π is initialised and the action-value
function qπ is estimated (rather than vπ). The ε-greedy policy improvement step
allows improving the current policy while the new policy still explores nongreedy
actions from time to time. The ε-greedy exploration strategy is important to
include, as this algorithm does not utilise exploring starts.
1 initialise: small ε > 0
2 initialise: π ← an ε-greedy policy
3 initialise: Q(s, a) for all s ∈ S, a ∈ A(s)
4 initialise: returns(s, a) ← empty list, for all s ∈ S, a ∈ A(s)
5 for each episode do
6 generate an episode following π : S0, A0, R1, . . . , ST−1, AT−1, RT

7 G← 0
8 for each step of episode, t = T − 1, T − 2, . . . , 0 do
9 G← G+Rt+1

10 if St, At not in S0, A0, S1, A1, . . . , St−1, At−1 then
11 append G to returns(St, At)
12 Q(St, At)← average

(
returns(St, At)

)
13 A∗ ← argmax

a
Q(St, a)

14 for all a ∈ A(St) do

15 π(a|s) =
ε/|A(St)|+ 1− ε if a = A∗

ε/|A(St)| if a 6= A∗

16 end
17 end
18 end
19 end

is an on-policy algorithm as the target policy (which is ε-greedy) is also used for behaviour,
i.e. generating experience. In the policy improvement step (line 15), we do not improve the
policy by making a greedy improvement. However, we instead do an ε-greedy improvement
with regard to the current estimated action-value function. The ε-greedy improvement to
the policy allows continuing to explore nongreedy actions that may lead to better policies.

According to Sutton and Barto [45], we need a policy that still explores, and therefore
the on-policy method in Algorithm 2 compromises by not learning about the optimal
policy, but about a near-optimal policy that still explores. Sutton and Barto [45] state

34

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

that GPI does not require improving all the way to a greedy policy, but only toward a
greedy policy. Therefore, the ε-greedy improvement with regards to qπ is guaranteed to be
better than or equal to π [45].

The main benefit of MC control over DP is that it is a model-free control method.
MC control can learn value functions and optimal policies from sample episodes that are
completed in the environment. A drawback of this method is that it is unable to learn
continuous tasks. Furthermore, it cannot update the value function before an episode
has ended. This is not problematic for tasks with short episodes, but it can significantly
increase the time taken to learn the optimal policy. According to Sutton and Barto [45],
MC methods (which do not bootstrap) may be less susceptible to the violations of the
Markov assumption, as they do not update estimated state values based on estimated
state values of subsequent states.

4.3 Temporal-difference methods

Temporal-difference (TD) methods are central to RL and, like MC methods, can learn
optimal policies and value functions from environmental interaction without the need
for a model that describes the dynamics of the environment. Unlike MC methods, these
methods do not have to wait until the end of an episode before updating the value function
and improving the policy. They achieve this ability by using bootstrapping, which we
introduced with dynamic programming (DP) in Section 3.7. Bootstrapping entails updating
estimated values based on other estimated values. This allows them to be more effective
in solving continuous tasks or tasks with long episodes, which are problematic for MC
methods.

We again first discuss how TD methods can be applied to solve the prediction problem
or to evaluate a policy. Recall that policy evaluation entails estimating the value function
vπ for a policy π. We then discuss two TD control methods. Recall that control methods
entail finding optimal value functions and optimal policies. Like DP and MC methods,
TD methods are also based on GPI. The main difference between the methods is in how
they approach policy evaluation.

4.3.1 Temporal-difference policy evaluation

In Section 4.2.1, we explained how MC methods use sample returns from experience
following the policy π to approximate a value function V ≈ vπ. Recall that an every-visit
MC policy evaluation method for nonstationary environments is

V (St)← V (St) + α
[
Gt − V (St)

]
. (4.6)

From Equation 4.6 it can be seen that the entire sample return Gt is required to update
the estimated value V (St). Recall the relationship described by the Bellman equation,

35

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

Equation 3.11,
vπ(s) .= Eπ

[
Gt|St = s

]
= Eπ

[
Rt+1 + γGt+1|St = s

]
= Eπ

[
Rt+1 + γvπ(St+1)|St = s

]
.

(4.7)

TD methods use this relationship to estimate the return Gt. The estimated return is
also called the TD target. The simplest TD learning algorithm, TD(0), also known as
one-step TD, updates the value V (St) toward the one-step TD target. The one-step TD
target is the immediate reward received plus the estimated value of the subsequent state,
Rt+1 + γV (St+1). We refer to this method as one-step TD, because it is a special case of
the n-step TD methods discussed in Section 4.3.4. We therefore replace the return Gt in
Equation 4.6 with the one-step TD target,

V (St)← V (St) + α
[
Rt+1 + γV (St+1)− V (St)

]
. (4.8)

TD methods update the estimated value of the state by using the estimated value of the
subsequent state and therefore use bootstrapping.

The value
δ
.= Rt+1 + γV (St+1)− V (St) (4.9)

is known as the TD error. It defines the error between the current state value V (St) and
the TD target. The goal is to minimise the TD error. As the TD error becomes smaller,
the value function becomes stable, therefore the estimated value function V of the policy
π converges to the true value function vπ. TD methods are capable of online learning; that
is, they can update estimated state values at every time step and do not have to wait
until the end of an episode. TD methods combine the sampling from MC methods and the
bootstrapping of DP. They differ from DP methods in that they use sample updates and
do not use expected updates based on a complete distribution of all possible subsequent
states and rewards. The estimates used in TD methods have significantly lower variance
than MC methods, as they do not use complete returns for estimates. The drawback is
that TD methods are biased and initial estimates may be very wrong. A tabular one-step
TD algorithm for policy evaluation is shown in Algorithm 3.

4.3.2 SARSA for model-free control

In the previous section, we explained how TD methods can be used to estimate the value
function vπ from experience that follows a policy π. We now review a model-free control
TD method, in order to obtain optimal value functions and optimal policies. According to
Sutton and Barto [45], the idea of TD learning methods is that the approximate policy
and approximate value function can interact with each other in such a way that they both
move towards their optimal values. The first part of this process is to estimate the value

36

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

Algorithm 3: Tabular one-step TD for evaluating a policy π (V ≈ vπ), adapted
from Sutton and Barto [45].
1 input: a policy π to be evaluated
2 initialise: value function V (s) ∈ R, arbitrarily, for all s ∈ S+, V (terminal) = 0
3 initialise: step size α ∈ (0, 1]
4 for each episode do
5 initialise S0
6 repeat for each step t of episode, t = 0
7 choose At from St using policy π
8 perform At, observer Rt+1, St+1

9 V (St)← V (St) + α
[
Rt+1 + γV (St+1)− V (St)

]
10 until St+1 is terminal
11 end

function to predict the returns of the current policy. The second part is to improve the
policy with regard to the estimated value function.

In this section, we review an on-policy TD control method, SARSA. Again the action-
value function qπ is used instead of the state-value function vπ, as the former does not
require a transition model of the environment to improve the policy (refer to Section
4.2.2). The goal is to obtain an optimal action-value function q∗ and therefore also an
optimal policy π∗. We first discuss how a policy π is evaluated, and then how the policy is
improved.

Similarly to the previous section, we learn a value function from samples of experience.
Here state-action pair to state-action pair is considered, and the estimated values of
state-action pairs are updated. The estimated action-value Q(St, At) is updated:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γQ(St+1, At+1)−Q(St, At)

]
. (4.10)

The update is done for non-terminal states, and if state St+1 is terminal then Q(St+1, At+1)
is defined as zero.

The estimated action-value function Q is then used to improve the policy. An ε-greedy
strategy can be used to choose the action At+1 from the state St+1 using the estimated
action-value function Q. The ε-greedy strategy acts mostly greedy with regard to the
estimated action-value function but also explores nongreedy actions from time to time, as
discussed in Section 4.2.3. In every update St, At, Rt+1, St+1, At+1 are present and these
give rise to the name SARSA. SARSA for on-policy control is shown in Algorithm 4. This
method continually estimates qπ while doing an ε-greedy improvement. According to Sutton
and Barto [45], SARSA with ε-greedy exploration converges to an optimal action-value
function q∗ and therefore an optimal policy π∗. For convergence, all state-action pairs must
be visited an infinite number of times, and the policy must converge to the greedy policy
in the limit (by setting ε = 1/t). In practice, it is not possible to visit all states an infinite

37

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

Algorithm 4: SARSA: An on-policy TD control algorithm for estimating the
optimal action-value function Q ≈ q∗, adapted from Sutton and Barto [45].
1 initialise α ∈ (0, 1]
2 initialise small ε > 0
3 initialise Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily, Q(terminal, ·) = 0
4 for each episode do
5 initialise S0
6 choose A0 from S0 using policy derived from Q (e.g. ε-greedy)
7 repeat for each step t of episode, t = 0
8 take action At, observe Rt+1, St+1
9 choose At+1 from St+1 using policy derived from Q (e.g. ε-greedy)

10 Q(St, At)← Q(St, At) + α
[
Rt+1 + γQ(St+1, At+1)−Q(St, At)

]
.

11 until St+1 is terminal
12 end

number of times, but it is also not necessary to converge all the way towards q∗ in order
to obtain an optimal policy π∗.

4.3.3 Q-learning for model-free control

Q-learning is an off-policy TD method which Sutton and Barto [45] describe as a break-
through in RL. It is classified as an off-policy method as the behaviour policy is independent
of the target policy. The target policy (the policy the agent learns about) is greedy with
respect to Q(s, a):

π(St+1) = argmax
a

Q(St+1, a). (4.11)

The Q-learning target can be simplified to

Gt ≈ Rt+1 + γQ
(
St+1, argmax

a
Q(St+1, a)

)
= Rt+1 + γmax

a
Q(St+1, a).

(4.12)

Sutton and Barto [45] define the Q-learning update step as

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
. (4.13)

The behaviour policy can be anything, but it is usually ε-greedy with respect to Q(s, a).
The behaviour policy can also take the form of experience generated by older policies
or by expert demonstrators. The off-policy nature of the algorithm allows it to be more
sample-efficient as it can reuse previously generated experience to learn. This also makes
it possible to learn from several different policies at the same time. Algorithm 5 shows
pseudo code for a tabular Q-learning model-free control algorithm. Sutton and Barto
[45] state that with Q-learning, the estimate action-value function Q converges to the
optimal action-value function q∗ when all state-action pairs are infinitely updated. Again,
in practice it is not necessary to converge all the way to q∗ to obtain an optimal policy π∗.

38

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

Algorithm 5: Q-learning: An off-policy TD control algorithm for estimating
π ≈ π∗, adapted from Sutton and Barto [45].
1 initialise α ∈ (0, 1]
2 initialise small ε > 0
3 initialise Q(s, a), for all s ∈ S+, a ∈ A(s), randomly except that Q(terminal, ·) = 0
4 for each episode do
5 initialise S0
6 repeat for each step t of episode, t = 0
7 choose At from St using policy derived from Q (e.g. ε-greedy)
8 take action At, observe Rt+1, St+1

9 Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
.

10 until St+1 is terminal
11 end

Sutton and Barto [45] state that optimal performance exists when combining TD methods
and MC methods. In the next section we explore how the n-step update can be applied to
unify TD methods and MC methods.

4.3.4 n-step temporal-difference methods

Having discussed MC methods and TD methods, we now discuss n-step TD methods.
n-step methods cover a spectrum with MC methods on one end and one-step TD methods
on the other. Sutton and Barto [45] state that the best method is often between the two
extremes.

A problem with one-step TD methods is that bootstrapping is done after one time
step. One time step is often too short for the state to significantly change. According
to Sutton and Barto [45], bootstrapping works best if a recognisable state change has
occurred. n-step methods enable bootstrapping after multiple time steps, hence allowing
the state to change more significantly.

n-step methods are still TD methods since one estimate is updated using a later
estimate. The later estimate is now n time steps, instead of one time step, later, as
explained before. We call these methods n-step TD methods.

Recall that MC methods update the estimate vπ(St) in the direction of the complete
return of an episode, hence

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γT−t−1RT , (4.14)

where T is the last time step of the episode. The return Gt is the target used for MC
methods. The target used in one-step TD methods is the immediate reward plus the
discounted estimated value of the next state, hence

Gt:t+1
.= Rt+1 + γVt(St+1). (4.15)

39

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

We refer to Equation 4.15 as the one-step return. We use the same subscripts on Gt:t+1

as Sutton and Barto [45]. This indicates that the discounted sum of rewards until time
step t+ 1 is computed, and the rest of the terms of the full return in Equation 4.14 are
replaced by the estimate γVt(St+1). The n-step return is somewhere between the extremes
of Equation 4.14 and Equation 4.15. It is defined by Sutton and Barto [45] as

Gt:t+n
.= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnVt+n−1(St+n), (4.16)

for all n, t such that n ≥ 1 and 0 ≤ t < T − n. If the n-step return extends beyond the
terminal state at time step T (t+ n ≥ T), then the n-step return becomes the full return
and the missing terms become zero, i.e. Gt:t+n

.= Gt if t + n ≥ T . Note that the n-step
return involves future rewards and states that are not available at the time of generating
the state for which the estimated value is being updated. One must therefore wait until
Rt+n and St+n are available and Vt+n−1 is computed. These values are available at time
step t+ n.

The n-step for SARSA is very similar to Equation 4.16, but is now defined in terms of
estimated action values. Sutton and Barto [45] define the n-step return for SARSA as

Gt:t+n
.= Rt+1 + γRt+2 + · · ·+ γnQt+n−1(St+n, At+n) (4.17)

where n ≥ 1 and 0 ≤ t < T −n. Again the n-step return is equal to the return Gt:t+n
.= Gt

if t+ n ≥ T . An update to an estimate of a state-action value is then

Qt+n(St, At) .= Qt+n−1(St, At) + α
[
Gt:t+n −Qt+n−1(St, At)

]
, (4.18)

where 0 ≥ t < T .
The n-step return can also be extended to off-policy algorithms. Off-policy learning

entails learning from a policy π while following a different policy b. The policy π is often
the greedy policy, while b is an exploratory policy. Sutton and Barto [45] state that to
use the data from b to learn from π, we must take the difference of these policies into
account. They suggest using importance-sampling (IS) weights to weight n-step updates.
The weights are computed using the relative probabilities of π and b performing the actions
that were previously taken. We do not cover the theory of off-policy n-step learning with
IS here. The reason for this is that Hernandez-Garcia and Sutton [13] have already shown
that IS is not always necessary when learning off-policy.

A logical next step would be to introduce eligibility traces. Sutton and Barto [45] use
n-step methods as a stepping stone to introduce eligibility traces. According to Sutton
and Barto [45], eligibility traces have significant computational advantages over n-step
methods. However, using eligibility traces with the algorithm of this study would be very
cumbersome. We further elaborate on the reasons for the difficulty of using eligibility
traces in Chapter 6. Therefore we do not cover the theory of eligibility traces here.

40

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

4.4 Value function approximation

Up to this point, we discussed tabular learning, where a table was used to represent the
value function. Each state or state-action pair has an associated value in the table. This
data structure allows for updating the estimated values independently from each other.
The lookup table made it easier to understand the concepts that were explained earlier
and can be applied with great success to simple problems with relatively small state spaces
and action spaces. Unfortunately, many real-world problems have vast state spaces and
action spaces. For example, one of the objectives of this study, as discussed in Section
1.5, requires an agent to make decisions based on an RGB image in order to achieve the
goal of delivering a first-aid kit to an immobilised miner. The problem is that a camera
can produce more possible images than there are atoms in the universe [45]. A problem
with such a large state space is that it is practically impossible to have enough memory to
store a value for each possible state or state-action pair. Moreover, as there are so many
states, most of the time, the agent will encounter new states that it has never seen before.
The agent, therefore, rarely revisits states and thus, the estimated values of previously
visited states are rarely updated. It is argued by Sutton and Barto [45] that even with
supercomputational resources, we cannot expect to find solutions to problems such as the
problem proposed in this thesis using tabular methods.

The solution lies in interpolation and approximation – being able to use a small
subset of states to generalise and make decisions over a much larger subset [45]. In this
section, we discuss function approximation, with the intention to combine the previously
discussed model-free control methods with function approximation. The value function is
now rather approximated by a function parameterised with a vector of weights vπ(s) ≈
v̂(s; w), where w ∈ Rd and d is the number of weights. For example, if v̂ is a linear function
in features of the state, then w is the vector of feature weights [45]. If the function v̂ is a
more general artificial neural network (ANN), then w is the vector of connection weights
in all the layers. Using function approximation allows for better generalisation, i.e. when a
single state is updated, the change made to the weight vector also affects the value of other
surrounding states. This means more effective learning, but also makes it more challenging
to understand and manage the system. In the rest of this section, we show how the
previously discussed tabular techniques can be combined with function approximation. We
also discuss the difficulties of combining off-policy methods with function approximation.

4.4.1 Stochastic gradient descent

According to Sutton and Barto [45] stochastic gradient descent (SGD) is one of the most
popular function approximation methods and works well with online RL. Gradient-descent
methods aim to approximate v̂(s; w) ≈ vπ(s), where w is a column vector with a fixed
number of real valued components, i.e w .= [w1, w2, . . . , wd]>. The function v̂(s; w) is a

41

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

differentiable function of w for all s ∈ S. We adjust the weight vector w at discrete time
steps and we indicate the weight vector at the time step t as wt. Usually we do not have
direct access to vπ(s). For now assume at each time step we observe an example state St
and the true value vπ(St) under the policy π.

The objective function we minimise is the mean of the squared differences, defined as

J(w) = E
[(
vπ(s)− v̂(s; w)

)2
]
. (4.19)

We refer to Equation 4.19 as the mean square error (MSE). Sutton and Barto [45] state
that this is not necessarily the best objective function to minimise to find the best value
function. However, since it is not clear what would be a better objective function, we
continue with the MSE.

The gradient ∇f(w) for any function f(w) denotes the partial derivatives with respect
to the components of the weight vector, i.e.

∇f(w) .=
[
∂f(w)
w1

,
∂f(w)
w2

, . . . ,
∂f(w)
wd

]>
. (4.20)

Gradient-descent methods entail adjusting the weight vector in the direction of the negative
gradient of the objective function. We use the examples to update the weight vector, rather
than calculating the full expectation over all states. We assume that the states appear in
examples with the same distribution as the expectation in Equation 4.19. We now adjust
the weight vector in the direction to minimise the error on the example, hence

wt+1 = wt −
1
2α∇wt

[
vπ(St)− v̂(St,wt)

]2
= wt + α

(
vπ(St)− v̂(St; wt)

)
∇wt v̂(St; wt),

(4.21)

where α is a positive step-size parameter referred to as the learning rate. Although in some
cases we can move all the way in this direction and eliminate the error on the example, it is
not advised by Sutton and Barto [45]. The reason for this is that if we completely correct
the error for one example, we may increase the error on another example. We rather only
take a small step in the direction of the negative gradient to find an approximation that
balances the errors for all states.

SGD methods are called stochastic, as samples are stochastically selected and used to
update the weight vector w. By using the process in Equation 4.21 on many examples,
the MSE in Equation 4.19 is minimised.

4.4.2 Temporal-difference methods with function approximation

In this section, we combine the previously discussed temporal-difference (TD) control
methods with function approximation. We again rather use the action-value function than
the state-value function as no model is required to make greedy policy improvements with

42

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

regard to the value function. The action-value function is therefore now approximated
with a parametric function as

q̂(s, a; w) ≈ q∗(s, a), where w ∈ Rd. (4.22)

According to Sutton and Barto [45], extending function approximation to off-policy methods
is significantly harder than to on-policy methods. Therefore we first explore how to combine
function approximation with the on-policy method, SARSA.

We use Equation 4.21 to update the weight vector w at time step t. As we are using
the action-value function instead of the state-value function, Equation 4.21 becomes

wt+1 = wt + α
(
qπ(St, At)− q̂(St, At; wt)

)
∇wt q̂(St, At; wt). (4.23)

We do not have access to an oracle or to the true value function qπ in Equation 4.23, and
therefore we substitute qπ with the TD target, Rt+1 + γq̂(St+1, At+1; wt). According to
Sutton and Barto [45], a one-step SARSA update to the weight vector is

wt+1
.= wt + α

[
Rt+1 + γq̂(St+1, At+1; wt)− q̂(St, At; wt)

]
∇wt q̂(St, At; wt). (4.24)

We now adapt the SARSA algorithm in Algorithm 4 to incorporate function approximation
instead of tabular learning. SARSA with function approximation is shown in Algorithm 6.

Algorithm 6: SARSA with function approximation for estimating q̂ ≈ q∗, adapted
from Sutton and Barto [45].
1 input: a differentiable action-value function parameterisation q̂ : S ×A× Rd → R
2 initialise: α > 0
3 initialise: ε > 0
4 initialise: action-value function weights w ∈ Rd arbitrarily
5 for each episode do
6 S0, A0 ← initial state and action of episode (e.g., ε-greedy)
7 repeat for each step t of episode, t = 0
8 take action At based on St, observe Rt+1, St+1
9 if St+1 is terminal then

10 w← w + α
[
R− q̂(St, At; w)

]
∇wq̂(St, At; w)

11 go to next episode
12 end
13 choose At+1 as a function of q̂(St, ·; w) (e.g., ε-greedy)
14 w← w + α

[
R + γq̂(St+1, At+1; w)− q̂(St, At; w)

]
∇wq̂(St, At; w)

15 until St+1 is terminal
16 end

Off-policy learning with function approximation is more challenging than on-policy
learning due to higher variance. Variance is higher when using off-policy learning, as the
behavioural policy is different from the target policy. In fact, Sutton and Barto [45] go so
far as to refer to bootstrapping, off-policy learning and function approximation together
as the deadly triad, since when these aspects are combined, instability is very likely.

43

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. REINFORCEMENT LEARNING

4.5 Summary

In this chapter, we first gave an overview of tabular model-free control methods. The two
main methods that we discussed are TD methods and MC methods. As TD methods allow
online learning, they are preferred to MC methods which depend on samples of complete
episodes.

Unfortunately, tabular control methods do not scale well to solve complex problems
with large state spaces. Therefore we have discussed how function approximation could
be used to approximate value functions. We mentioned that it is challenging to combine
off-policy methods, bootstrapping and value function approximation. Accordingly we
discussed how function approximation could be incorporated only in the on-policy method,
SARSA. In Chapter 6 we discuss deep Q-learning as introduced by Mnih et al. [24] – a
Q-learning algorithm that successfully utilises function approximation by means of an
artificial neural network (ANN). Before we discuss the deep Q-learning algorithm, we
discuss the artificial neural network (ANN) – a very powerful tool for approximating
non-linear functions.

44

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Artificial neural networks

At the end of the previous chapter, we discussed that approximating the value function
for problems with large state spaces allows for better generalisation and thus for more
effective learning. Recall that for the decision-making problem we consider in this study,
the observations are in the form of high-dimensional red green blue (RGB) camera images.
Therefore, the value function must be approximated. Since the observations are high-
dimensional, it is essential to extract appropriate features in order to approximate the
required value function. The problem is that manual feature extraction from complex
structures such as images can be challenging, and consequently, traditional computer
vision techniques will be difficult to use [30]. For this reason, we investigate the artificial
neural network (ANN), a powerful non-linear function approximator that is inspired by the
biological neural network. Ng and Katanforoosh [28] describe the ANN as an end-to-end
learning technique, as it only requires the input features x and the output y to learn
intermediate features by itself. To learn these features, we must provide the ANN with
enough training examples [28]. According to Ng and Katanforoosh [28], the ANN can
sometimes discover complex features which are difficult for humans to understand.

In this chapter, we discuss ANNs in the context of solving regression problems using
supervised learning. Regression entails predicting continuous values such as temperatures,
house prices, and in our case action values. Supervised learning entails training an ANN
to map inputs to desired outputs. A training dataset that contains example inputs with
associated labelled outputs is used to train the ANN. The goal is to obtain a general
function that is also capable of making accurate predictions on unseen inputs.

We start with a discussion of the feed-forward neural network (FNN) to introduce con-
cepts such as pre-activation and activation functions, forward propagation, loss functions,
backpropagation and batch methods. Unfortunately, FNNs perform poorly at approximat-
ing functions from data in the form of 2D arrays such as images. We therefore also discuss
the convolutional neural network (CNN). The latter is more suitable for automatically
extracting features from these types of data structures. This chapter is primarily based on
the work of Goodfellow et al. [11] and Ng and Katanforoosh [28].

45

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

x1 1

xd

xj z

w1

wj

wd

b

Figure 5.1: An illustration of a single neuron. The neuron receives an input vector x =
[x1, . . . , xd], where d is the dimension of the input. Each entry of the input vector (x1, . . . , xd) is
connected to the output of the neuron, indicated by the arrows. Each arrow has a value associated
with it; we refer to these values as the weights. The weights of the neuron are represented by the
vector w = [w1, . . . , wd]. Additionally, the neuron also has a parameter that we refer to as the
bias b. The function h(x) determines the output of the neuron and consists of two operations,
namely the pre-activation function and the activation function. The pre-activation step entails
calculating a weighted linear combination of the input and adding the bias to obtain a scalar
result (shown in Equation 5.2). A non-linear transformation, known as the activation function, is
then performed on the result to obtain the output of the neuron (shown in Equation 5.3).

5.1 Feed-forward neural networks

Goodfellow et al. [11] state that the goal of an FNN, as with other ANNs, is to approximate
some function f(x). These models are called feed-forward because there are no loops in
the network and therefore outputs cannot influence inputs. FNNs form the basis of many
other variants of the ANN.

If the goal is to approximate f(x) in order to do regression where an input x is mapped
to a value y, then the FNN defines a mapping y = f̂(x;θ) and learns the parameters θ
that result in the best function approximation f̂(x;θ) ≈ f(x) [11]. The problem is that
we do not have direct access to the function f(x), but usually we have a training dataset

D =
{

(x[1], y[1]), (x[2], y[2]), . . . , (x[n], y[n])
}

(5.1)

that evaluates the function f(x) at inputs x to produce associated outputs y. We therefore
know what outputs the network should yield for the sample inputs in the training dataset.
Before we discuss how the training dataset is used to adjust the parameters of the FNN
approximate f(x), we first discuss how to evaluate an input provided to the FNN. We
start by looking at the single neuron to introduce FNNs and then use this as a stepping
stone to discuss more complex deep neural networks.

5.1.1 Single neuron

The single neuron, shown in Figure 5.1, is the most basic form of an FNN. The neuron
consists of a scalar bias b, a weight vector w ∈ Rd, and receives an input x ∈ Rd, where d
is the dimension of the input. For now, we assume that the values of w and b are given.

46

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

We now discuss the forward pass, the process of evaluating an input. We first discuss
evaluation of an input using a single neuron. In the next section, we discuss evaluating an
input using a DNN, which consists of multiple neurons.

The neuron performs two functions on the input, namely the pre-activation and the
activation step, and produces a scalar output. The pre-activation function a(x) is defined
by Ng and Katanforoosh [28] as a weighted linear combination of the input x plus some
offset b, i.e.

a(x) = b+ w>x. (5.2)

The activation function then performs a non-linear transformation on the result of the
pre-activation function, namely

h(x) = g(a(x)) = g(b+ w>x). (5.3)

Ng and Katanforoosh [28] state that without performing the non-linear transformation in
Equation 5.3, the ANN performs linear regression. The ANN will therefore not be able
to approximate non-linear functions. Three popular examples of non-linear activation
functions are sigmoid

g(a) = sigm(a) = 1
1 + e−a

, (5.4)

tanh
g(a) = tanh(a) = e2a − 1

e2a + 1 , (5.5)

and rectified linear unit (ReLU)

g(a) = ReLU(a) = max(0, a). (5.6)

The ReLU activation function is the default recommendation by Goodfellow et al. [11] and
is therefore the activation function of choice for this study. Unfortunately, only relatively
simple functions can be represented by a single neuron. We therefore shift our attention
to deep neural networks (DNNs) to represent more complex functions.

5.1.2 Deep neural networks

Ng and Katanforoosh [28] state that multiple neurons can be connected to form a network,
so that one neuron’s output forms the input to the next neuron. This results in a more
complex network, representing a more complex function [28]. Goodfellow et al. [11] describe
such a network as combining different functions. A directed acyclic graph is usually used
to describe the way the functions of the network are combined. For example, three
functions f (1), f (2), f (3) can be chained together to form a network with three layers
f̂(x) = f (3)(f (2)(f (1)(x))). The input x is located at layer zero, as we use zero indexing.
The function f (1) is known as the first layer, f (2) is known as the second layer, and so forth.
The output layer is the last layer of the network and in this example is f (3). Notation

47

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

x1

b(1)
1

xd

xj

z1

b(L−1)
1

zm

zi

W(1) W(L−1)

W(L)

b(L)
1

ŷ

Figure 5.2: Illustration of a deep FNN with L layers. The FNN receives an input x = [x1, . . . , xd].
The output of the first layer is represented by the vector z = [z1, . . . , zm]. The connections between
the neurons of each layer i are indicated with arrows and are associated with the weights W(i).
Similarly each layer i contains a bias vector b(i) and connections are indicated with arrows. The
network produces an output ŷ.

similar to Ng and Katanforoosh [28] is used, where the superscript (i) indicates the ith
layer of the network. The number of layers in the network determines the depth of the
network.

A network with multiple layers can be observed in Figure 5.2. The network receives an
input vector

x = [x1, . . . , xd]>. (5.7)

The input layer is followed by multiple layers referred to as hidden layers that are indicated
by h. In this example, all neurons of the input layer are connected to all neurons of the
first hidden layer. Such a layer is known as a fully connected layer. We refer to the last
layer of the network as the output layer and it is indicated by o.

Similar to the single neuron, the connections (arrows) between the neurons of different
layers have associated values, referred to as weights. For example, the weights of layer one
of the network in Figure 5.2 are defined as

W(1)︸ ︷︷ ︸
m×d

=

w11 . . . w1d
... . . .

wm1 wmd

 , (5.8)

where m is the dimension of the output and d is the dimension of the input of the first
layer. Each layer also contains a bias vector, for example the bias vector of layer one is
defined as

b(1) = [b1, . . . , bm]>. (5.9)

The weights and biases of all the layers in the network make up the parameters θ of the
network.

48

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

When training such a network, the parameters θ of the network f̂(x;θ) are adjusted
to approximate f(x). A training algorithm is responsible for deciding the values of the
parameters of the different layers of the network in order to achieve the desired outputs
at the end of the network. The intermediate layers are known as the latent or hidden
layers, as we do not directly specify what their outputs should be. Before we continue
the discussion on how the network parameters θ are trained, we first discuss forward
propagation in a deep FNN.

5.1.3 Forward propagation

We now discuss the process of evaluating an input provided to the deep FNN, i.e. forward
propagation. The process is shown in Algorithm 7. We first calculate the output of the

Algorithm 7: Evaluating an input x to an FNN with forward propagation,
adapted from the work by Goodfellow et al. [11]. For simplicity, this algorithm
computes the predicted output for a single input example x. Practical applications
usually rather use a mini-batch.
1 input: an input x
2 input: ANN parameters {W,b} ∈ θ
3 input: network depth, L
4 h(0) ← x
5 for k = 1, . . . , L do
6 a(k) ← b(k) + W(k)h(k−1)

7 h(k) ← g(a(k))
8 end
9 ŷ ← h(L)

first layer of the network, that is the vector z in Figure 5.2. To calculate the output of the
first layer, we first perform pre-activation step

a(1)(x)︸ ︷︷ ︸
m×1

= b(1)︸︷︷︸
m×1

+ W(1)︸ ︷︷ ︸
m×d

x︸︷︷︸
d×1

. (5.10)

We then proceed with the activation step to calculate the output of the first hidden layer.
The result of Equation 5.10 is used as the input to the activation function of the first
hidden layer

h(1)(x) = z︸︷︷︸
m×1

= g
(
a(1)(x)

)
︸ ︷︷ ︸

m×1

. (5.11)

It is clear that the output of any layer in the network is dependent on the output of the
previous layer. We therefore define more general equations to calculate the output at any
layer of the network. The output of any layer k in the network can be calculated by first
calculating the pre-activation, i.e.

a(k)(x) = b(k) + W(k)h(k−1)(x), (5.12)

49

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

which depends on the output of the previous layer h(k−1)(x). The activation function of
layer k is then applied to the result of Equation 5.12 to obtain the output of layer k.
Therefore

h(k)(x) = g
(
a(k)(x)

)
. (5.13)

These operations are repeated for each layer to obtain the predicted output ŷ. The output
ŷ is the result at the output layer o and is calculated similar to Equation 5.12 and Equation
5.13,

ŷ = o(L)(x) = g
(
b(L) + W(L)h(L−1)(x)

)
. (5.14)

We have now discussed how to evaluate an input to the network if the parameter values θ
of the network are known. We still have to discuss how to obtain optimal parameters θ for
the network.

5.1.4 Loss and cost functions

Before we discuss backpropagation, we give a quick overview of loss and cost functions.
The aim is to minimise a loss function L(ŷ, y) over all entries in the dataset. The loss
function surrogates the difference between the predicted output ŷ and the target y with a
differentiable function. The loss function usually takes a single data sample as an argument.
We define the cost function as the mean of the loss function over all data samples in the
dataset, hence

J(ŷ,y) = 1
n

n∑
i=1
L(ŷ[i], y[i]), (5.15)

where n is the number of samples in the dataset. Since the loss function and thus the cost
function are differentiable, the partial derivative of the loss or cost function with respect
to the network parameters can be calculated – this is essential when using gradient-based
optimisation techniques such as SGD.

The process of minimising the cost function is referred to as full gradient descent. Full
gradient descent uses the entire dataset to compute the network gradients and according
to Ng and Katanforoosh [28] it leads to more accurate gradients. On the other hand, the
process of minimising the loss function using single examples is referred to as stochastic
gradient descent (SGD). It uses single samples in an attempt to approximate gradients from
full gradient descent, but this results in noisy gradients. According to Ng and Katanforoosh
[28], it can be challenging to do a full gradient descent update; they suggest an alternative
method called mini-batch gradient descent. Mini-batch gradient descent is a compromise
between SGD and gradient descent. It entails, as the name suggests, the use of small
batches of samples to estimate gradients in order to update the parameters of the network.
Ng and Katanforoosh [28] define the mini-batch cost function Jmb as

Jmb(ŷ,y) = 1
B

B∑
i=1
L(i)(ŷ[i], y[i]), (5.16)

50

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

where L(i) is the loss for a single sample and B is the number of samples in the batch. In
practice, mini-batch gradient descent is found to work more effectively than SGDt [28].
We next discuss the most popular loss and cost functions used for regression.

Mean square error The square loss is a frequently used regression loss function. It
measures the squared difference between a predicted value and a target value. Wang et al.
[49] define the square loss as

L(ŷ, y) = (ŷ − y)2. (5.17)

The square loss result is always positive, and a perfect prediction will have a result of 0.
The gradient of the square loss is variable. The gradient is larger for samples with large
errors and decreases if the error is close to 0. According to Wang et al. [49], this property
of the square loss allows for fast convergence to optimal parameters and is also beneficial
to the accuracy of the model. However, the square loss is more sensitive to outliers as
gradients may be very large. The MSE cost function is derived from the square loss. The
MSE calculates the mean of the squared differences between the predicted values and the
target values of a batch of samples. The MSE is defined as

JMSE(ŷ,y) = 1
B

B∑
i=0

(ŷ[i] − y[i])2, (5.18)

where B is the number of samples in the batch.

Mean absolute error The absolute loss is another popular regression loss function. It
measures the absolute error between a predicted value and a target value. Wang et al. [49]
define the absolute loss as

L(ŷ, y) = |ŷ − y|. (5.19)

The absolute loss is less sensitive to outliers as the gradient is not variable like the square
loss. The problem with the absolute loss is that the gradient is not smooth when the error
is zero, and therefore it is not as popular as the square loss. The mean absolute error
(MAE) cost function calculates the mean of the absolute differences between the predicted
values and the target values of a batch of samples. The MAE is defined as

JMAE(ŷ,y) = 1
B

B∑
i=0
|ŷ[i] − y[i]|, (5.20)

where B is the number of samples in the batch.

Huber loss We finally discuss the Huber loss – the loss function of choice for this study.
The Huber loss combines the advantages of square loss and absolute loss. It has the benefit
of fast convergence like the square loss, but is also resilient to outliers like the absolute

51

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

loss. Wang et al. [49] define the Huber loss as

L(ŷ, y) =

1
2(ŷ − y)2 if |ŷ − y| < δ

δ|ŷ − y| − 1
2δ

2 otherwise,
(5.21)

where δ is a parameter that acts as a boundary to decide whether a sample is an outlier.
We again use Equation 5.16 to obtain the Huber cost function.

5.1.5 Backpropagation

Ng and Katanforoosh [28] state that for any given layer k, we have to update the weights

W(k) ←W(k) − α ∂J

∂W(k) , (5.22)

and the biases
b(k) ← b(k) − α ∂J

∂b(k) , (5.23)

where α is a small step size we refer to as the learning rate. We therefore have to obtain
the partial derivative of the cost function with respect to the weights and biases of each
layer of the ANN.

Obtaining an analytical expression for the gradients of an ANN is not too difficult, but
can become computationally expensive to evaluate. We now come to the backpropagation
algorithm – an efficient way to calculate the gradients of a DNN. Backpropagation allows
information about the cost function to flow backwards through the network to efficiently
calculate the network gradients. Once we have computed the gradients of the network, a
gradient-based optimisation technique such as SGD can be used to adjust the parameters
θ of the network.

We now explain the backpropagation procedure; refer to Figure 5.2. We first calculate
the gradient on the output of the last layer, i.e. the output layer. We then use the chain
rule to transfer the gradient to the activation of the output layer, hence

∂J

∂a(L) = ∂J

∂ŷ
× ∂ŷ

∂a(L) . (5.24)

By also using the chain rule, we now are able to obtain the gradients on the weights and
biases of the output layer. The gradients on the weights of the output layer are obtained
with

∂J

∂W(L) = ∂J

∂ŷ
× ∂ŷ

∂a(L) ×
∂a(L)

∂W(L) . (5.25)

The gradients on the biases of the output layer can be obtained in a similar way:

∂J

∂b(L) = ∂J

∂ŷ
× ∂ŷ

∂a(L) ×
∂a(L)

∂b(L) . (5.26)

We apply the chain rule again to transfer the gradients to the output of the previous layer.
The process then repeats, i.e. the gradients on the activation of the layer are computed,

52

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

followed by the gradients on the weights and biases of the layer. We here define more
general equations to obtain the gradients on the weights and biases of any layer k of the
network. The gradients on the weights of the layer k are obtained with

∂J

∂W(k) = ∂J

∂ŷ
× ∂ŷ

∂a(L) ×
∂a(L)

∂h(L−1) × · · · ×
∂h(k)

∂a(k) ×
∂a(k)

∂W(k) . (5.27)

Similarly, the gradients on the biases of the layer k are obtained with

∂J

∂b(k) = ∂J

∂ŷ
× ∂ŷ

∂a(L) ×
∂a(L)

∂h(L−1) × · · · ×
∂h(k)

∂a(k) ×
∂a(k)

∂b(k) . (5.28)

We summarise the backpropagation process with Algorithm 8. It can compute the gradients

Algorithm 8: Computing the gradients of the activations a(k) of each layer k.
The gradients of the output layer are first calculated, then work backwards to
the first hidden layer. From these gradients we can obtain the gradients on the
parameters of each layer. This algorithm is adapted from the work by Goodfellow
et al. [11].
1 input: ANN parameters {W,b} ∈ θ
2 input: input, x
3 input: target y
4 ŷ ←forward_pass(x) // obtain prediction
5 r← ∇ŷJ(ŷ, y) // compute the gradient on the output layer
6 for k = L,L− 1, . . . , 1 do
7 r← ∇a(k)J = r� g′(a(k)) // convert the gradient on the layer’s

output to the pre-activation (element-wise multiplication if g
is element-wise)

8 ∇b(k)J = r // compute the gradient on the layer’s biases
9 ∇W(k)J = rh(k−1)> // compute the gradient on the layer’s weights

10 r← ∇h(k−1)J = W(k)>r // propagate gradients to the following lower
layer’s activations

11 end

of the network by using a single example input x, but usually a batch of samples is used.
A forward pass is first completed using Algorithm 7. The gradient on the output layer is
then calculated. The algorithm then iterates in a reverse order through the layers of the
network, starting at the output layer. At each iteration, the gradient on the current layer’s
output is converted to the pre-activation of the layer (line 7). This operation requires the
following partial derivative to be calculated:

∂h(k)

∂a(k) = ∂

∂a(k) g
(
a(k)

)
= g′

(
a(k)

)
. (5.29)

If the activation function g is chosen to be ReLU, then the derivative is

g′
(
a(k)

)
=

1 if a(k) > 0

0 otherwise
. (5.30)

53

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Next the gradient on the pre-activation of the layer is used to compute the gradient on
the weights and biases of the layer. To obtain the gradient on the weights (line 8), the
following derivative has to be computed:

∂a(k)

∂W(k) = ∂

∂W(k)

(
b(k) + W(k)h(k−1)

)
= h(k−1). (5.31)

To obtain the gradient on the biases (line 9), the following derivative has to be computed:

∂a(k)

∂b(k) = ∂

∂b(k)

(
b(k) + W(k)h(k−1)

)
= 1. (5.32)

Finally the gradient from an activation of the layer is transferred to the output of the
previous layer (line 10). This requires the following derivative to be computed:

∂a(k)

∂h(k−1) = ∂

∂h(k−1)

(
b(k) + W(k)h(k−1)

)
= W(k). (5.33)

This process repeats until the first layer of the network is reached, and all the network
gradients are computed. After all the gradients are obtained, the network parameters are
adjusted using an optimiser, i.e. a gradient-descent method. We give an overview of some
of the most popular optimisers in the next section. The entire process is then repeated for
a new sample or batch of samples from the dataset. Once all the entries of the dataset
have been sampled, we say an epoch is completed. Multiple epochs can be completed to
improve the accuracy of the network.

5.1.6 Optimisers

The optimiser is responsible for adjusting the network parameters using the gradients
computed with the backpropagation algorithm. In this section, we give an overview of
the optimisers relevant to this study. We briefly review batch gradient descent, stochastic
gradient descent (SGD) and mini-batch gradient descent. We then give an overview of
two new gradient-descent methods, namely momentum and adaptive moment estimation
(Adam). This section is based on the work of Ruder [36].

Batch gradient descent Batch gradient descent, also referred to as full gradient descent,
entails computing the gradients of the cost function with regard to the network parameters
for the entire dataset. Ruder [36] defines it as

θt+1
.= θt −∇θtJ(θt). (5.34)

Ruder [36] states that batch gradient descent can be computationally expensive or some-
times intractable if the datasets do not fit in memory. It also does not allow us to update
the parameters online, i.e. with newly obtained examples on-the-fly.

54

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Stochastic gradient descent We introduced SGD in Section 4.4.1. Recall that SGD
entails approximating full gradient descent by utilising single random examples. An SGD
update is defined by Ruder [36] as

θt+1
.= θt − α∇θtL(ŷ[i], y[i];θt). (5.35)

SGD is much faster than batch gradient descent and can learn online. Since SGD uses
single examples, the updates have high variance, and this can lead to an unstable objective
function.

Mini-batch gradient descent We have already referred to mini-batch gradient descent
in Section 5.1.4. Mini-batch gradient descent compromises between SGD and batch gradient
descent. It performs an update for a mini-batch of B examples, and is defined by Ruder
[36] as

θt+1
.= θt − α∇θtJ(ŷ[i:i+B],y[i:i+B];θt). (5.36)

According to Ruder [36] mini-batch gradient descent reduces the variance of parameter
updates and leads to more stable convergence. Mini-batch gradient descent is usually used
when training ANNs [36]. In this study we utilise mini-batch gradient descent, leaving out
the parameters ŷ[i:i+B],y[i:i+B] for simplicity.

Momentum Sutton [44] states that SGD has trouble navigating in areas which curve
more sharply in some directions than in others, referring to these areas as ravines. According
to Ruder [36] ravines are common around a local optima. SGD tends to oscillate across
the slopes of the ravine and, thereby making slow progress towards the bottom of the local
optima.

Momentum [34] is a technique that helps to address this problem by accelerating SGD
in the relevant direction and by decreasing oscillations. A fraction of the update vector of
the previous time step is added to the current update vector, hence

mt
.= ρmt−1 − α∇θtJ(θt), (5.37)

where ρ is the momentum term and is usually set to 0.9. The network parameters are then
adjusted, creating

θt+1
.= θt −mt. (5.38)

Adam Adaptive moment estimation (Adam) was introduced by Kingma and Ba [20]
and is based on adaptive estimates of lower-order moments. These estimates are used to
compute adaptive learning rates for different parameters of the ANN. An exponentially
decaying average of past gradients mt is tracked, in the same way as momentum. This is
define by Kingma and Ba [20] as

mt
.= ρ1mt−1 + (1− ρ1)∇θtJ(θt). (5.39)

55

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

Adam additionally also tracks an exponentially decaying mean of past squared gradients
vt, which is defined by Kingma and Ba [20] as

vt
.= ρ2vt−1 + (1− ρ2)∇θtJ(θt)2. (5.40)

The vectors mt and vt are initialised as zero and Kingma and Ba [20] observe that these
vectors are biased towards zero. This bias occurs especially at initial time steps and when
small decay rates are used, i.e. when ρ1 and ρ2 are close to one. Kingma and Ba [20]
calculate bias-corrected first and second moment estimates to counter these biases. The
bias-corrected first moment estimate is defined by Kingma and Ba [20] as

m̂t = mt

1− ρt1
. (5.41)

The bias-corrected second moment estimate is defined by Kingma and Ba [20] as

v̂t = vt
1− ρt1

. (5.42)

The parameters are then updated, defined by Kingma and Ba [20] as

θt+1 = θt −
α√

v̂t + ε
m̂t. (5.43)

5.2 Convolutional neural networks

We now discuss CNNs: ANNs that specialise in analysing and processing images and other
high-dimensional data arranged in 2D arrays [45]. The CNN incorporates a convolutional
layer, which is based on the mathematical convolution operation. A convolutional layer
reuses network parameters to do operations at different parts of the input to produce
several 2D arrays, called feature maps. A feature map is a 2D array that contains features
identified by a filter applied to a previous layer. For example, a convolutional layer may
be responsible for detecting a particular curve in an image. The convolutional layer will
then produce a feature map with activated entries wherever the curve was identified in
the image.

Goodfellow et al. [11] state the idea of sharing parameters in convolutional layers arises
from the fact that there are many statistical properties to natural images that are invariant
to translation. The convolutional layer is an example of incorporating domain knowledge
into the architecture of the network in order to achieve a more efficient network with fewer
weights [11].

5.2.1 Operations of the convolutional layer

We now discuss the operations of the convolutional layer and how the feature maps are
produced. The discussion is based on the work of LeCun et al. [21]. A convolutional layer

56

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

receives a 3D array X as input, which is a set of n1 2D array feature maps each of size
n2 × n3. Each input feature map is denoted Xi. The output Y of a convolutional layer is
also a 3D array which is a set of m1 2D array feature maps, each with a size m2 ×m3.
The output feature maps are obtained by convolving several filters, each with a trainable
weight matrix Kij, over the input.

Karpathy et al. [19] state that zero-padding can be applied to the input. Zero-padding
entails adding a border of zeros around the edge of the input feature maps. The zero-
padding parameter p specifies the border’s thickness, i.e. the number of zeros to be added
to the border. It allows for controlling the spatial size of the output feature maps.

LeCun et al. [21] state that the filter Kij connects the input feature map Xi to the
output feature map Yj. The filters have a specified receptive field l1 × l2, which is the
scope (width and height) of the respective input feature maps that can be observed at
once. LeCun et al. [21] state that the output feature map Yj can be calculated by

Yj = Bj +
∑
i

Kij ∗ Xi, (5.44)

where ∗ is the 2D discrete convolution operator and Bj is a trainable bias. The convolution
operation in Equation 5.44 entails moving a filter across the width and the height of the
input, while performing the dot product between the weights of the filter and the entries
of the respective input feature map that fall within in the scope of the receptive field [19].

The individual units of feature maps are calculated identically except that the receptive
field of the filter is shifted to a different location on the array of incoming data when doing
the calculation [45]. The amount the filter is moved between operations is called the stride,
denoted s. With the input size, filter size, stride, and amount of zero-padding applied, we
can calculate the width m2 and height m3 of the output feature maps, which are specified
by Karpathy et al. [19] as

m2 = n2 − l1 + 2p
s

+ 1, (5.45)

and similarly
m3 = n3 − l2 + 2p

s
+ 1. (5.46)

In Figure 5.3 we utilise Equation 5.44 to transform a number of input feature maps to an
output feature map. In this example one can use Equation 5.45 and Equation 5.46 to obtain
the size of the output feature map. An element-wise activation function such as ReLU is
usually applied to the output volume of a convolutional layer [19]. Convolutional layers
are fully differentiable, therefore, as discussed in the previous section, backpropagation
can be used to optimise the parameters of the filters in these layers.

5.2.2 Architecture of a convolutional neural network

Sutton and Barto [45] state that subsampling layers can be added between convolutional
layers to reduce the spatial resolution of the feature maps. The benefit of adding subsam-

57

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

m1 = 1

m2 = 5

n1 = 3

n2 = 7

m3 = 5

n3 = 7

X1 X2 X3

Y1

K11 K21 K31
B1

l2 = 3

l1 = 3

Figure 5.3: Three 2D array filters K11,K21,K31 (dark blue) with a receptive field 3× 3 and a
stride s = 1 are convolved over three input feature maps X1, X2, X3 (light blue) of size 7× 7. No
zero-padding is applied, therefore p = 0. A single output feature map Y1 (green) of size 5× 5
is obtained. Additional filters, for example K12,K22,K32, can be applied to obtain additional
output feature maps.

pling layers is that the CNN is then less sensitive to the spatial locations of the features
detected. Spatial invariance is helpful when classifying images, as we want the CNN to be
able to classify an object irrelevant to its location in the image. However, in RL applications,
spatial information is often crucial. For example, in the problem addressed by this study,
it is essential to know whether the first-aid kit is to the left or to the right of the agent in
order to perform the best possible action. In order to have spatial information, we omit
the subsampling layers, and the CNN only consists of convolutional and fully-connected
layers. The drawback of omitting the subsampling layers is that this dramatically increases
the number of weights in the CNN. Therefore it increases the number of examples needed
to train the CNN.

We end off this section with an example of a CNN architecture shown in Figure 5.4.
The network receives an input. The first part of the network consists of three convolutional
layers. The input is propagated through these layers. Each layer produces a number of
feature maps which is then passed to the next layer. The output of the third convolutional
layer is flattened to a vector. The flattened output of the last convolutional layer serves
as the input to a fully connected feed-forward layer. The feed-forward layer produces the
output of the network. We omit the subsampling layers in the architecture.

58

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

input

convolutions
convolutions convolutions

full connections

output

C1 feature maps
C2 feature maps

Figure 5.4: A typical CNN architecture adapted from the work by LeCun et al. [21]. The
subsampling layers are omitted. The output volume of the last convolutional layer is flattened to
a vector and ends off with a fully connected feed-forward layer.

5.3 Summary

In this chapter, we discussed how ANNs could be applied to a supervised learning problem
where there is a dataset available. We discussed how an input to the ANN is evaluated
using forward propagation. We reviewed the most popular loss functions and looked at how
to effectively compute the gradients of an ANN using backpropagation. We also discussed
the CNN and the operations of the convolutional layer.

The goal is to use a CNN to approximate the action-value function of a Q-learning
agent. In the next chapter, we discuss how the ANN can be combined with the Q-learning
algorithm. However, the assumption of an available dataset usually does not apply in RL
problems. Other problems also arise when combining the off-policy Q-learning algorithm
with an ANN. The next chapter identifies these problems and reviews the deep Q-learning
algorithm, which addresses these issues.

59

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Deep reinforcement learning

In Chapter 4 we discussed the Q-learning control algorithm. Recall that Q-learning is an
off-policy algorithm as the agent learns about an optimal policy while following a different
policy. The off-policy nature of the algorithm allows the agent to be more sample-efficient.
The reason for this is that the agent can use any experience generated in the environment
to improve its value function and policy.

We also discussed that it is better to approximate the value function with a parame-
terised function than to use tabular methods when dealing with problems that have vast
state spaces and action spaces. In the previous chapter we introduced the artificial neural
network (ANN) as it is a flexible function approximator that allows for end-to-end learning.
Unfortunately, with the combination of off-policy learning, function approximation, and
bootstrapping – referred to as the deadly triad – the danger of instability and divergence
arises, as stated by Sutton and Barto [45].

In this chapter, we review deep Q-learning – a Q-learning algorithm that utilises an
ANN to approximate the action-value function. This algorithm was developed by Mnih
et al. [23, 24] and it trains an ANN called the deep Q-network (DQN). Deep Q-learning
overcomes the instabilities of the deadly triad by utilising two concepts: experience replay
(ER) and frozen targets. Since the DQN was introduced, many improvements have been
made to the original algorithm. We therefore also discuss improvements such as the double
deep Q-network (DDQN), the n-step update and prioritised experience replay (PER). The
following chapter is largely based on the work of Mnih et al. [23, 24].

60

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEEP REINFORCEMENT LEARNING

6.1 Deep Q-learning

Deep Q-learning, by Mnih et al. [23, 24], uses a convolutional neural network (CNN)
together with Q-learning to learn successful policies from high-dimensional inputs. The
CNN automatically extracts the relevant features from the high-dimensional observations
in order to learn control policies with Q-learning. In this section we discuss the deep
Q-learning algorithm and the main contributions made by Mnih et al. [23, 24] to ensure
its stability.

Algorithm 9 shows the deep Q-learning algorithm that is discussed throughout this
section. It is very similar to Q-learning shown in Algorithm 5. However, an ANN is now

Algorithm 9: Deep Q-learning with experience replay (ER), adapted from the
work by Mnih et al. [23, 24]. The algorithm or agent runs in the environment
for a defined number of episodes. For each step of an episode the agent interacts
with the environment using an ε-greedy strategy (line 8 and 9). The resultant
transition from the interaction is stored in the replay buffer D (line 10). Once
there are enough transitions in the replay buffer (> B), B sized mini-batches
(Sj, Aj, Rj+1, Sj+1) v U(D) of transitions are randomly sampled at each iteration
(line 12). For each transition j in the batch, the target Yj is computed (line 13).
The TD error δj for each transition in the batch is then computed (line 14). Each
TD error δj is used to compute the gradients on the policy network parameters –
the gradients are also accumulated (line 15). The policy network parameters are
adjusted in the direction of the resultant gradients (line 17). Every C steps the
target network parameters are set to the policy network parameters (line 18).
1 input: ε > 0, learning rate α, mini-batch size B, capacity N
2 initialise replay memory D to size N , δ = 0
3 initialise action-value function Q with random weights θ
4 initialise target action-value function Q̂ with weights θ− = θ
5 for each episode do
6 initialise S0
7 repeat for each step t of episode, t = 0
8 observe St and choose At v πθ(St) (ε-greedy)
9 execute action At in environment and observe reward Rt+1 and state St+1

10 store transition (St, At, Rt+1, St+1) in D
11 for j = 1 to B do
12 sample random transition (Sj, Aj, Rj+1, Sj+1) from D

13 Yj =
{
Rj+1 Sj+1 terminal
Rj+1 + γmaxa′ Q̂(Sj+1, a

′;θ−) otherwise
14 compute TD error δj = Yj −Q(Sj, Aj;θ)
15 accumulate weight change ∆← ∆ + δj · ∇θQ(Sj, Aj;θ)
16 end
17 update weights θ ← θ + α ·∆, reset ∆ = 0
18 every C steps θ− ← θ

19 until St+1 is terminal
20 end

61

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEEP REINFORCEMENT LEARNING

used to approximate the action-value function (also known as the Q function) instead of
the tabular method that we previously used.

Sutton and Barto [45], Mnih et al. [23, 24], and Tsitsiklis and Van Roy [47] state that
instability can occur when off-policy TD learning is combined with non-linear function
approximation. Mnih et al. [23, 24] explain that there are several reasons for this instability.
RL algorithms such as Q-learning usually use sequential transitions to update the action-
value function. The observations contained in the transitions are highly correlated due
to the sequential nature of the transitions. Using correlated data samples to update the
parameters of the ANN can lead to divergence. For this reason, traditional supervised
learning algorithms sample at random to break correlations in data samples.

Furthermore, the parameterised action-value function that is being estimated is also
used to compute target values Yj = Rj+1 + γmax

a′
Q(Sj+1, a

′). Therefore action values
and target values are also correlated. In addition, the target is a function of the same
parameters that are being updated. Therefore updates made to the parameters of the
action-value function will change the target values. The implication is that target values
are non-stationary and according to Sutton and Barto [45] this complicates the process
compared to supervised learning, where targets are stationary. Mnih et al. [23, 24] address
these problems by utilising two ideas, experience replay (ER) and fixed Q-targets to
transform the RL problem to be closer to a supervised learning problem. We next discuss
the functionality of these components.

6.1.1 Experience replay

Supervised learning assumes independent and identically distributed (IID) data and works
better in such cases. In contrast, RL normally uses highly correlated sequential transitions
to update the value function [23, 24]. Processing sequential states that are highly correlated
can likely cause the RL algorithm to become unstable. Mnih et al. [23, 24] address this
problem with ER, which was first studied by Lin [22], and is essential to the deep Q-learning
algorithm.

Lin [22] describes ER as the ability of the agent to remember past experiences and
to then repeatedly present these experiences to itself. Experiences at each time step
et = (St, At, Rt+1, St+1) are stored in a replay buffer D = {e1, . . . , et} with a fixed size,
N . The buffer only holds the most recently generated transitions. A benefit of using ER
is that the algorithm can reuse previously generated experience, which results in better
sample efficiency. ER can only be used with an off-policy RL algorithm, and therefore
Q-learning was a suitable choice. Furthermore, ER breaks correlations in the data, as
randomly sampled mini-batches of transitions are used to update the network parameters.
Mnih et al. [23, 24] state that ER reduces the variance of the updates and increases the
stability of the algorithm. ER therefore transforms the RL problem to be closer to a
supervised learning problem.

62

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEEP REINFORCEMENT LEARNING

The work by Fedus et al. [10] shows that the performance of a deep Q-learning agent
is very dependent on the age of the transitions in the replay buffer. The replay ratio is
a measure used by Fedus et al. [10] to indicate the number of network updates made to
DQN per transition generated. Fedus et al. [10] define the replay ratio as

replay_ratio = #network_updates
#transitions_generated . (6.1)

The replay ratio allows for quantifying the rate at which the network is updated relative
to the rate at which transitions are generated. Fedus et al. [10] describe the replay ratio
as a measure of the frequency at which the agent is learning on existing experience or
learning on newly acquired experience.

The age of a transition is described by Fedus et al. [10] as the number of network
updates made since the transition was generated. The age of the oldest transition in the
replay buffer is a measure used by Fedus et al. [10] to describe the age of the transitions
in the replay buffer. Usually a first-in-first-out (FIFO) replay buffer is used, i.e. when
the replay buffer is full, the oldest transitions in the replay buffer are replaced with
new transitions. If we calculate the number of network updates performed in the time
to replace each transition in the replay buffer, we also obtain the number of network
updates completed since the oldest transition in the replay buffer was generated. Therefore
multiplying the replay ratio with the replay capacity is equal to the age of the oldest
transition in the replay buffer:

oldest_transition_age = (replay_ratio)(replay_capacity). (6.2)

Equation 6.2 shows that the age of the replay buffer is directly proportional to the replay
ratio. Smaller replay ratios thus decrease the age of the transitions in the replay buffer.

6.1.2 Fixed Q-targets

Recall that the targets in RL are nonstationary, unlike the stationary targets that are
usually found in traditional supervised learning problems. Mnih et al. [23, 24] used a
technique referred to as fixed Q-targets, which transforms Q-learning closer to the traditional
supervised learning problem, while still being able to bootstrap.

One simple solution by Mnih et al. [23, 24] is to have two versions of the action-value
network. We refer to these networks as the policy network Q(θ) and a target network
Q̂(θ−). The parameters θ of the policy network Q are updated at each iteration of the
algorithm and are used by the agent to interact with the environment. Every C steps of
updating the policy network, its parameters are loaded to the target network θ− ← θ. The
parameters of the target network are then kept frozen for C steps, which after it is updated
to the latest parameters of the policy network. The target network is used to compute the
TD targets Yj = Rj+1 + γmax

a′
Q̂(Sj+1, a

′;θ−). By keeping the target network’s parameters

63

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEEP REINFORCEMENT LEARNING

frozen for several iterations of updating the network, it allows for more stationary targets.
Accordingly the RL problem becomes more similar to a traditional supervised learning
problem.

6.1.3 Optimising the deep Q-network

We next discuss the process of optimising the deep Q-learning agent’s action-value function,
i.e. the agent’s network. The algorithm samples random mini-batches of transitions
uniformly from the replay buffer (Sj, Aj, Rj+1, Sj+1) v U(D). The mini-batches are used
to improve the action-value function. As this is a regression problem, Mnih et al. [23, 24]
minimise the mean square error (MSE) cost function at each iteration of the algorithm as
follows:

J(θ) =
∑
j

[(
Rj+1 + γmax

a′
Q̂(Sj+1, a

′;θ−)︸ ︷︷ ︸
target

−Q(Sj, Aj;θ)︸ ︷︷ ︸
action-value

)2
]

= E(Sj ,Aj ,Rj+1,Sj+1)vU(D)

[(
Rj+1 + γmax

a′
Q̂(Sj+1, a

′;θ−)−Q(Sj, Aj;θ)
)2
]
.

(6.3)

Next, we differentiate the cost function with respect to the network parameters to obtain
the gradients of the network. Recall that the gradients indicate the direction in which the
network parameters should be adjusted to minimise the cost function. We differentiate the
cost function with respect to the network’s parameters, hence

∇θJ(θ) = E
[(
Rj+1 + γmax

a′
Q̂(Sj+1, a

′;θ−)−Q(Sj, Aj;θ)
)
∇θQ(Sj, Aj;θ)

]
. (6.4)

Recall that the gradients of the network are computed with the backpropagation algorithm
that we discussed in Section 5.1.5. Mnih et al. [24] also clipped the TD error δ to between
−1 and 1. The result is that the cost function corresponds to the mean absolute error
(MAE) cost function (discussed in Section 5.1.4) outside the interval of (−1, 1). Accordingly,
the cost function is a variant of the Huber cost function we discussed in Section 5.1.4 and
which, according to Mnih et al. [24], improves the stability of the algorithm.

6.1.4 Double Q-learning with the n-step return

Hasselt et al. [12] state that Q-learning can sometimes be overoptimistic when estimating
action values. They showed that these overestimates are common in practice and can be
harmful to the performance of the deep Q-learning agent. For this reason Hasselt et al.
[12] introduced the double deep Q-network (DDQN) (or double Q-learning) to counter the
overestimation of action values. Double Q-learning modifies the target for non-terminal
states in line 13 of Algorithm 9. Hasselt et al. [12] define the DDQN target as

Y DDQN
j

.= Rj+1 + γQ̂
(
Sj+1, argmax

a′
Q(Sj+1, a

′;θ);θ−
)
. (6.5)

64

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEEP REINFORCEMENT LEARNING

Equation 6.5 utilises both the target network and the policy network to compute the target
value. Specifically, DDQN utilises the policy network to choose the optimal action and the
target network to estimate the corresponding action value, where previously only the target
network was used. Hasselt et al. [12] show that double Q-learning reduces overestimation
of action values and leads to better performance on several Atari games.

We considered implementing eligibility traces, as mentioned in Section 4.3.4. According
to Sutton and Barto [45], eligibility traces are the first line of defence against long-delayed
rewards. For this reason, we suspect that eligibility traces may greatly help to address this
study’s problem where rewards are generally very delayed. The obstacle is that eligibility
traces require the processing of the transitions of an episode in the order that the agent
acquired them. As the agent samples at random from the replay buffer with ER, it will be
challenging to use eligibility traces.

For this reason, we rather use the n-step return that we also discussed in Section 4.3.4.
Recall that the n-step return utilises several transitions of future time steps to better
estimate the target value of the current action value. The transitions needed to compute
the n-step return can be grouped in the replay buffer, and therefore it is possible to
combine the n-step return with ER. We modify the estimated return in Equation 6.5 to
include the n-step return, hence

Y DDQN_n-step
j

.=
n−1∑
k=0

γkRj+k+1 + γnQ̂
(
Sj+n, argmax

a′
Q(Sj+n, a′;θ);θ−

)
. (6.6)

Equation 6.6 is very similar to Equation 4.16, except that the DDQN target is used for
the estimated value of nth state. We use a similar implementation as the work by Hessel
et al. [14], thus we do not use importance sampling (IS).

6.1.5 Dueling architecture

The DNN that Mnih et al. [23, 24] used for the original DQN agent consists of three
convolutional layers and two fully connected feed-forward layers. However, the dueling
architecture requires that the input to the feed-forward neural network (FNN) be split into
two streams, replacing the single stream that is used in existing algorithms such as that of
Mnih et al. [23, 24]. The dueling architecture is compared to the popular single stream
architecture in Figure 6.1. The streams feed into two separate estimators: an estimator for
the state value function V (s) and an estimator for the state-dependent action advantage
A(s, a) function. This architecture therefore separates the estimation of state values and
that of action advantages. The dueling architecture then combines the outputs of the
estimators to obtain the state-action value Q(s, a), which is defined by Wang et al. [50] as

Q(s, a) = V (s) +
(
A(s, a)− 1

|A|
∑
a′
A(s, a′)

)
. (6.7)

Intuitively, this architecture learns valuable states without having to learn the effect of
each action for each state. According to Wang et al. [50], the dueling architecture has the

65

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEEP REINFORCEMENT LEARNING

Figure 6.1: The single Q-network (left) as compared to the dueling Q-network (right), adapted
from the work by Wang et al. [50].

benefit of generalising across actions without having to change anything to the underlying
RL algorithm. The results by Wang et al. [50] show that the dueling architecture leads to
better policy evaluation in the presence of actions with similar values.

6.2 Deep Q-learning with prioritised experience
replay

The deep Q-learning algorithm we discussed in Section 6.1 samples transitions uniformly
at random from the replay buffer. Mnih et al. [23, 24] suggest that some transitions may
be more important than others. Accordingly, there may be better sampling strategies to
learn the most from the important data in the replay buffer. For this reason we investigate
deep Q-learning with prioritised experience replay (PER) – introduced by Schaul et al.
[39]. PER is very similar to the previously discussed ER, with the exception that PER
uses an alternative sampling strategy. PER assigns priorities to the transitions contained
in the replay buffer. Transitions are then sampled according to the priorities they have
been assigned. The work by Schaul et al. [39] shows that inclusion of PER significantly
improves the performance of the deep Q-learning algorithm.

Algorithm 10, adapted from the work by Schaul et al. [39], shows the double deep
Q-learning algorithm with PER. An n-step update of n = 1 is used in Algorithm 10, but
other values for n can also be used. We discuss Algorithm 10 throughout this section. We
first review how Schaul et al. [39] calculate the priorities of transitions. Since PER leads
to a bias toward transitions with higher priorities, we also discuss how this bias can be
corrected with importance-sampling (IS) weights.

6.2.1 Transition priorities

PER prioritises transitions based on the temporal-difference (TD) error made in the
prediction step of the Bellman equation. Schaul et al. [39] define the probability of

66

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEEP REINFORCEMENT LEARNING

Algorithm 10: Double deep Q-learning with proportional prioritisation adapted
from the work of Schaul et al. [39].
1 input: ε > 0, learning rate α, mini-batch size B, capacity N , exponents ζ and β
2 initialise replay memory D to size N , ∆ = 0, p1 = 1
3 initialise action-value function Q with random weights θ
4 initialise target action-value function Q̂ with weights θ− = θ
5 for each episode do
6 initialise S0
7 for each step t of episode do
8 observe St and choose At v πθ(St) (ε-greedy)
9 execute action At in environment and observe reward Rt+1 and state St+1

10 store transition (St, At, Rt+1, St+1) in D with priority pt = maxi<t pi
11 for j = 1 to B do
12 sample transition j v Pr{j} = (pj)ζ/

∑
i(pi)ζ

13 compute importance-sampling weight wj =
(
N · Pr{j}

)−β
/maxi(wi)

14 Yj =
 Rj+1 Sj+1 terminal
Rj+1 + γQ̂

(
Sj+1, argmax

a′
Q(Sj+1, a

′;θ);θ−
)

otherwise

15 compute TD error δj = Yj −Q(Sj, Aj;θ)
16 update transition priority pj ← |δj|
17 accumulate weight change ∆← ∆ + wj · δj · ∇θQ(Sj, Aj;θ)
18 end
19 update weights θ ← θ + α ·∆, reset ∆ = 0
20 every C steps θ− ← θ

21 end
22 end

sampling a transition i as

Pr{i} .= pζi∑
k p

ζ
k

, (6.8)

where pi > 0 is the priority of transition i. The exponent ζ determines the amount of
prioritisation used. If ζ = 0, then priorities of transitions are uniform. Schaul et al. [39]
describe two methods, namely rank-based and proportional-based, to calculate the priority
pi. In the results by Schaul et al. [39] it is found that the performance of the proportional-
based method is better than that of the rank-based method, therefore we only consider
the former. The priority of the proportional-based method is calculated by Schaul et al.
[39] as

pi = |δi|+ η, (6.9)

where δi is the TD error associated with transition i. A small value η is added to ensure
that no transition has a zero probability of being sampled.

Newly generated transitions have unknown priorities and are stored with maximum
priority to ensure that all transitions are sampled once. Only the priorities of transitions

67

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEEP REINFORCEMENT LEARNING

that are sampled are updated, as it is computationally very expensive to sweep over all
the priorities in the replay buffer with each update made to the DQN.

We would like to sample according to priorities in the replay buffer. A simple solution
is to perform a cumulative sum on all the priorities of the replay buffer. One can sample
a random number from a uniform distribution, from zero to the maximum cumulative
priority. The element in the replay buffer that has a corresponding cumulative interval to
the number sampled, is then selected. Although this is a viable solution for prioritised
sampling, it has a time complexity of O(N), where N is the size of the replay buffer.
Therefore, sampling is expensive for very large replay buffers.

As suggested by Schaul et al. [39], the sum-tree is a binary tree that allows for more
efficient prioritised sampling. It has a time complexity of O(log2(N)) and was therefore
this study’s method of choice for prioritised sampling.

6.2.2 Importance-sampling weights

Schaul et al. [39] state that the estimation of the expected value with stochastic updates
relies on the fact that the updates correspond to the same distribution as the expectation.
One problem with PER is that the distribution used to sample transitions is no longer
uniform, i.e. some transitions are sampled more frequently than others. The change in
this distribution introduces a bias which entails that estimates converge to a solution that
differs from the expectation. This problem can be solved by using importance-sampling
(IS) weights to counter the bias that is introduced. Schaul et al. [39] calculate the IS weight
associated with transition i as follows:

wi =
(1
N
· 1
Pr{i}

)β
, (6.10)

where N is the size of the replay buffer and the exponent β specifies the amount of IS
correction. The IS weights are incorporated into the Q-learning update by using wiδi
instead of δi. Schaul et al. [39] normalise weights by 1/maxi(wi) which scales weights
downward for stability reasons. If the exponent β = 1 then the algorithm fully compensates
for the non-uniform probabilities. As the process is already non-stationary due to changing
policies, state distributions and bootstrap targets, it is said by Schaul et al. [39] that it is
most important to have unbiased updates at the end of training when the action-value
function is close to convergence. Schaul et al. [39] therefore hypothesise that the small bias
that occurs at the beginning of training can be ignored and they suggest using a scheduled
β that starts from β = β0 and reaches β = 1 at the end of training.

6.3 Summary

In this chapter we discussed the deep Q-learning algorithm which combines Q-learning
with ANNs. We discussed the main contributions made by Mnih et al. [23, 24] to ensure its

68

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEEP REINFORCEMENT LEARNING

stability. The important components discussed were ER and frozen Q-targets. We discussed
the functionality of each component with regard to the deep Q-learning algorithm.

We also discussed some additional improvements made to the original deep Q-learning
algorithm. These improvements include the DDQN and the n-step update. Both these
improvements are small adjustments and can be easily be added to the original deep
Q-learning algorithm.

Hessel et al. [14] showed that PER drastically improves the deep Q-learning algorithm’s
performance on the Atari benchmark. We therefore also discussed the deep Q-learning
algorithm with PER. We looked at how Schaul et al. [39] computed proportional-based
priorities for transitions in the replay buffer. Prioritised sampling introduces a bias towards
certain transitions. We also reviewed how this bias can be corrected using IS weights.

Before we discuss our implementation of a distributed deep Q-learning algorithm with
PER, we discuss the simulation environment of choice for the experimental phase of this
study. The simulation environment would in many ways influence the architecture of our
implementation and therefore it is important to discuss this first.

69

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Simulation environment

The simulation environment is an important component of a reinforcement learning (RL)
framework. It determines the outcome of actions taken by the agent and also how the
agent’s state is observed. It specifies the objective with a reward function and thus dictates
the desired behaviour of the agent. Although RL can be done in a real world environment,
computer simulators and video games are commonly used and have proven to serve
as effective test-beds. They provide safe environments that are easily accessible with
rewards that are quantifiable. From a performance point of view, computer simulators
have the advantage of running at accelerated speeds and multiple environments can be
simultaneously processed. This chapter considers the possible simulation environments
than can be used as a test-bed for experiments like ours and examines them according to
their features and performance.

7.1 OpenAI Gym

Gym is an RL toolkit developed by OpenAI. It includes a range of simulation environments
that can be used for developing and testing RL algorithms [5]. The Gym toolkit also specifies
a standard abstract class (gym.Env) that can be inherited by third party environments. All
environments that inherit the gym.Env abstract class implement its attributes and methods,
and thus operate similarly. The main attributes are action_space and observation_space;
they respectively specify the agent’s available actions and the format of the observations
received from the environment. The main functions are reset, step and render. The
reset function resets the environment to an initial state (start of the episode) and returns
the observation of this state. The step function allows the agent to perform an action
in the environment and returns the following: the next observation, a reward, a signal
that indicates whether the episode is done, and extra information that can be used for
diagnostic purposes. The render function renders and displays the environment. The
gym.Env class with main attributes and methods can be viewed in Algorithm 11. This
class is widely adopted by most RL environments and can be seen as the standard for

70

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SIMULATION ENVIRONMENT

Algorithm 11: gym.Env
1 attributes:
2 action_space // specifies the available actions
3 observation_space // specifies the format of the observations

returned from the environment
4 def reset(): // resets the environment
5 return observation // returns the initial observation
6 def step(action): // accepts and performs action
7 return observation, reward, done, info

// observation - observation of the current state
// reward - reward returned
// done - whether the episode has ended
// info - contains auxiliary diagnostic information

8 def render(): // renders and displays the environment to the screen

agent-environment interaction. The simulation environments investigated in this chapter
all inherit the gym.Env class. This allowed us to develop a more general agent that could
easily be applied to many other Gym environments.

7.2 Description of simulation environments

One of the objectives in Section 1.5 was to obtain an agent that is capable of performing
tasks in a 3D environment with partial observability. This was therefore an important
consideration in selecting an appropriate environment. The task required by our study is
that an agent must deliver a first-aid kit to an injured miner. Numerous sub-tasks must be
completed to achieve the main specified objective. The task requires the agent to navigate
the environment, and to also interact with elements inside the environment. With this
in mind, two possible 3D environments were investigated in order to choose a suitable
environment to use as a test-bed for the proposed problem.

Minecraft Minecraft is a 3D, open-ended, open-world sandbox game with an extensive
range of possible goals to achieve by the player, in this case the RL agent. Game worlds are
procedurally generated and consist of discrete blocks with which the player can interact, i.e.
by breaking blocks or placing new blocks. The environment is viewed with a first-person
camera, which makes observations representative of that of an actual robot that is fitted
with an RGB camera. Minecraft also features a basic physics system, a vast range of items
and entities, and an extensive crafting system.

Project Malmo is a framework developed by Microsoft in 2016 that allows Python code
to interface with the Minecraft environment [18]. Project Malmo also gives developers the
functionality to design various custom tasks for their agents inside Minecraft by means of
extensible markup language (XML) scripts. MineRL is a framework built on Project Malmo

71

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SIMULATION ENVIRONMENT

and was first released in 2019. MineRL has all the functionality of Project Malmo, but
inherits the gym.Env abstract class and streamlines the process of developing RL agents
for Minecraft. The performance of MineRL is also dramatically better than that of Project
Malmo, which made it a promising platform for us to use as an RL test-bed.

We wanted to use the built-in mechanics of Minecraft to create an environment
representative of the problem statement. The problem was that the tools available to
create customised environments are not well documented and we found them difficult to
use. In many cases the tools were found to be very limited and the desired problem was
difficult to design. Furthermore, Minecraft is a closed-source project that does not allow
adding of additional functionality.

MiniWorld MiniWorld [6] is an alternative environment that also inherits gym.Env.
It is developed in Python with Pyglet and OpenGL and it is open-source. Similar to
Minecraft, it is a 3D environment that is observed by a first-person camera. MiniWorld
allows the agent to navigate the environment and to interact with some elements found in
the environment. The interaction entails picking up, carrying and dropping items, but the
environment does not nearly have the amount of features that Minecraft has. With limited
features, the range of possible problems that can be created in MiniWorld is more limited.
However, the source code of MiniWorld can be modified, therefore it would be possible to
add the mechanics needed to construct the desired problem for our study. These mechanics
had to be considered beforehand, as they could be time-consuming to add.

A summary of how the features of how these two environments compare can be observed
in Table 7.1. After using both environments, we concluded that MiniWorld would be

Environment Features
Feature MineRL MiniWorld
3D environment true true
first-person RGB observation true true
open-source false true
modifiable difficult easy
performance slow fast
out-of-the-box features many few
ease of use medium easy

Table 7.1: Feature comparison of MineRL and MiniWorld

easier to use and that the ability to modify it would allow us to create an environment
that more closely represents the problem statement of the study. The performance of the
environments are compared in the next section.

72

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SIMULATION ENVIRONMENT

7.3 Performance

This section considers the performance and the resource requirements of MineRL and
MiniWorld. In previously published deep Q-learning results, millions of transitions were
used to train the respective deep Q-learning agents [14, 23]. It was expected that it would
be necessary for us, too, to generate large amounts of data, therefore the speed at which
new transitions could be generated by the respective environments was considered. A
lightweight environment with low computational resource requirements was also needed in
order to implement a distributed version of a deep Q-learning algorithm where multiple
environments are instantiated.

We first compare the time to initialise each environment, which is referred to as the
startup time. We also compare the time to reset an episode in each environment, which is
referred to as the reset time. Lastly, we measure the time to perform an action in each
environment, which is referred to as the step time. The various timing measurements can
be observed in Figure 7.1. The startup time for MiniWorld is shown to be almost negligible

MineRL MiniWorld
0

10

20

30

40

T
im

e
(s
)

33.8

0.095

Startup Time

MineRL MiniWorld
0.0

0.5

1.0

1.5

2.0

T
im

e
(s
)

1.8

0.003

Reset Time

MineRL MiniWorld
0.0

0.5

1.0

1.5

2.0
T
im

e
(m

s)
2.0

0.7

Step Time

Figure 7.1: The mean startup time, mean reset time and mean step time of the simulation
environments MineRL and MiniWorld. The average over 100 trials was taken to obtain this
result.

compared to that of MineRL. MineRL’s long startup time would not be a big concern
when training an agent, as the startup only takes place at the start of the training process.
However, the faster startup time would indeed help to shorten the debugging process, as
the time to test a portion of the program that depends on the environment would be
much shorter. It was also observed that both the time to reset and the time to step of
MiniWorld are much faster than those of MineRL. Resetting the MineRL environment
would require regenerating the entire Minecraft world, which is computationally intensive.
Slow reset times could significantly slow down the speed at which new data is generated,
especially in scenarios where the environment is often required to be reset.

In this study, data generation was distributed where memory usage can be expensive, as
it was required to instantiate multiple environments. As the number of environments being

73

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SIMULATION ENVIRONMENT

used increases, memory usage increases by the same factor. The memory requirements
for MineRL and MiniWorld were therefore also compared. It was found that a MineRL
environment would require 4GB of system memory while a MiniWorld environment would
require only 20MB. In this study, where it would be required to instantiate multiple
environments, MiniWorld’s lower memory requirement made it the more viable option.

7.4 Environment modifications

Based on the findings of the previous two sections, it was decided to continue this study in
the MiniWorld environment. This section examines the changes made to the environment in
order to comply with the problem statement. From the problem statement it was deduced
that the agent had to perform the defined task in an environment that is representative of
a mine. A mine that consists of a specifiable number of rooms thus had to be created in
MiniWorld. The layout of the mine had to be stochastic, therefore the rooms, doorways
and entities had to be randomly located each time the environment is initialised. This
section discusses the main changes made to the environment in order to comply with these
requirements.

7.4.1 Randomised map layouts

To train a DQN that is able to solve various versions of the same problem, it would be
required that the layout of the problem be randomised between episodes. If the layout of
all the episodes was precisely the same, then the agent would only have to learn a single
sequence of actions to solve the problem. In addition to randomising the entity locations
between episodes, we required the room layout of the mine to be random as well.

MiniWorld has the functionality to easily add rooms to the environment and to connect
them with doorways. To generate an environment that consists of multiple rooms that are
connected to each other, the boundaries of the rooms and the locations of the doorways
had to be specified. We wanted to have the functionality to generate random layouts by
only specifying the number of rooms and the size of each room.

Functionality was added to allow layouts that consist of multiple rooms to be automati-
cally generated. During the process of generating a layout, it had to be verified that rooms
do not overlap. It was therefore necessary to check whether a new room would intersect
with any existing rooms. The rooms were then connected with doorways such that there
was a pathway that would allow all rooms to be accessed. This added functionality allowed
us to generate a vast amount of different layouts and saved us having to design these
layouts ourselves. The agent could therefore be trained in an environment that would be
randomly initialised each time. This would make for an agent that would be resilient to
the stochastic nature of the environment.

74

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SIMULATION ENVIRONMENT

Figure 7.2: The following entities were added to the MiniWorld environment: first-aid kit (left),
obstacle or boulder (middle), and an injured miner (right).

7.4.2 Environment functionality

In the process of delivering the first-aid kit to the injured miner, the agent would have to
deal with some obstacles. The desired assets for this were not included in MiniWorld, but
models could easily be imported and some functionality added to achieve the required
behaviour. The following entities were added to MiniWorld: first-aid kit, boulder, injured
miner – shown in Figure 7.2.

MiniWorld already had the functionality to pick up, carry and drop items. The ability
for an agent to exchange the item it is carrying with an item on the floor would greatly
aid it in completing the proposed tasks. The modification was made to allow the agent to
easily exchange the item it was carrying with another item. Boulders were added which
could obstruct the agent’s path, but the agent is able to pick up boulders and to move
them to other locations. The above mentioned new entities could now be used to create
interesting problems in the MiniWorld environment.

7.5 Summary

In this chapter, MiniWorld and MineRL were compared to investigate each as a possible
test-bed for this study. Although the feature-rich MineRL environment was a very attractive
option, it was found that its performance is slow, that it has large memory requirements,
and that it is difficult to add additional functionality to the environment. MiniWorld
had limited features, but its fast performance and the ability to easily modify it, made it
the environment of choice. Although various features had to be added to MiniWorld, the
open-source project made the process of changing the environment straightforward. With
the newly added entities and functionality, we were able to create various versions of the
proposed problem in the MiniWorld environment.

This concludes the investigation regarding the simulation environment. We now proceed
to discuss the implementation of a distributed deep Q-learning algorithm to solve problems
in the modified version of MiniWorld.

75

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Implementation of the deep
Q-learning algorithm

Having discussed the simulation environment, we proceed to discuss the implementation
of a distributed deep Q-learning algorithm with prioritised experience replay (PER).
Distributed computing entails that the algorithm is divided into smaller parts that can be
executed in parallel, to improve performance. It can be utilised in many ways to accelerate
deep reinforcement learning (DRL) algorithms. For example, the approach by Dean et al.
[7] can be used to parallelise the computation of gradients, in order to optimise the artificial
neural network (ANN) at a faster rate.

In our case, we followed an approach similar to that of Horgan et al. [16], where
the generation of environmental transitions is distributed. This is done by decoupling
the process of updating the deep Q-network (DQN) from generating transitions. This
allows generating transitions at much faster rates, which results in a large amount of data
available to update the DQN. Since an extensive amount of data is available, PER is
used to focus on the most important transitions. It is expected that giving the algorithm
access to more data can significantly improve performance, especially when dealing with
sparse rewards. Our implementation focused on distributed data-generation but this can
be combined with approaches such as distributed gradient computation.

The hardware and software available for this study are now outlined here. The design
of the system as a whole is then reviewed, followed by a discussion of each individual
component of the system. Descriptions of the components are aided by diagrams that
contain pseudo code to describe the basic functionality of the different classes. More
detailed versions of these algorithms are included in Appendix C. Next, we discuss the
methods used to augment observations to address partial observability. We then review
the architecture of the DNN used for the deep Q-learning algorithm. Finally, we test how
well the proposed approaches work to address the partial observability of the environment.

76

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

8.1 Hardware and software

A Linux system with specifications listed in Table 8.1 was used for the software development
and to perform experiments in this study. A 6 core, 12 thread Ryzen central processing unit

Computer Specifications
CPU AMD Ryzen 3600 (6 cores, 12 threads)
RAM 64GB
GPU Nvidia RTX2070 Super
Storage 512GB SSD

Table 8.1: Specifications of the computer used to conduct the study.

(CPU) was available and would allow having up to 12 simultaneous processes which are
utilised to distribute data generation. Multiple instances of the environment would be loaded
in memory, and additionally, the replay buffer would require a large amount of memory.
The system had 64GB of random access memory (RAM), to meet the memory requirements.
Graphics processing units (GPUs) are very effective in doing parallel computations. As
the backpropagation algorithm entails matrix multiplication, where operations can be
performed in parallel, a GPU could be utilised to accelerate this process significantly. An
Nvidia RTX2070 super GPU was therefore employed, which dramatically accelerated the
process of updating the DNN.

Python was used for development in our research. The essential packages used for
development included PyTorch and Ray. PyTorch is framework used for developing deep
learning models. PyTorch provides tensor computation with GPU acceleration and allows
for the construction of DNNs on a tape-based automatic differentiation system. The core
logic of PyTorch is written in C++, which means a lower overhead compared to other
frameworks [32]. In this study, it provided a high-performance environment and was used
to maximise the available GPU to accelerate learning. Ray is a Python package that is
used to perform distributed computation. Ray is very intuitive to use, and Python classes
could easily be converted to Ray actors that could be executed on different threads of the
CPU simultaneously.

8.2 System overview

An overview of the architecture of the distributed prioritised deep Q-learning algorithm
is shown in Figure 8.1. The architecture consists of multiple components that are all
contained in the main simulation class. The simulation class is responsible for instantiating,
initialising and controlling the different components of the system. Each component in
Figure 8.1 is a Ray actor and therefore the methods of the different objects can be executed
simultaneously.

77

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

Parameter Server

Learner Actor

Replay Buffer

Main Network

Experiences

Actor Network

Environment

Simulation

Network Parameters

Communication

(1) (2)

(4)(3)

Figure 8.1: The diagram illustrates the interaction between the main components of the
simulation class. Interaction between different components is indicated with arrows. Actors (red)
are responsible for generating new transitions in their respective environments and storing them
in a centralised replay buffer (2). The learner (blue) samples transitions from the replay buffer
(1) and uses it to update the main network. The learner uploads the latest parameter values of
the main network to the parameter server (orange) from time to time (3). The actors query the
parameter server for new network parameter values between completing their respective episodes.
If available, they update their respective networks with the latest parameter values (4).

The process of generating transitions in the environment is referred to as acting,
performed by the actor(s). Furthermore, we refer to the process of updating the DQN as
learning, performed by what we refer to as the learner. The algorithm decouples acting from
learning and allows multiple actors to generate transitions in parallel. As seen in Figure
8.1, the actors and learner have access to a centralised replay buffer. The data generated
by the actors is stored (2) in the replay buffer. The learner again samples from the replay
buffer to update the main DQN to which we refer as the main network. The actors and
learner also have access to a shared parameter server which allows these components
to communicate (3,4). Communication entails, amongst other things, to give the actors
access from time to time to the learner’s latest network parameters. The parameter server
can also be used to notify the actors to stop acting, or to change the version of their
environment if curriculum learning (CL) is used.

We use the approach similar to Horgan et al. [16], where actors asynchronously generate
and add data to the replay buffer as fast as possible. The learner again asynchronously
samples data from the replay buffer and updates the main network as fast as possible. The
rate at which the system generates data and adds it to the replay buffer can be altered by
simply changing the number of actors used to generate data.

8.3 Replay buffer for storing experience

In this study, we implemented a prioritised replay buffer [39], as discussed in Section 6.2.
This was used as centralised storage for environment-generated transitions. The prioritised

78

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

replay buffer is shown in Algorithm 12. New transitions, along with priorities, are added

Algorithm 12: Prioritised replay buffer based on the work of Schaul et al. [39].
The algorithm has the functionality to store transitions along with priorities,
sample transitions according to priorities, and finally to update the priorities of
existing transitions.
1 def init(capacity, α, η):
2 initialise capacity, α, and η
3 def add_batch(batch, δ):
4 calculate priorities from δ
5 add batch to storage
6 add priorities to sum-tree
7 def sample_batch(batch_size, β):
8 sample indices from sum-tree of batch_size
9 calculate IS weights using the sampled indices’ priorities and β

10 use indices to collect transitions from storage
11 return transitions, indices, is_weights
12 def update_priorities(indices, δ):
13 calculate new priorities from δ
14 update priorities at specified indices of sum-tree

to the replay buffer by calling the add_batch function. The add_batch function accepts a
batch of transitions along with the corresponding TD errors. The TD errors are used to
calculate the transitions’ priorities. The transitions are then added to the storage, and
their priorities are added to a sum-tree data structure. Recall from Section 6.2.1 that
the sum-tree data structure allows for more efficient prioritised sampling. Transitions are
added to the replay buffer in a first-in-first-out (FIFO) manner, i.e. if the replay buffer
reaches its maximum capacity, new transitions replace the oldest transitions in the replay
buffer.

The learner samples the transitions from the replay buffer, randomly or by priority,
to update the main network. The sample_batch method is used to sample a batch of
transitions, where the batch size and beta β must be specified as arguments. The function
uses the sum-tree to sample indices of transitions according to the priorities that were
assigned earlier. Priorities are then used to calculate the importance-sampling (IS) weights
using Equation 6.10. The function returns the sampled transitions, the indices where they
are stored, and their IS weights. The indices are later used by the learner to update the
priorities of the sampled transitions. Priorities of existing transitions in the replay buffer
can be updated with the update_priorities function. The indices of the transitions that
must be updated, and corresponding TD errors, must be specified. New priorities are then
calculated and the relevant entries of the sum-tree are updated.

79

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

8.4 Parameter server for communication

Decoupling the learner and actors is computationally very advantageous, but makes it
problematic for them to communicate with each other. The problem is that the learner and
actors cannot be accessed externally while cycling through their respective instructions,
and therefore these objects cannot directly interact with each other. Communication is
necessary for the actors to fetch the most recent network parameters from the learner.
Communication is also necessary to notify actors when their respective environments
should change if CL is used.

We decided to address this problem by using a parameter server, similar to Yoon [51].
The learner and actors have access to a central parameter server, shown in Algorithm 13.
It acts as an intermediate communication medium between them. The parameter server’s
attributes can be changed by using the update_attributes function. These attributes
include a copy of the main network’s parameters and the CL phase. The value of these
attributes can again be accessed with the fetch_attributes function. The learner and
the actors have independent cycles where they access the parameter server to request the
most recent values of attributes or to update attributes.

Algorithm 13: Parameter server for communication between actors and learner.
Attributes are updated with the update_attributes function. Attribute values
are fetched with the fetch_attributes function.
1 def init():
2 initialise network_parameters
3 initialise phase
4 def update_attributes(network_parameters, phase):
5 update the values of the various attributes
6 def fetch_attributes():
7 return the various attributes
8 return network_parameters, phase

8.5 Learning from experience in the replay buffer

The learner is responsible for sampling batches of transitions from the replay buffer and
updating the parameters of the main network. We separate this process into two functions,
namely load_minibuffer and run_learner. The pseudo code for the learner is shown in
Algorithm 14.

The load_minibuffer function samples batches of transitions from the replay buffer
in the background and prepares and stores the data in the desired format in a mini
buffer. While the load_minibuffer function is being executed in the background, the
run_learner method optimises the main network. The learner optimises the main network

80

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

Algorithm 14: Learner for updating the main network. This algorithm is inspired
by the work of Horgan et al. [16].
1 def init(replay_buffer, parameter_server):
2 initialise main_network and target_network
3 assign reference to replay_buffer and parameter_server
4 def load_minibuffer():
5 while true do
6 sample batch of transitions from replay buffer
7 prepare batch for optimisation
8 store batch in mini_buffer
9 end

10 def run_learner(T):
11 for t← 1 to T do
12 fetch batch from mini_buffer
13 compute loss
14 update parameters of main_network
15 update priorities in replay buffer using TD errors
16 periodically copy main_network to target_network
17 periodically copy main_network to parameter_server
18 if CL then
19 update CL phase according to specified criteria
20 end
21 end

for a specified number T of iterations. For each iteration, a batch of transitions is collected
from the mini buffer. The experience is already in the correct format, i.e. PyTorch tensors,
and can be utilised directly by the learner to pass it through the main network, and to
calculate the TD targets by using the n-step return.

We used the backpropagation algorithm to compute the gradients on the network
parameters. The next step was to adjust the parameter values of the main network using an
optimiser of choice. Kingma and Ba [20] state that adaptive moment estimation (Adam) is
an appropriate optimiser for non-stationary objectives and problems with noisy and sparse
gradients. We therefore hypothesised that Adam would be well suited for the problem we
are addressing, as the reinforcement learning (RL) problem is highly non-stationary, and
sparse rewards lead to noisy and sparse gradients. According to Vitay [48], Adam works
out-of-the-box with minimal hyperparameter tuning (learning rate, momentum), at the
expense of minimum that may be slightly worse. Furthermore, Adam is preferred by Vitay
[48] for DRL, as the goal is to find a policy that is able to solve the problem, and not to
perfectly minimise the loss function.

After the main network’s parameters are updated, the TD errors are used to update
the priorities of the transitions which were sampled from the replay buffer. The latest
values of the main network’s parameters are stored on the parameter server from time to
time to allow actors to access the most recent version of the main network.

81

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

8.6 Generating new experience

Actors are used for generating transitions and the pseudo code for the Actor class is shown
in Algorithm 15. Multiple instances of this class can be initialised to generate transitions

Algorithm 15: Actor for generating transitions. This algorithm is inspired by
the work of Horgan et al. [16].
1 def init(replay_buffer, parameter_server):
2 initialise reference to replay_buffer and parameter_server
3 initialise actor_network
4 initialise wrapped environment
5 initialise local_buffer
6 def run_actor(T):
7 remote call to parameter_server to update actor_network
8 reset environment and retrieve initial state
9 for t← 1 to T do

10 observe state and perform action according to ε-greedy policy
11 add n-step transition to local_buffer
12 if size of local_buffer ≥ B then
13 compute TD errors of transitions in local_buffer
14 move transitions of local_buffer to centralised replay_buffer
15 clear local_buffer
16 end
17 if episode is done then
18 remote call to parameter_server to update actor_network
19 if CL then
20 remote call to parameter_server to update phase update
21 end
22 reset environment and retrieve initial state
23 end
24 end

in parallel.
Each actor has access to an instance of the simulation environment. Additionally, the

actors use the latest available knowledge from the learner in order to perform actions (ε-
greedy) in their respective environments. Therefore, each actor has access to the parameter
server to update their respective networks with the latest parameter values. The learner
uploads the main network’s latest parameter values to the parameter server every 500
network updates. Actors are asynchronously completing episodes in their respective
environments and are verifying the parameter server between episodes for updated values
of the main network’s parameters. If available, they duplicate the new parameters to their
respective networks. Therefore, the actors’ networks age with 500 network update steps
every time they update their respective networks’ parameters. We decided to update the

82

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

actors’ network parameters every 500 completed network update steps to also ensure the
actors use very recent network parameters to generate transitions.

The actor class has a method run_actor. When this method is called, the actor
interacts, for a specified number of steps or indefinitely, with its simulation environment
generating transitions. The transitions that each actor generates are stored in a local buffer
and are periodically moved (every B transitions) to the centralised replay buffer.

As we used PER, the priorities of newly generated transition had to be calculated
at some point. Schaul et al. [39] assigns maximal priority to newly generated transitions
to ensure that all new transitions are at least sampled once. Horgan et al. [16] instead
suggests calculating priorities of newly generated transitions immediately. The reason for
this is that the distributed prioritised experience replay algorithm is capable of generating
large amounts of data, and by immediately assigning the correct priorities to transitions,
the learner only focuses on the most important transitions. We used the latter approach.
Between episodes, actors request the latest parameter values of the main network and also
check for environment phase updates (if CL is enabled).

8.7 Simulation

We now review the simulation class in which the previously discussed components were
all hosted. The simulation class is shown in Algorithm 16. With the initialisation of the

Algorithm 16: Simulation
1 initialise replay_buffer
2 initialise parameter_server
3 initialise learner
4

5 run actors to pre-load replay_buffer
6 wait for pre-loading phase to complete
7 run learner for specified number of network updates
8 run actors indefinitely
9 wait for learner to finish

10 wait for actors to terminate

simulation object, the replay buffer, parameter server, learner and actors are all initialised.
The simulation class provides the actors and the learner with the centralised replay buffer
and parameter server.

After all the relevant objects are initialised, the simulation class runs each actor for
50, 000 steps to pre-load the replay buffer. We pre-load the replay buffer to provide the
learner with data to immediately start improving the main network. After the replay buffer
is pre-loaded, the run_learner function of the learner is called with the specified number
of network update steps as an argument. The simulation class reruns each actor. The

83

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

actors will now indefinitely generate transitions in their respective environments until the
learner has completed the specified number of network updates. Recall that the learner and
actors are executed simultaneously. The program and therefore all actors are terminated
after the run_learner function has been completed.

8.8 Deep neural network design

In this section, we discuss the architecture of the DNN used for the deep Q-learning agent.
We also discuss an important component that we refer to as the environment wrapper.
The environment wrapper is responsible for the format of the input applied to the network
and is therefore crucial in the discussion of the network’s design. Once we have discussed
the environment wrapper, we review the layout of the DNN.

8.8.1 Environment wrapper

The environment wrapper is an intermediate communication medium between the actors
and their environments. It allows us to process observations from the environment before
returning it to the actors. It also allows us to process actions from the actors before they
perform these in their respective environments. We specifically used the environment
wrapper in this study to process observations. The goal was to manipulate observations to
address the problem of partial observability.

Pre-processing of frames Applying convolutional layers to high-dimensional data can
be computationally very expensive. This problem was addressed by Mnih et al. [23, 24] by
reducing the dimensionality of observation frames. A reduction in input dimensionality
was achieved by extracting the luminance from observation frames and rescaling frames
to achieve lower resolution grayscale images. We did not have to downscale observation
frames as we configured the environment to render relatively low-resolution frames with a
dimensionality of R3×44×76. The convention we used to define the dimensionality of image
data is RC×H×W , where C is the number of channels (e.g. RGB channels), H is the height
of the image, and W is the width of the image. Furthermore, we decided instead to retain
the colour channels and not to grayscale the observation frames. This decision was made
based on the problem addressed, where a red first-aid kit must be located, fetched and
delivered to an injured miner. As colour can be important for human beings to classify
objects, we suspected that colour information would also be a valuable feature to our
agent in completing the specified task.

Frame-stacking To address the problem of partial observability, we investigated an
approach, called frame-stacking, used by Mnih et al. [23, 24]. Frame-stacking entails
stacking and keeping the last number of frames observed in memory. We stacked the

84

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

frames along the dimension of the colour channels, as the RGB colour channels are present
in each frame. The image observation that the MiniWorld environment returns at each time
step is an RGB frame with a dimensionality of R3×44×76. After the environment wrapper
stacked the last f frames, the dimensionality of the resultant observation is R3f×44×76 .

Action history In addition to frame-stacking, we also investigated an approach we refer
to as action history. It entails keeping the last h number of actions performed by the actor
in memory. We define the action history vector as

Ahistory = [At−1, At−2, . . . , At−h], (8.1)

where h is the length of the sequence of actions kept in memory and t is the current
time step. We decided to one-hot encode each action in the Ahistory. We then flattened
the result to a vector. The one-hot feature representation yielded better performance
than than assigning a numerical value to each action. As there are |A| possible actions to
perform in the simulation environment, the one-hot encoded action history vector has a
dimensionality of R|A|h. For our problem the cardinality of the action space is five |A| = 6,
therefore the action history vector has a dimensionality of R6h. The one-hot encoded
action history vector could be used in combination with the stacked frame observation as
a representation of the state of the agent.

8.8.2 Deep Q-network architecture

Having discussed the format of observations returned by the environment wrapper, we now
review the architecture of the DNN used for the deep Q-learning agent. We augmented
the environment’s observation with frame-stacking and action history to address the
partial observability of the environment, We therefore had to design a network that
would accommodate these augmentations. In Figure 8.2 we present the architecture of the
network. It comprises of a CNN that is followed by an FNN.

85

Stellenbosch University https://scholar.sun.ac.za

C
H
A
PT

ER
8.

IM
PLEM

EN
TAT

IO
N

O
F
T
H
E

D
EEP

Q
-LEA

R
N
IN

G
A
LG

O
R
IT

H
M

3f

76

44

C1

8

8

32

18

10

C2

4

4

64

8

4
C3

3

3

64

6

2

CNN output

76
8

(fl
a
tt

en
ed

C
N

N
ou

tp
u

t)
6h

(a
ct

io
n

h
is

to
ry

)

FNN input

1
(c

a
rr

y
)

12
8

12
8

1

state
value

6

action
advantages

6

action
values

Figure 8.2: The DNN architecture we used for our research – inspired by Mnih et al. [23, 24], and Wang et al. [50]. The network starts with three
convolutional layers (C1, C2, C3), each followed by a ReLU activation function. The network receives an input volume of R3f×44×76, where f is the
number of frames stacked. The filters of the first convolutional layer, C1, have a stride of four, a receptive field of R8×8 and produce a volume of
R32×10×18. The filters of C2 have a stride of two, a receptive field of R4×4 and produce a volume of R64×4×8. The filters of the last convolutional layer,
C3, have a stride of one, a receptive field of R3×3 and produce a volume of R64×2×6. The output volume of C3 is flattened and results in a vector with
a dimensionality of R768. Recall that the one-hot encoded action history has a dimensionality of R6h, where h is the length of the history. The action
history and the one-hot carrying indicator are then concatenated to the flattened output of C3 to obtain the input to the FNN. The FNN input
therefore has a dimensionality of R768+6h+1. The FNN consists of two sub-networks. We refer to the first sub-network as the state-value network. This
sub-network consists of two layers. The first layer consists of 128 neurons, followed by a ReLU activation function. The second layer produces a scalar
value that is referred to as the estimated state-value. We refer to the second sub-network as the action-advantage network. The first layer of this
sub-network also consists of 128 neurons and is also followed by a ReLU activation function. The second layer produces a vector that contains an
action advantage for each available action. The architecture then combines state value and action advantages to obtain the action values.

86

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

Convolutional neural network The architecture of the CNN is based on the work
by Mnih et al. [23, 24]. The CNN consists of three convolutional layers. Refer to Figure
8.2 for the specifications of the filters of each layer and the dimensionality of the output
volume at each layer. We use Equation 5.45 and Equation 5.46 to obtain the dimensions
of the output at each layer. The CNN produces an output volume of R64×2×6 at C3. This
volume is then flattened to a vector of size R768.

Feed-forward neural network We still have to accommodate the action history as
input to the FNN. This problem was addressed by merely concatenating the one-hot
encoded action history R6h to the flattened output of C3. Additional we also concatenated
a binary value that indicates if the agent is carrying an item. This resulted in the input to
the FNN having a dimensionality of R768+6h+1. The design of the linear layers was based
on the dueling architecture, which we discussed in Section 6.1.5. Therefore the input to the
FNN splits into two streams. The first estimates the state value, and the second estimates
the action advantages. The state value and action advantages are then combined to obtain
the action values. Refer to Figure 8.2 for the specifications of the FNN’s layers.

8.8.3 Frame-stacking and action history experiments

With all the components of the system explained, we can now report on how we tested the
agent. Before going on to the experimental phase of the study where the focus would be
on solving sparse-reward problems, we first tested whether the inclusion of frame-stacking
and action history assist in addressing the problem of partial observability.

Here, we introduce the most simplest version of our problem statement where the agent,
first-aid kit and injured miner are all placed at random locations in a single room. The
agent has to locate the first-aid kit, collect it, and transport it to the miner. We expected
that task in the partially observable environment to prove difficult without any memory
of previous actions performed or observations seen.

We therefore performed the following four experiments: frame-stacking and action
history disabled, only frame-stacking enabled, only action history enabled, and frame-
stacking and action history enabled. When frame-stacking was enabled, we decided to stack
the last four frames observed by the agent, similarly to Mnih et al. [23, 24]. We arbitrarily
decided on an action history that would hold the last 20 actions performed by the agent.
The configuration of the agent is shown in Table 8.2. The values of the hyperparameters
are based on respective papers by Mnih et al. [24], Schaul et al. [39], Horgan et al. [16]
and Hessel et al. [14]. The action space of the agent is shown in Table 8.3.

We used the mean return per episode achieved by the actors as a function of the
completed network updates to measure performance. The result of this experiment is
shown in Figure 8.3. This type of result is referred to as a learning curve. Recall from
Section 8.5 that the learner is responsible for adjusting the parameters of the main network

87

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

Experimental configuration
number of actors 7
ε (epsilon) 0.01 (all actors)
α (learning rate) 3× 10−5

batch size 32
optimiser Adam
γ (discount rate) 0.99
n (n-step) 6
replay capacity 1, 048, 576
PER enabled
ζ (prioritisation) 0.6
β0 (IS) 0.4
η (prioritisation constant) 1× 10−5

Table 8.2: Default agent configuration. Refer to Appendix B for additional info on the chosen
values.

Action space
action unit
1 move forward 0.5 units
2 move backward 0.5 units
3 turn right 9 degrees
4 turn left 9 degrees
5 pickup/drop/exchange item -
6 no operation -

Table 8.3: Action space of the environment.

that represents the agent’s policy. Each time the main network parameters are adjusted is
defined as a network update step. We measured performance as a function of the completed
network update steps. Recall from Section 8.6 that the actors’ network parameters age
with 500 completed network update steps. Therefore the main network is evaluated every
500 network update steps. A run is defined as training the main network from start to
finish for a specified number of network update steps. The results of this section present
an average result of completing 30 runs. By averaging results over multiple runs a more
reliable result is obtained. Since performing a single run was time-consuming enough, we
did not perform more runs.

The result shows that when we included either frame-stacking or action history, the
agent achieved higher mean episode returns earlier in training. Surprisingly, the experiment
in which we did not enable one of these approaches had similar performance to the other
experiments at the last network update steps. It is also interesting that there was no benefit
to combine frame-stacking and action history. The environment is mainly static with no
dynamic entities. We therefore speculated that there would be no need for frame-stacking,

88

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. IMPLEMENTATION OF THE DEEP Q-LEARNING ALGORITHM

0 25 50 75 100 125 150 175 200
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

R
et
ur
n

Episode Return versus Network Update Steps

none enabled
only frame-stacking
only action history
both enabled

Figure 8.3: The mean episode return as a function of completed network update steps when
enabling frame-stacking and action history is compared. The blue curve shows the performance
when both frame-stacking and action history are disabled. The orange and green curves respec-
tively show performance when only action history and only frame-stacking are enabled. The red
curve shows the performance of the agent when frame-stacking and action history are combined.
The maximum and minimum achievable returns are indicated by the dashed lines respectively at
1.0 and 0.0.

which allows for the capture of information on the movement of external entities. For this
task, an action history with a capacity of 20 seemed to work well, but this value may be
task-dependent. As this value proved to work well, we would continue to use it for the
experiments reported in Chapter 9. Using frame-stacking is more expensive than using
action history. As there was no clear benefit for it to be used in our environment, we
would omit frame-stacking in future experiments to save on computational costs. However,
frame-stacking would most likely be very important in environments with more dynamic
elements.

8.9 Summary

In this chapter we considered the critical choices made during the development of the
distributed deep Q-learning agent with prioritised experience replay. We discussed the main
components of the system and how the they interact with each other. The components we
discussed include the replay buffer, parameter server, learner and actor. The environment
wrapper was also reviewed, as was the format of the input to the DNN. We examined
the architecture of the DNN used for the deep Q-learning agent. Finally we tested the
performance of frame-stacking compared to action history to address partial observability.
We can now continue to the experimental phase, to investigate how different components
of the system help to address the problem of sparse rewards.

89

Stellenbosch University https://scholar.sun.ac.za

Chapter 9

Experiments and results

In this chapter we report on several experiments that deal with sparse-reward problems.
In all the experiments the goal of the agent is to deliver a first-aid kit to a miner, as
discussed in Section 1.5. The mine consists of multiple rooms with obstacles, which make
it challenging to navigate. To achieve this goal multiple sub-tasks must be completed, and
a positive reward signal is only returned when the entire task is completed. Sub-tasks
include navigating the mine, removing obstacles, fetching the first-aid kit, and finding the
miner.

In the first section of this chapter, we investigate three main improvements made to
the deep Q-learning algorithm. We report on an ablation study where we investigated
the impact each modification had on the system as whole. We then further analyse the
modifications to better understand the influence each has and to find hyperparameters that
achieve the best performance. We consider the influence that distributing data generation
has on the execution time of experiments. We also consider the effect which the rate at
which data is generated has on the agent’s performance. We then examine the influence
of prioritised experience replay (PER). We investigate whether certain transitions were
sampled more frequently with PER and how this affected performance. Lastly we show
how we tested and found the best performing value for the n-step return.

In the second section of this chapter, we report on the capability of the agent to learn
to perform a task where rewards are even more sparse. Exploration in this problem was
more challenging, since the agent had to perform a longer sequence of correct actions to
obtain the reward signal. We also look at whether curriculum learning (CL) and domain
randomisation (DR) could assist the agent to solve the more challenging exploration
problem.

The chapter ends off with a section where the deep Q-learning agent is tested on
problems with a larger mine with more rooms. The goal was to observe at what stage the
agent is would no longer be capable of learning optimal policies. We also show how we
trained the agent using a combination of CL and DR on the larger version of the problem
to observe if this approach improved the agent’s performance.

90

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

9.1 Experiment 1: Testing modifications on a
sparse-reward problem

We now introduce the first version of the sparse-reward problem discussed in Section
1.5. We investigated the influence the three modifications has on the performance of the
deep Q-learning algorithm to solve this problem. The default configuration shown in
Table 8.2 was used to perform the experiments on this chapter, except if stated otherwise.
Optimal values for hyperparameters are depended on the specific problem. Our default
configuration was based on the relevant papers by Mnih et al. [23, 24], Schaul et al. [39],
Hessel et al. [14] and the supplementary experiments in Appendix B. We used this as a
starting configuration. In the experiments, we tested for an optimal value for the number
of actors, prioritisation (ζ) and the n-step return.

9.1.1 Description of the task

The first task consisted of two rooms connected by a doorway, which are representative
of a small part of a mine. In Figure 9.1 we illustrate the task as a top-down view. The

miner

agent

obstacle

first aid kit

room 1

room 2

Figure 9.1: Problem one: A top-down illustration of the sparse-reward problem. The environment
consists of two rooms. The agent is randomly placed in room 1. The first-aid kit and an injured
miner are randomly placed in room 2. An obstacle obstructs the way between room 1 and room
2.

locations of the rooms and the doorway are randomised between episodes. The doorway is
obstructed by an obstacle which represents debris that can occur in a collapsed mine. The
agent is placed in the first room at a random location, facing a random direction, and an
injured miner and a first-aid kit are placed at random locations in the second room. The
agent’s goal is to find the first-aid kit and deliver it to the immobilised miner. The size
of each room is 16× 16 units. The agent can interact with the environment by using the

91

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

action space defined in Table 8.3. The action space was the same for all experiments in
this chapter.

The agent has to navigate from the first room to the doorway. An obstacle obstructing
the doorway must be picked up and moved out of the way to proceed to the second room.
The agent then has to locate the first-aid kit in the second room, pick it up and take it
to the miner. The reward function returns a reward of 1.0 when the miner receives the
first-aid kit and returns a reward of 0.0 for all other time steps. In each episode of this
task, the agent has 1000 time steps to complete the task, after which the episode ends.
We limited the number of time steps in the problem to enable us to evaluate policies over
multiple episodes. The required number of steps to complete the task would be far fewer
than the limit we set, but we wanted to give the agent additional time steps to explore
the environment.

9.1.2 Ablation study

We performed an ablation study to observe the influence of each modification on the
performance of the deep Q-learning algorithm. The modifications tested were distributed
data generation, prioritised experience replay (PER), and n-step returns. We tested the
deep Q-learning algorithm with all modifications enabled, i.e. the default configuration
shown in Table 8.2. We refer to this configuration as the all included algorithm. We then
tested configurations where in each test a single modification is disabled. We tested the
following configurations:

1. no n-step, where the n-step update is removed, i.e. one-step TD is used;

2. no distributed, where only a single actor is used for data generation, i.e. no distributed
data generation is used;

3. no PER, where we do not use PER, and standard ER is used; and

4. none included, where we disable all modifications.

Recall from Section 6.1.1 that the replay ratio indicates the rate at which the main
network is updated relative to the rate at which new transitions are generated. For all
configurations, except for the no distributed and none included configurations, seven actors
were used to generate data. The resultant replay ratio was 0.023. Only one actor was used
to generate data for the no distributed and none included configuration and the resultant
replay ratio was 0.111. In Section 9.1.3 we further investigate how the number of actors
affected the replay ratio.

We measured each configuration’s performance while training the policy of the agent,
i.e. the main network. In Figure 9.2 we present the mean episode return as a function of the
completed network update steps. This shows the performance penalty when disabling each

92

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

0 25 50 75 100 125 150 175 200 225 250 275 300
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

R
et
ur
n

Episode Return versus Network Update Steps

all included
no n-step
no distributed
no PER
none included

Figure 9.2: The mean episode return versus network update steps when different modifications
are excluded. The maximum and minimum achievable returns are indicated by the dashed lines
respectively at 1.0 and 0.0.

modification. We measured performance using the same method as described in Section
8.8.3. The results of this section present an average result after completing 30 runs.

In Figure 9.3 we also present the mean episode duration as a function of the completed
network update steps. A shorter episode duration suggests better performance, as it is

0 25 50 75 100 125 150 175 200 225 250 275 300
Network Update Steps (K)

200

400

600

800

1000

Ep
iso

de
D
ur
at
io
n
(S
te
ps
)

Episode Duration versus Network Update Steps

all included
no n-step
no distributed
no PER
none included

Figure 9.3: The mean episode duration versus network update steps when different modifications
are excluded. A lower duration indicates better performance.

an indication that the task is performed in a smaller number of time steps. There is no
way of ending the episode in fewer than the maximum allocated time steps, other than to
complete the task successfully. The results shown in Figure 9.2 and Figure 9.3 are highly

93

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

correlated. We therefore only use the mean episode return to evaluate the rest of the
algorithms of this section.

Some configurations are more demanding on the system, since different modifications
are enabled. Accordingly execution times may vary. In Figure 9.4 we present the number
of network updates steps completed per second for each configuration. It shows that some

all included no n-step no distributed no PER none included
Method

0
10
20
30
40
50
60
70
80
90

100
110

N
et
w
or
k
U
pd

at
e
St
ep
s
pe

r
Se
co
nd

65.0
70.0

90.0

69.0

104.0
Network Update Steps per Second

Figure 9.4: The number of network update steps completed per second for each configuration.

configurations perform network updates faster than others. For example, the non included
configuration performs network updates much faster than the all included configuration.

For this reason, we also evaluated performance over wall-time. We present the mean
episode return as a function of time in Figure 9.5. It shows the actual time required to
achieve a certain level of performance. This result was very dependent on the implementa-
tion of the algorithm and the system used to perform the experiment. However, it was still
an important result to consider as a goal was to train the best policy in the shortest time.

The results show that the final deep Q-learning algorithm with all modifications
performed very well. By the end of the experiment, the algorithm obtained a near perfect
mean episode return of 1.0. Therefore it was successful at completing the task almost all
the time. Figure 9.5 shows that the all included agent was trained to a near perfect policy
in 70 minutes. This result was achieved on the system described in Table 8.1, but training
could be significantly accelerated by using more powerful hardware. The algorithm’s
performance decreased significantly when any of the modifications was disabled. Therefore
distributed data generation, PER, and the n-step update are all very important in order
to solve the sparse-reward problem described in Section 9.1.1. Furthermore, when all of
the modifications were disabled, performance did not increase at all during the entire
experiment.

94

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

R
et
ur
n

Episode Return versus Time

all included
no n-step
no distributed
no PER
none included

Figure 9.5: The mean episode return versus time when different modifications are excluded.
The maximum and minimum achievable returns are indicated by the dashed lines respectively at
1.0 and 0.0.

9.1.3 Generating experience

Next, we describe how the rate at which new transitions are generated influenced perfor-
mance. We first show that the distributed system allowed us to utilise additional resources
to increase the data generation rate, thereby also lowering the replay ratio. The goal was
to lower the replay ratio while keeping the duration of experiments as short as possible.
The default experimental configuration in Table 8.2 was used for all experiments reported
in this section, and therefore PER and the n-step update were enabled. We altered only
the number of actors used.

Our system had nine threads available for actors, as the other threads were utilised for
other operations such as updating the main network. Accordingly, the maximum number
of actors we could run in parallel was nine. We performed an experiment using nine actors
to complete the task specified in Section 9.1.1. This configuration resulted in a replay ratio
of 0.017. We then performed an experiment that only utilised one actor, but we manually
set the replay ratio to be similar to the first configuration, i.e. 0.017. We did not test other
configurations, since these tests are very time consuming. In Figure 9.6 we present the
mean episode return as a function of the completed network update steps. It shows that
the different configurations’ performance is virtually identical over completed network
update steps. This result shows that performance is identical when the replay ratios are
the same. Performance is therefore not dependent on the number of actors, but rather on
the replay ratio.

In Figure 9.7 we present the mean episode return as a function of time. It shows that
it took around five times longer to complete the experiment that utilised only one actor
compared to the experiment that used nine actors. We increased the number of actors

95

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

0 25 50 75 100 125 150 175 200 225 250 275 300
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

R
et
ur
n

Episode Return versus Network Update Steps

0.017 (1)
0.017 (9)

Figure 9.6: The mean episode return as a function of the completed network update steps.
Utilising one actor is compared to utilising nine actors. Both configurations achieve a replay
ratio of 0.017.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
R
et
ur
n

Episode Return versus Time

0.017 (1)
0.017 (9)

Figure 9.7: The mean episode return as a function of time utilising one actor compared to
utilising nine actors with a replay ratio of 0.017.

from one to nine, but the experiment duration only decreased five times. The reason for
this is not clear, but there may be some inefficiencies in the system. For example, all actors
and the learner access the same replay buffer and this may lead to a queue at the buffer.
Using more actors increases the strain on system resources such as the GPU. Therefore
the speed of all processes may slow down as we increase the number of actors. Although
the duration of the experiment did not decrease by the same ratio as we increased the
actors, this result shows that using multiple actors lowers the replay ratio while keeping
the duration of experiments short.

Next, we describe the effect of the number of actors used on the replay ratio. Recall

96

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

that all the components of the system ran asynchronously. Accordingly by using more
actors in parallel, we increased the data generation rate, thus lowering the replay ratio.
We decided to test the system using the maximum and the minimum number of actors, i.e.
nine actors and one actor. We also tested configurations with three, five and seven actors.

In Figure 9.8 we present the transition rate relative to the completed network update
steps when using different numbers of actors. It shows that on increasing the number of

1 Actor 3 Actors 5 Actors 7 Actors 9 Actors
Method

0

10

20

30

40

50

60

Tr
an

sit
io
ns

pe
r
N
et
w
or
k
U
pd

at
e
St
ep

0.111

0.047

0.031

0.023

0.017

Transitions per Network Update Step

Figure 9.8: The number of transitions generated per network update step while using different
numbers of actors. At the top of each bar, the replay ratio of each configuration is shown.

utilised actors, the data generation rate relative to network updates increased linearly.
Accordingly, the replay ratio in Equation 6.1 decreased.

Next, we look at whether it was beneficial to lower the replay ratio. Below, we can
observe how well the previously achieved replay ratios performed. In Figure 9.9 we present
the mean episode return as a function of the completed network update steps using
different replay ratios. It shows that the learner trains a better performing policy with
fewer completed network update steps when the replay ratio is lower.

We also present the rate at which the learner completed the network update steps
when altering the number of actors (Figure 9.10). It shows that on increasing the number
of actors, the rate at which the learner updates the network decreased linearly.

Therefore, we also considered the performance of the different configurations as a
function of time, as shown in Figure 9.11. Decreasing the replay ratio is computationally
expensive because more actors are active on the system. A slower network update rate
may result in inferior performance when measured over time. The result suggests that
the optimal number of actors for this specific task on this particular hardware is seven.
Increasing the number of actors to nine slowed down the network update rate, and the
overall performance versus time is then worse than when using seven actors. We concluded

97

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

0 25 50 75 100 125 150 175 200 225 250 275 300
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

R
et
ur
n

Episode Return versus Network Update Steps

0.111 (1)
0.047 (3)
0.031 (5)
0.023 (7)
0.017 (9)

Figure 9.9: The mean episode return versus network update steps for different replay ratios. The
replay ratio with the number of actors used is indicated for each curve – replay ratio (#actors).
The maximum and minimum achievable returns are indicated by the dashed lines respectively at
1.0 and 0.0.

1 Actor 3 Actors 5 Actors 7 Actors 9 Actors
Method

0
10
20
30
40
50
60
70
80
90

100
110

N
et
w
or
k
U
pd

at
e
St
ep
s
pe

r
Se

co
nd

90.0
80.0

73.0
65.0

55.0

Network Update Steps per Second

Figure 9.10: The number of network update steps completed per second for different numbers
of actors.

that lower replay ratios are beneficial to the agent’s performance. Having multiple actors
generating data in parallel was found to be an effective way to lower the replay ratio while
keeping the duration of experiments short.

9.1.4 Prioritising experience

In this section, we show the impact PER has on performance when solving the sparse-reward
problem described in Section 9.1.1. In this experiment, we tested several configurations of

98

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0
M
ea
n
Ep

iso
de

R
et
ur
n

Mean Episode Return versus Time

0.111 (1)
0.047 (3)
0.031 (5)
0.023 (7)
0.017 (9)

Figure 9.11: The mean episode return versus time for different numbers of actors. The replay
ratio with the number of actors used is indicated for each curve – replay ratio (#actors). The
maximum and minimum achievable returns are indicated by the dashed lines respectively and
1.0 and 0.0.

the agent. We started with standard ER (ζ = 0) where the learner sampled uniformly from
the replay buffer. Next, we tested PER where we increased ζ with 0.2 in each following
test. We tested the following values for ζ: ζ = 0.2, 0.4, 0.6, 0.8, 1.0. When PER is enabled,
the learner samples according to the priorities assigned to the transitions in the replay
buffer, as discussed in Section 6.2. By increasing ζ, there is a stronger focus on the more
important transitions. The default configuration in Table 8.2 was used again for this
experiment, i.e. seven actors and an n-step return of six were used. The replay ratio was
the same for all the configurations of the agent.

We first investigated the influence PER had on the ability to sample transitions
containing non-zero rewards. In Figure 9.12 we present the mean reward sampled for
the different agents’ early training stages. We assume that the agents’ replay buffers’
contents were comparable at the start of training. The reason for this assumption is that
we initialised all agents’ networks similarly, and the agents followed the same ε-greedy
exploration strategy to generate transitions. Figure 9.12 shows that as we increased ζ, a
higher mean reward was sampled. On the other hand, standard experience replay rarely
sampled the non-zero reward. Although transitions containing non-zero rewards were not
the only transitions that were important to sample, one can easily argue that it is very
important to sample these transitions since the entire policy is deduced from the reward.

Next, we compare the performance of an agent using standard ER to agents using PER
with the different prioritisation values (ζ). In Figure 9.13 we present the mean episode
return as a function of the completed network update steps. It shows that by using higher
values for ζ better performing policies were trained. At the end of the experiment, the
agents using PER with higher values for ζ obtained better performing policies. The agent

99

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

0 5 10 15 20 25 30 35 40 45 50
Network Update Steps (K)

0.000

0.005

0.010

0.015

R
ew

ar
d
Sa

m
pl
ed

Reward Sampled from Replay Buffer

ζ = 0.0
ζ = 0.2
ζ = 0.4
ζ = 0.6
ζ = 0.8
ζ = 1.0

Figure 9.12: The mean reward sampled from the replay buffer for different prioritisation (ζ)
values.

0 25 50 75 100 125 150 175 200 225 250 275 300
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
R
et
ur
n

Episode Return versus Network Update Steps

ζ = 0.0
ζ = 0.2
ζ = 0.4
ζ = 0.6
ζ = 0.8
ζ = 1.0

Figure 9.13: The mean episode return as a function of the completed network update steps for
different prioritisation values (ζ) is shown.

with ζ = 0.6 received a near-perfect mean episode return of 1.0, whereas the agent using
standard ER (ζ = 0) received a mean episode return of around 0.1. The execution times of
these algorithms were very similar, as shown in Figure 9.4. The agents using PER utilised
critical transitions more effectively than the agent using standard ER, leading to more
sample-efficient agents. This result shows that when dealing with sparse rewards, PER is
very important to include in the deep Q-learning algorithm.

100

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

9.1.5 n-step returns

We applied n-step return and tested the agent’s performance for different values for n. We
started with n = 1 and incremented the value of n until the agent’s performance no longer
improved. The goal was to find an optimal value for n. We tested the following values
of n: n = 1, 2, 3, 4, 5, 6, 7. We used the default configuration in Table 8.2 to perform the
experiment. Therefore seven actors were used and PER was enabled. We used a constant
replay ratio for all experiments to ensure that the results were comparable to the completed
network update steps.

In Figure 9.14 we present the mean episode return for different values of n as a function
of the completed network updates. We also present the mean episode return as a function

0 25 50 75 100 125 150 175 200 225 250 275 300
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
R
et
ur
n

Episode Return versus Network Update Steps

n=1
n=2
n=3
n=4
n=5
n=6
n=7

Figure 9.14: The mean episode return versus completed network update steps for different
values of n. The maximum and minimum achievable returns are indicated by the dashed lines
respectively at 1.0 and 0.0.

of time in Figure 9.15.
The results show that the one-step return (n = 1) performed very poorly and only

started to improve after 225k network update steps. It achieved a mean return of around 0.1
at the end of the experiment. On increasing n to two, the agent’s performance drastically
improved. This trend continued as we further increased the value of n. Sutton and Barto
[45] state there is an optimal point between one-step TD methods and MC methods. We
found the optimal value for n to be six, since for this value the mean return was the
highest for all network update steps. Figure 9.14 shows that if we increase n from six to
seven, the agent’s performance starts to decrease. The difference in performance between
n = 6 and n = 7 is slightly larger in Figure 9.15 than in Figure 9.14. The reason for this is
that it is more expensive to use higher values of n. Recall that the n-step return consists

101

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

R
et
ur
n

Episode Return versus Time

n=1
n=2
n=3
n=4
n=5
n=6
n=7

Figure 9.15: The mean episode return versus time for different values of n. The maximum and
minimum achievable returns are indicated by the dashed lines respectively at 1.0 and 0.0.

of a sum of n terms. The sum of returns must be computed for each transition. Therefore
lower values of n are, more desirable from a computational cost perspective.

102

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

9.2 Experiment 2: Addressing exploration

In this section, we increased the previous problem’s difficulty so that the non-zero reward
would be even more scarce. Therefore exploration was very challenging in this task. Here,
we investigate curriculum learning (CL) and domain randomisation (DR) to address
the more difficult exploration problem. These methods also use the ε-greedy exploration
strategy, but we initialised the environment differently. We first describe the new task used
as a test-bed for the experiments of this section. We then describe the different methods
used to train the agent. Lastly, we present and discuss the result of this experiment.

9.2.1 Description of the task

We modified the task described in Section 9.1.1 and the new task is illustrated in Figure
9.16. We added an extra room and obstacle to the original problem. The mine now

miner

agent

obstacle

obstacle

first aid kit

room 1

room 2

room 3

Figure 9.16: Problem two: A top-down illustration of the more difficult sparse-reward problem.
The agent and miner are randomly placed in room 1. Obstacles obstruct the way between rooms.
The first-aid kit is placed in room 3, the farthest room from which the agent is placed.

consisted of three rooms. Doorways connected the different rooms to allow navigation
between rooms. Each doorway had an obstacle obstructing the way between the rooms. In
this experiment, the agent and injured miner were placed at random locations inside the
first room, and the first-aid kit was placed at a random location inside the third room. To
complete this task, the agent had to make its way from the first room to the third room
and clear the path by picking up the obstacles and moving them out of the way. Once the
agent was in the third room, it had to locate and pick up the first-aid kit. The agent then
had to deliver the first-aid kit to the miner in the first room.

The additional room, obstacle and the fact that the agent now had to return to the
first room made the reward more challenging to obtain than before. The agent had access

103

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

to the action space shown in Table 8.3. Again the environment would return a reward of
1.0 when the miner receives the first-aid kit, and for all other time steps, a reward of 0.0
would be returned. In each episode, the agent could take a maximum of 2000 steps to
complete the task, after which the episode would end.

9.2.2 Curriculum learning implementation

Curriculum learning (CL) is an approach that can be used to learn to solve more difficult
tasks, as discussed in Section 2.5.2. CL entails defining a related but simpler problem
that would be easy for the RL agent to solve. The difficulty of the problem was then
incrementally increased until the agent was capable of solving the complete problem.

We addressed this problem following a CL approach, with the goal of guiding the agent
to an optimal policy by presenting it with a series of simpler problems. We had to consider
what the definition of a simpler version of the problem would be and at what point the
agent would switch to a more difficult problem. This made CL difficult to apply in RL,
and usually, a process of trial and error is followed. We decided that it would be sensible
to divide the main task into six problems we call phases and to present the phases to the
agent in reverse order. The different phases are defined as follows (refer to Figure 9.16):

• Phase 1: The complete problem as defined in Section 9.2.1.

• Phase 2: The agent is placed in room two, and the obstacle between room one and
room two is moved out of the way.

• Phase 3: The agent is placed in room three, and both obstacles are moved out of the
way.

• Phase 4: The agent is placed in room three, carrying the first-aid kit. Both obstacles
are moved out of the way.

• Phase 5: The agent is placed in room two, carrying the first-aid kit. Both obstacles
are moved out of the way.

• Phase 6: The agent is again placed in room one (same room as the miner), but the
agent is now carrying the first-aid kit. Both obstacles are moved out of the way.

This method ensured that we would decrease the simulation environment’s phase every
time the rolling mean episode return of the last 50 episodes completed by the actors was
greater than 0.6. After the phase had been decreased, the rolling mean was set to zero.
This process continued until the first phase was reached.

104

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

9.2.3 Domain randomisation implementation

We also investigated a second method referred to as domain randomisation (DR), as
discussed in Section 2.5.3. Our implementation of DR entailed using an alternative method
to initialise the environment to help the agent to improve exploration of the environment.
Instead of the starting state described in Section 9.2.1, we sampled the environment’s
starting state from a larger set of starting states. With this method, we hoped to improve
exploration as well as the agent’s ability to acquire non-zero rewards.

Instead of training the agent on the problem task described in Section 9.2.1, we trained
the agent on a similar task but altered the locations where entities were placed in the
environment. The different entities of the environment (agent, first-aid kit, and injured
miner) were now randomly placed in any of the rooms. Therefore, placement was not
constrained to specified rooms like in the description in Section 9.2.1. Although this
changed the task’s description, the new alternative definition of the task still contained
the original task. With this technique, the agent first learns to solve simpler versions of
the problem and then later learns to solve the complete problem.

9.2.4 Experimental results

We will now discuss three methods used to train our agent to solve the problem described
in Section 9.2.1. The first we refer to as the baseline, where the actors rely on ε-greedy
exploration to explore the environment of the problem described in Section 9.2.1. The second
we utilised was the CL approach described in Section 9.2.2. With the CL approach, the
agent is first trained on a more straightforward problem and then incrementally introduced
to the complete task. The third method is DR – where we alter the initialisation of the
environment to improve exploration.

Since we trained each agent with a different method, the learning curves are not
directly comparable. We wanted to observe how well each configuration learned to solve
the problem where the reward is sparse. We made use of an evaluation actor. The purpose
of the evaluation actor was to evaluate an agent on the problem of interest while using
a different problem description to train the agent, in our case CL or DR. This allows
for comparing the different approaches solving the problem of interest where the reward
is sparse. This agent was initialised alongside the other actors and evaluated the main
network for ten episodes every 10, 000 steps on the complete problem during training.
Therefore, we could use the evaluation actors’ results to compare the performance of the
different methods we investigated. Each agent was trained for 106 network update steps.
Since the duration of testing the configurations were very long, each test was repeated 20
times.

In Figure 9.17 we show how the different approaches compare in terms of mean episode
return as a function of the completed network update steps. Figure 9.18 shows the mean

105

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

0 100 200 300 400 500 600 700 800 900 1000
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

R
et
ur
n

Episode Return versus Network Update Steps

baseline
CL
DR

Figure 9.17: The baseline plot refers to the agent trained on the complete problem from the
start. It shows the mean episode return as a function of the completed network update steps for
the baseline configuration, CL and DR.

0 100 200 300 400 500 600 700 800 900 1000
Network Update Steps (K)

500

1000

1500

2000

Ep
iso

de
D
ur
at
io
n

Episode Duration over Network Update Steps

baseline
CL
DR

Figure 9.18: The baseline plot refers to the agent trained on the complete problem from the
start. It shows the mean episode duration as a function of the completed network update steps
for the baseline configuration, CL and DR.

episode duration versus network update steps of the different approaches. The baseline
result shows that when the agent faces the complete problem from the start, an ε-greedy
exploration strategy is no longer sufficient to obtain non-zero rewards. Therefore the agent
was not able to learn an optimal policy to complete the task. We, therefore, concluded
from the baseline that obtaining non-zero rewards in this task is very challenging.

The two alternative approaches, CL and DR worked similarly well, and these agents
were able to learn policies capable of reliably solving the complete task. One should note
that when using DR (entities are placed in any of the rooms), the agent learns to solve

106

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

more variations of the problem compared to CL. Figure 9.18 shows that CL was able to
complete the task with a shorter duration than DR. DR describes a more general and
challenging version of the problem, and therefore performance was a bit poorer on the
target task.

We have shown that difficult problems where rewards are very sparse can be challenging
for our agent to learn to solve from scratch. The results show that incrementally training
the agent by exposing it to both simple versions and complex versions of the problem
allow the agent to learn to solve more complicated tasks. We conclude that initialisation of
the environment is important when dealing with very sparse rewards and that CL and DR
are effective methods to enable the agent to learn to solve the more difficult sparse-reward
problem.

9.3 Experiment 3: Ability to scale to larger
Environments

In the previous section, we found that CL and DR are effective methods to address
challenging exploration problems where rewards are very sparse. DR also describes the
more general task where entities of the environment can occur in any of the rooms. In
this section, we continue to use DR and illustrate how well this algorithm scales to larger
environments by increasing the number of rooms.

9.3.1 Description of task

The description of the problem used to perform this section’s experiments is primarily the
same as the previous section’s task. The main difference is that entities were now always
placed in random rooms. The doorways between rooms were all obstructed by obstacles.
We aimed to observe how well the algorithm scales to larger environments; therefore, the
number of rooms in the environment could be specified. In each episode, a maximum of
2000 steps was available to complete the task, after which the episode would end.

9.3.2 Scaling domain randomisation

We performed three experiments in this section. The environment consisted of a different
number of rooms in each experiment. We tested the agent’s performance on an environment
with three rooms, four rooms and five rooms, to observe whether the agent could learn
to solve the task in larger environments. For each experiment, we trained the agent for
10× 106 network update steps.

In Figure 9.19 we present the mean episode return as a function of the completed
network updates. It shows that the agent performed relatively well in the three-room and

107

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

0 100 200 300 400 500 600 700 800 900 1000
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

R
et
ur
n

Episode Return versus Network Update Steps

DR: 3 rooms
DR: 4 rooms
DR: 5 rooms

Figure 9.19: The mean episode return versus the completed network update steps for environ-
ments consisting of a different number of rooms. In the first experiment we train the agent on an
environment with three rooms. With each following experiment, the room count is increased by
one, until performance starts to decrease drastically. The maximum and minimum achievable
returns are indicated by the dashed lines respectively at 1.0 and 0.0.

four-room problems, but that performance drastically decreased when we tested the agent
on a problem consisting of five rooms.

9.3.3 Combining domain randomisation and curriculum
learning

For these experiments we used 10× 106 network update steps to test each configuration,
which was already very expensive to perform. It becomes infeasible to train the agent for
even more network updates to observe how well it performs when it converges to an optimal
policy. We decided to focus on improving the five-room agent in the given number of
network updates. The three-room and the four-room problems were not that different from
the five-room problem, and we therefore decided to use a CL approach to try to improve
the performance of the five-room agent. We divided the allocated network updates into
three equal parts. We first trained the agent on the three-room problem. After the agent
completed a third of the network update steps, we switched to the four-room problem. Two
thirds into training, we switched the agent to the five-room problem. Figure 9.20 shows
how this procedure compares to training from the start in the five-room problem. The
curves in Figure 9.20 are comparable from 667 thousand network update steps onward, as
all the agents are then facing the same problem. This result again shows that when dealing
with challenging tasks where rewards are very sparse, it is beneficial to train an agent
using a CL approach. We also considered performance as a function of time, as shown in
Figure 9.21. This method allowed us to obtain agents with good performance in less time.

108

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

0 100 200 300 400 500 600 700 800 900 1000
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

R
et
ur
n

Episode Return versus Network Update Steps

DR: 5 rooms
DR: 3-4-5 rooms

Figure 9.20: A CL (red) approach is used to train the agent. The agent is first trained on the
three-room problem. The agent is then switched to the four-room problem a third into training.
The last third of training the agent is trained on the five-room problem.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
R
et
ur
n

Episode Return versus Time

DR: 5 rooms
DR: 3-4-5 rooms

Figure 9.21: The mean episode return as a function of time. A CL (red) approach is used to
train the agent. The agent is first trained on the three-room problem. The agent is then switched
to the four-room problem a third of the way into training. In the last third of the training, the
agent is trained on the five-room problem.

9.4 Summary

In this chapter, we reported on three experiments to test the performance of a deep
Q-learning agent on sparse-reward problems. In the first experiment, we tested three
modifications made to the original deep Q-learning algorithm to enable it to solve a
sparse-reward problem. We showed the importance of each in an ablation study and
concluded that these modifications are all crucial to solving the sparse-reward problem.

109

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. EXPERIMENTS AND RESULTS

In Section 9.1.3, we investigated the effect that the rate at which data is generated
has on performance. From the results obtained from this section, we conclude that it is
advantageous to the learner if new transitions are generated at a high rate. Therefore,
better policies are trained when the learner samples from a replay buffer that contains
more on-policy data.

Next, we investigated the importance of prioritised sampling. We compared PER with
the standard ER. We showed that non-zero rewards are sampled more frequently when
PER is used than when ER is used. The results of the experiments carried out show that
PER performed significantly better than the agent using standard ER. For this reason, we
conclude that PER is very important when dealing with sparse rewards. We also think
that PER works well when transitions are generated at a high rate. Actors generate large
amounts of data and, with PER, the learner samples only the most important transitions.

In Section 9.1.5 we tested n-step TD methods. We showed that the n-step update
significantly improved the performance of the deep Q-learning agent. We started with the
one-step update and incremented n to find an optimal value for n. The agent’s performance
was optimal for n = 6 on the problem we tested.

Next, we addressed exploration in a more difficult sparse-reward problem. We addressed
exploration by altering how we initialised the environment. We investigated whether CL
and DR help to solve the more difficult problem. We showed that both methods are
effective in solving the more difficult task.

Lastly, we tested how well the DR agent scales to larger environments, in Section 9.3.
The results of this section showed that the performance of the agent quickly decreases as
the size of the environment is increased. We then combined DR with CL and showed that
the agent’s performance improves when learning incrementally.

110

Stellenbosch University https://scholar.sun.ac.za

Chapter 10

Conclusion

This study aimed to examine how to train artificially intelligent agents to perform tasks in
a 3D environment with sparse rewards. The example task we have addressed is a scenario
where a mine has collapsed, and a wounded, immobile miner needs access to a first-aid kit.
A problem central to this study was that of sparse rewards – problems where rewards are
scarce and difficult to obtain. Enabling RL algorithms to solve sparse-reward problems
allows us to specify more long-term and abstract objectives to artificially intelligent agents.

We trained a double deep Q-network (DDQN) algorithm without any modifications on
the first problem we introduced, but it was unable to acquire a policy that was able to solve
the problem. We showed that there are three important modifications to include to solve
this problem. The modifications are distributed data generation, prioritised experience
replay (PER) and the n-step update. We used curriculum learning (CL) and domain
randomisation (DR) to solve a more difficult sparse-reward problem where exploration is
challenging. We also showed that CL and DR can be used in combination to solve larger
and more complex problems.

10.1 Summary and contributions

In this study we addressed a problem in a 3D environment with observations from a first-
person perspective. The environment is only partially observable because some features
of the environment’s state may be behind the agent or around a corner. Furthermore,
by observing a single frame, the agent has no information about the direction in which
it was previously moving. We used function approximation in the form of a DNN to
interpret the image observations. Sutton and Barto [45] state that function approximation
allows us to extend RL to partially observable environments. According to Sutton and
Barto [45], if certain aspects of the state are not observable, then the parameters of the
function simply do not depend on it. However, function approximation cannot augment
the state with additional information such as past observations. For this reason, we
augmented observations by using frame-stacking and action memory to help address the

111

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. CONCLUSION

problem of partial observability. The results of the experiments in Section 8.8.3 show that
frame-stacking and action memory both improve the agent’s performance.

Successful trajectories were initially very scarce using an ε-greedy strategy to explore
the environment, since rewards are sparse. For this reason, we used a distributed system
to generate data at a higher rate, hence also generating more successful trajectories. Then
by using PER from Schaul et al. [39], the learner prioritises the important transitions to
train the network. We showed that transitions with non-zero rewards are more frequently
sampled when using PER compared to standard ER. We also showed in Section 9.1.4
that PER is very important to achieve a well-performing agent. Furthermore, PER and
distributed data generation work well together – large amounts of data are generated, and
PER enables the agent to only focus on the important transitions.

An additional effect of generating data at a high frequency relative to updating the
agent’s network is that the learner completes updates using more recent knowledge, i.e.
on-policy data (refer to Equation 6.2). We confirmed the results by Fedus et al. [10], thus
performance is generally better when a lower replay ratio is used. The same results can
be obtained by using a non-distributed system, but we showed in the first experiment of
Section 9.1.3 that by generating data in parallel, the wall-time of the experiments can be
significantly decreased.

Distributing credit to actions that lead to success is a problem RL tries to solve and is
referred to as the credit-assignment problem. Credit assignment is especially challenging
when dealing with sparse and delayed rewards. In the definition of the problem we addressed,
the agent only receives credit after completing a long sequence of correct actions. For this
reason rewards are delayed. The n-step return entails bootstrapping after multiple time
steps. It allows for a more significant state change to occur and usually performs better
than one-step TD, as discussed in Section 4.3.4. We showed in Section 9.1.5 that the n-step
update significantly improves the performance of our agent solving the sparse-reward
problem.

Finally, we addressed a more difficult sparse-reward problem. Exploration of the envi-
ronment was very challenging in this problem. Therefore, the probability of encountering
non-zero rewards using random exploration or ε-greedy exploration was very low. We
showed that the agent was not able to encounter the reward using ε-greedy exploration.
For this reason, no optimal policy was trained. We successfully solved this problem using
CL and DR. Both these methods required altering the way the environment is initialised.
Therefore an easy-to-modify simulation environment is necessary to implement these
methods. Furthermore, domain-specific knowledge is required.

112

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. CONCLUSION

10.2 Future work

Although we consider this to be a very complicated task to be solved by a software agent, it
still does not, in many ways, compare to a real-world problem. An avenue for future research
will entail converting the agent from simulation to operating in the real world. For example,
the work by Tobin et al. [46] can be applied for simulation to real-world conversions.
Furthermore, training the agent in a simulation environment with more realistic physics
will also allow for more straightforward simulation to real-world conversions.

We suspect that partial observability may still be problematic in solving certain
problems where long-term memory is a requirement. A recurrent neural network (RNN),
for example, a long short-term memory (LSTM) module, can be applied to provide an
agent with memory. Paine et al. [31] used an LSTM to obtain an agent with memory. This
is an avenue for future research, since their agent performed poorly on memory-intensive
tasks.

Additional possibilities for research will be to investigate other exploration strategies
that are not dependent on the above-mentioned requirements, in other words, strategies
that are able to obtain non-zero rewards by only training on the sparse-reward problem.
Agents with curiosity or intrinsic motivation, for example, the work by Pathak et al. [33],
is an interesting field to further explore.

We showed that a DRL agent is capable of achieving a relative long-term goal without
receiving demonstrations and with minimal feedback in the form of credit in a simplistic
environment. Although we are far from general agents that are capable of solving very
complex, abstract and long-term tasks, this study highlights some important areas to
address and some of the shortcomings of current systems.

113

Stellenbosch University https://scholar.sun.ac.za

List of References

[1] Alla, H., Kalyan, B. and Murthy, C. (2015 12). Mine rescue robot system - a review. Procedia
Earth and Planetary Science, vol. 11, pp. 457–462.

[2] Attiya, H. and Welch, J. (2004). Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley Series on Parallel and Distributed Computing. Wiley. ISBN
9780471453246.
Available at: https://books.google.co.za/books?id=3xfhhRjLUJEC

[3] Bain, M. and Sammut, C. (1995). A framework for behavioural cloning. In: Machine
Intelligence 15, pp. 103–129.

[4] Bellman, R. (1966). Dynamic programming. Science, vol. 153, no. 3731, pp. 34–37.

[5] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J. and Zaremba,
W. (2016). Openai gym. arXiv:1606.01540.

[6] Chevalier-Boisvert, M. (2018). Gym miniworld environment for openai gym. https:

//github.com/maximecb/gym-miniworld.

[7] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior, A.,
Tucker, P., Yang, K. et al. (2012). Large scale distributed deep networks. In: Advances in
neural information processing systems, pp. 1223–1231.

[8] Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O. and Clune, J. (2021). First return, then
explore. Nature, vol. 590, no. 7847, pp. 580–586.

[9] Endo, Y. (2008). Anticipatory robot control for a partially observable environment using
episodic memories. In: 2008 IEEE International Conference on Robotics and Automation,
pp. 2852–2859. IEEE.

[10] Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y., Larochelle, H., Rowland, M.
and Dabney, W. (2020). Revisiting fundamentals of experience replay. arXiv preprint
arXiv:2007.06700.

[11] Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep learning. MIT press.

[12] Hasselt, H.v., Guez, A. and Silver, D. (2016). Deep reinforcement learning with double
q-learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, pp. 2094–2100. AAAI Press.

114

Stellenbosch University https://scholar.sun.ac.za

https://books.google.co.za/books?id=3xfhhRjLUJEC
arXiv:1606.01540
https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld

[13] Hernandez-Garcia, J.F. and Sutton, R.S. (2019). Understanding multi-step deep reinforce-
ment learning: a systematic study of the dqn target. arXiv preprint arXiv:1901.07510.

[14] Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,
D., Piot, B., Azar, M. and Silver, D. (2018). Rainbow: Combining improvements in deep
reinforcement learning. In: Thirty-Second AAAI Conference on Artificial Intelligence.

[15] Hester, T., Vecerík, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan,
J., Sendonaris, A., Osband, I., Dulac-Arnold, G., Agapiou, J., Leibo, J.Z. and Gruslys, A.
(2018). Deep q-learning from demonstrations. In: AAAI.

[16] Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., van Hasselt, H. and
Silver, D. (2018). Distributed prioritized experience replay. In: International Conference on
Learning Representations.
Available at: https://openreview.net/forum?id=H1Dy---0Z

[17] Hussein, A., Gaber, M.M., Elyan, E. and Jayne, C. (2017). Imitation learning: A survey of
learning methods. ACM Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–35.

[18] Johnson, Hofmann, H. and Bignell (2016). The malmo platform for artificial intelligence
experimentation. https://github.com/Microsoft/malmo.

[19] Karpathy, A. et al. (2016). Cs231n convolutional neural networks for visual recognition.
Neural networks, vol. 1, no. 1.

[20] Kingma, D.P. and Ba, J. (2015). Adam: A method for stochastic optimization. In: Bengio,
Y. and LeCun, Y. (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Available at: http://arxiv.org/abs/1412.6980

[21] LeCun, Y., Kavukcuoglu, K. and Farabet, C. (2010). Convolutional networks and applications
in vision. In: Proceedings of 2010 IEEE international symposium on circuits and systems,
pp. 253–256. IEEE.

[22] Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine learning, vol. 8, no. 3-4, pp. 293–321.

[23] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

[24] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,
Riedmiller, M., Fidjeland, A.K., Ostrovski, G. et al. (2015). Human-level control through
deep reinforcement learning. nature, vol. 518, no. 7540, pp. 529–533.

[25] Monahan, G.E. (1982). State of the art a survey of partially observable markov decision
processes: theory, models, and algorithms. Management science, vol. 28, no. 1, pp. 1–16.

115

Stellenbosch University https://scholar.sun.ac.za

https://openreview.net/forum?id=H1Dy---0Z
https://github.com/Microsoft/malmo
http://arxiv.org/abs/1412.6980

[26] Nachum, O., Norouzi, M., Xu, K. and Schuurmans, D. (2017). Bridging the gap between
value and policy based reinforcement learning. In: Advances in Neural Information Processing
Systems, pp. 2775–2785.

[27] Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A., Panneershelvam,
V., Suleyman, M., Beattie, C., Petersen, S. et al. (2015). Massively parallel methods for
deep reinforcement learning. arXiv preprint arXiv:1507.04296.

[28] Ng, A. and Katanforoosh, K. (2018). Cs229 lecture notes deep learning.

[29] Ng, A.Y., Harada, D. and Russell, S. (1999). Policy invariance under reward transformations:
Theory and application to reward shaping. In: ICML, vol. 99, pp. 278–287.

[30] O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G.V., Krpalkova,
L., Riordan, D. and Walsh, J. (2019). Deep learning vs. traditional computer vision. In:
Science and Information Conference, pp. 128–144. Springer.

[31] Paine, T.L., Gulcehre, C., Shahriari, B., Denil, M., Hoffman, M., Soyer, H., Tanburn,
R., Kapturowski, S., Rabinowitz, N., Williams, D. et al. (2019). Making efficient use of
demonstrations to solve hard exploration problems. arXiv preprint arXiv:1909.01387.

[32] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L. and Lerer, A. (2017). Automatic differentiation in pytorch.

[33] Pathak, D., Agrawal, P., Efros, A.A. and Darrell, T. (2017). Curiosity-driven exploration
by self-supervised prediction. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 16–17.

[34] Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural
networks, vol. 12, no. 1, pp. 145–151.

[35] Randløv, J. and Alstrøm, P. (1998). Learning to drive a bicycle using reinforcement learning
and shaping. In: ICML, vol. 98, pp. 463–471.

[36] Ruder, S. (2017). An overview of gradient descent optimization algorithms. 1609.04747.

[37] Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach. 3rd edn.
Prentice Hall Press, USA. ISBN 0136042597.

[38] Salimans, T. and Chen, R. (2018). Learning montezuma’s revenge from a single demonstra-
tion. arXiv preprint arXiv:1812.03381.

[39] Schaul, T., Quan, J., Antonoglou, I. and Silver, D. (2016). Prioritized experience replay.
CoRR, vol. abs/1511.05952.

[40] Selfridge, O.G., Sutton, R.S. and Barto, A.G. (1985). Training and tracking in robotics. In:
IJCAI, pp. 670–672.

116

Stellenbosch University https://scholar.sun.ac.za

1609.04747

[41] Silver, D. (2015). Ucl course on rl. https://www.davidsilver.uk/teaching/. (Accessed
on 03/17/2020).

[42] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A. et al. (2017). Mastering the game of go without human
knowledge. nature, vol. 550, no. 7676, pp. 354–359.

[43] Skinner, B.F. (1938). The behavior of organisms: An experimental analysis. Prentice Hall,
Englewood Cliffs, New Jersey.

[44] Sutton, R. (1986). Two problems with back propagation and other steepest descent learning
procedures for networks. In: Proceedings of the Eighth Annual Conference of the Cognitive
Science Society, 1986, pp. 823–832.

[45] Sutton, R.S. and Barto, A.G. (2018). Reinforcement learning: An introduction. MIT press.

[46] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W. and Abbeel, P. (2017). Domain
randomization for transferring deep neural networks from simulation to the real world. In:
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
23–30. IEEE.

[47] Tsitsiklis, J.N. and Van Roy, B. (1997). An analysis of temporal-difference learning with
function approximation. IEEE transactions on automatic control, vol. 42, no. 5, pp. 674–690.

[48] Vitay, J. (). Deep reinforcement learning.

[49] Wang, Q., Ma, Y., Zhao, K. and Tian, Y. (2020 04). A comprehensive survey of loss functions
in machine learning. Annals of Data Science.

[50] Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M. and Freitas, N. (2016). Dueling
network architectures for deep reinforcement learning. In: International conference on
machine learning, pp. 1995–2003.

[51] Yoon, C. (2019 Nov). Understanding and implementing distributed prioritized experience
replay (horgan et al., 2018).
Available at: https://towardsdatascience.com/understanding-and-implementing-

distributed-prioritized-experience-replay-horgan-et-al-2018-d2c1640e0520

117

Stellenbosch University https://scholar.sun.ac.za

https://www.davidsilver.uk/teaching/
https://towardsdatascience.com/understanding-and-implementing-distributed-prioritized-experience-replay-horgan-et-al-2018-d2c1640e0520
https://towardsdatascience.com/understanding-and-implementing-distributed-prioritized-experience-replay-horgan-et-al-2018-d2c1640e0520

Appendices

118

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Links to example videos of resultant
agents

Links to videos that demonstrate the behaviour of the agents we have trained during the
experimental phase of our research:

• Experiment 1: The agent with all modifications enabled solving problem one.

• Experiment 2: The agent using domain randomisation (DR) to solve problem two.

• Experiment 2: The agent using curriculum learning (CL) to solve problem two.

• Experiment 3: The agent solving the five room problem by using a combination of
DR and CL.

• The same algorithm applied to the game Snake.

119

Stellenbosch University https://scholar.sun.ac.za

https://bit.ly/3bIPyYB
https://bit.ly/3uC5i8i
https://bit.ly/3kvudFT
https://bit.ly/2NDAuUi
https://bit.ly/2NDAuUi
https://bit.ly/3pXw2MX

Appendix B

Additional results

Here we show some additional results with regard to the chosen configuration shown in
Table 8.2. The default configuration for all the hyperparameters except the one tested in
each experiment was used to obtain the results below. These experiments were performed
on the problem described in Section 8.8.3.

0 25 50 75 100
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea
n
Ep

so
de

R
et
ur
n

Mean Episode Return versus Network Update Steps
for Different Learning Rates (α)

α = 0.3× 10−4

α = 0.3× 10−5

α = 0.3× 10−6

Figure B.1

120

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. ADDITIONAL RESULTS

0 25 50 75 100
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea
n
Ep

so
de

R
et
ur
n

Mean Episode Return versus Network Update Steps
for Different Discount Rates (γ)

γ = 0.9
γ = 0.99
γ = 0.999

Figure B.2

0 25 50 75 100
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea
n
Ep

so
de

R
et
ur
n

Mean Episode Return versus Network Update Steps
for Different Exploration Rates (ε)

ε = 0.1
ε = 0.01
ε = 0.001

Figure B.3

121

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. ADDITIONAL RESULTS

0 25 50 75 100
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea
n
Ep

so
de

R
et
ur
n

Mean Episode Return versus Network Update Steps
for Different Replay Capacities

capacity= 217

capacity= 218

capacity= 219

capacity= 220

Figure B.4

0 25 50 75 100
Network Update Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea
n
Ep

so
de

R
et
ur
n

Mean Episode Return versus Network Update Steps
for Differently Sized Action Histories (h)

h = 0
h = 5
h = 10
h = 15
h = 20

Figure B.5

122

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Detailed algorithms for the
implementation

Below are the detailed algorithms of our distributed deep Q-learning agent.

Algorithm 17: Prioritised replay buffer for storing and sampling transitions
according to priorities.
1 def init(capacity, ζ, η):
2 capacity: int ← capacity // capacity of replay buffer
3 storage: list // storage
4 next_idx: int // index to store next transition
5 num_transistions_added: int // counter, tracks the total number

transitions stored
6 ζ: float ← ζ // prioritisation
7 η: float ← η // prioritisation offset
8 sum_tree: SumSegmentTree // sum-tree to sample according

priorities
9 min_tree: MinSegmentTree // min-tree to obtain smallest priority

10 def add_batch(batch, δ):
11 p ← get_priorities(δ) // calculate priorities from TD errors
12 add_batch_to_storage(batch) // add the batch transitions to

storage
13 sum_tree.set_batch(p) // add priorities to sum-tree
14 min_tree.set_batch(p) // add priorities to min-tree
15 def sample_batch(batch_size, β):
16 indices ← sample_proportional(batch_size) // sample indices using

sum-tree
17 w ← calculate_weights(indices, β) // calculate IS weights
18 samples ← storage[indices]
19 return samples, indices, w
20 def update_priorities(indices, δ):
21 p ← get_priorities(δ) // calculate priorities from TD errors
22 sum_tree.set_batch(indices, p) // add priorities to sum-tree
23 min_tree.set_batch(indices, p) // add priorities to min-tree

123

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. DETAILED ALGORITHMS FOR THE IMPLEMENTATION

Algorithm 18: Parameter server for communication between learner and actors.
1 def init():
2 θ: dict // dictionary where network parameters are stored
3 network_update_step: int // network update step associated with

network parameters
4 phase: int // specifies the learning phase for curriculum learning
5 run_complete: boolean ← False // specifies whether the run is

complete
6 def update_parameters(θ′, network_update_step, phase, run_complete):

// update values of attributes
7 θ ← θ′

8 network_update_step ← network_update_step
9 phase ← phase

10 run_complete ← run_complete
11 def fetch_parameters():

// return attributes
12 return θ, network_update_step, phase, run_complete

124

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. DETAILED ALGORITHMS FOR THE IMPLEMENTATION

Algorithm 19: Learner for updating the parameters of the main network.
1 def init(replay_buffer, parameter_server):
2 Q(;θ): DQN // main deep q-network
3 Q̂(;θ−): DQN // target deep q-network
4 replay_buffer ← replay_buffer // reference to replay buffer
5 parameter_server ← parameter_server // reference to parameter

server
6 def load_minibuffer: // in a background thread
7 while true do
8 transitions, indices, is_weights ← replay_buffer.sample(batch, β)

// sample transitions along with their indices (location in
replay buffer) and importance sampled weights

9 transitions_tensor ← convert_to_tensors(transitions) // convert
transitions to tensors

10 mini_buffer.append((transitions_tensor, indices, is_weights)) // append
tuple to the mini buffer

11 end
12 def run_learner(num_network_updates):
13 for t← 1 to num_network_updates do
14 experience_batch, indices, is_weights ← pop_minibuffer()
15 states, actions, discounted_returns, nth_states, dones ← experience_batch
16 current_qvalues ← get_current_q(states, actions)
17 nth_qvalues ← get_nth_q(nth_states, dones)
18 target_values ← nth_qvalues ×γ+ discounted_returns
19 δ ← target_values − current_qvalues
20 replay_buffer.update_priorities(indices, td_errors)
21 loss ← smooth_l1_loss(current_qvalues, target_values)
22 loss ← (loss × is_weights).mean()
23 update_network(loss)
24 if t % update_interval == 0 then
25 update_parameter_server()
26 end
27 if t % C == 0 then
28 θ− ← θ
29 end
30 end

125

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. DETAILED ALGORITHMS FOR THE IMPLEMENTATION

Algorithm 20: Actor for generating environment transitions.
1 def init(replay_buffer, parameter_server):
2 replay_buffer ← replay_buffer // reference to replay buffer
3 parameter_server ← parameter_server // reference to parameter

server
4 Q(;θ): DQN // initialise actor network
5 environment: MiniWorld_Wrapped // initialise wrapped environment
6 local_buffer: List // initialise local buffer
7 def run_actor(T):
8 θ ← parameter_server.parameters() // remote call to obtain network

parameters
9 s = environment.reset() // reset environment and get state

10 for t← 1 to T do
11 a ← epsilon_greedy(s) // with probability ε select a random

action otherwise select action with maximum q-value
12 s, r, d ← environment.step(a) // perform action in environment

and retrieve: state, reward, done
13 add_to_local_buffer(s, r, d) // add data to local buffer
14 if local_buffer.size() ≥ B then // size of local buffer larger

than B
15 replay_buffer.add(local_buffer, δ) // add local buffer along

with TD-errors (to compute priorities) to replay buffer
16 local_buffer.clear() // clear local buffer
17 end
18 if d then // if episode is done
19 θ ← parameter_server.parameters() // fetch new network

parameters if available
20 s ← environment.reset() // reset environment and get state
21 end
22 end

126

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. DETAILED ALGORITHMS FOR THE IMPLEMENTATION

Algorithm 21: The simulation class where all components of the system are
instantiated.
1 attributes:
2 replay_buffer: Prioritised_Replay_Buffer
3 parameter_server: Parameter_Server
4 actors: list[Actor]
5 learner: Learner
6 def init(acting_steps: int, network_update_steps: int):
7 for actor ∈ actors do // pre-load the replay buffer
8 actor.run_actor(steps)
9 end

10 learner.run_learner(network_update_steps) // start learner process
for an allocated number of steps

11 for actor ∈ actors do // let actors run indefinitely
12 actor.run_actor(∞)
13 end
14 wait for learner to finish
15 send message to terminate actors
16 wait for actors to terminate

127

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Dedications
	List of figures
	List of tables
	Nomenclature
	Introduction
	Reinforcement learning
	Partially observable environments
	Sparse-reward problems
	Distributed systems
	Aims and objectives
	Methodology
	Document outline

	Related work
	Applying deep reinforcement learning to the Atari domain
	Deep Q-learning from demonstrations
	Curiosity-driven exploration by predicting sequential states
	Go-Explore
	Shaping
	Distributed deep reinforcement learning
	Summary

	Markov decision processes
	Markov chains
	Agent and environment interaction
	Rewards and returns
	Policies and value functions
	Bellman equation
	Policies and value functions that are optimal
	Dynamic programming
	Partially observable Markov decision processes
	Summary

	Reinforcement learning
	Policy-based and value-based methods
	Monte Carlo methods
	Temporal-difference methods
	Value function approximation
	Summary

	Artificial neural networks
	Feed-forward neural networks
	Convolutional neural networks
	Summary

	Deep reinforcement learning
	Deep Q-learning
	Deep Q-learning with prioritised experience replay
	Summary

	Simulation environment
	OpenAI Gym
	Description of simulation environments
	Performance
	Environment modifications
	Summary

	Implementation of the deep Q-learning algorithm
	Hardware and software
	System overview
	Replay buffer for storing experience
	Parameter server for communication
	Learning from experience in the replay buffer
	Generating new experience
	Simulation
	Deep neural network design
	Summary

	Experiments and results
	Experiment 1: Testing modifications on a sparse-reward problem
	Experiment 2: Addressing exploration
	Experiment 3: Ability to scale to larger Environments
	Summary

	Conclusion
	Summary and contributions
	Future work

	List of References
	Appendices
	Links to example videos of resultant agents
	Additional results
	Detailed algorithms for the implementation

