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Abstract

English

Many satellites rely on attitude estimation algorithms to fuse information from multiple
sensor sources. Some of these sensors might encounter false and erroneous measurements
due to practical disturbances. In this thesis, methods are developed to increase the
reliability of an extended Kalman filter when practical environmental anomalies occur.
This is done by firstly detecting whether the current sensor measurements are anomalous
and thereafter classifying the anomalous sensor. Different recovery methods are compared
based on varying prediction accuracies. It was concluded that for prediction accuracies
above 90%, the recovery technique that omits anomalous sensor measurements from the
extended Kalman filter, is the best proposed recovery method. The random forest algorithm
performs the best for isolating anomalies and using it separately or in conjunction with the
local outlier factor algorithm for anomaly detection provide similar results. Implementing
the local outlier factor algorithm increases the time efficiency. From simulations, it was
found that a satellite attitude determination and control system that can predict and
isolate practical anomalies improves the robustness and accuracy of the estimated attitude.

Afrikaans

Baie satelliete is afhanklik van oriëntasie afskattings algoritmes om die informasie van
verskeie sensore te vereenselwig. Sommige sensore kan vals of foutiewe lesings ervaar weens
praktiese versteurings. In hierdie tesis word metodes ontwikkel wat die betroubaarheid
van die uitgebreide Kalman filter vergroot wanneer praktiese omgewings versteurings
voorkom. Dit word gedoen deur eerstens die sensor anomalie waar te neem en daarna die
verantwoordelike sensor te klassifiseer. Verskeie regstellende metodes word vergelyk met
’n variënde akkuraatheid. Die gevolgtrekking is dat vir akkuraathede bo 90% is die beste
regstellende tegniek, die een wat slegs sensor afmetings verwyder van die Kalman filter
se afmeting opdatering. Die lukrake woud algoritme is die beste isolasie metode en om
dit te gebruik in samehorigheid met die lokale uitskietsel faktor algoritme vir anomalie
waarneming of daarsonder produseer dieselfde resultate. Deur die lokale uitskietsel faktor
algoritme te gebruik verhoog die tyd effektiwiteit van die stelsel. Deur die gebruik van
simulasie is dit gevind dat ’n sisteem wat die praktiese anomalieë kan klassifiseer, verbeter
die robustheid en akkuraatheid van die oriëntasie afksatting.
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Chapter 1

Introduction

1.1. Research Motivation
Since all systems are prone to failure, an engineer needs to ensure that crucial systems are
robust to failure and that proper testing and continual maintenance are performed. In the
case of satellites, the need to design a system that is robust to failure is even more crucial,
since most failures are unrecoverable and may lead to mission failure. Satellite systems
must therefore be tested thoroughly and be robust to most common anomalies. According
to M. Tafazoli [1] the attitude determination and control system (ADCS) contributes to
the largest percentage of satellite failures as shown in Figure 1.1. A study conducted by S.
Jacklin [2] on small satellite mission failures provides a deeper insight into the ADCS’s role
in satellite failures, since most missions are highly dependent on the ADCS for complete
mission success. This is due to many mission requirements relying on accurate control of
the satellite to provide the desired orientation for the operation of payloads.

ADCS

32%Power
27%

Command and Data Handling

15%

Telemetry, Tracking and Control

12%
Other

14%

Figure 1.1: On-orbit failures categorised by the subsystem responsible for the mission
failure [1].

A benchmark database provided by M. Swartwout [3], containing historical data of
satellite launches, demonstrates the increase in the number of satellites launched every
year. The drastic increase of launched satellites over the past few years further emphasizes
this need of ensuring that satellites are robust to failures. Using traditional methods

1
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1.1. Research Motivation 2

of tracking satellites with ground stations and manually checking for possible failures
are therefore not feasible, especially in the case of large satellite constellations [4]. Most
subsystems of the satellite are therefore required to operate autonomously, especially in
the case of the ADCS. The focus of this thesis is on a specific aspect of the ADCS which
is sensitive to anomalies, namely the attitude estimation.

The extended Kalman filter (EKF) is a sensor fusion algorithm implemented for attitude
estimation of the satellite. The EKF uses the sensors to provide a measurement update of
the estimated state vector. The ADCS is therefore sensitive to sensor anomalies as this
influences the estimated state vector which in turn influences the attitude control. The
change in the estimated state vector depends on the severity of the sensor anomaly.

If an erroneous, or false measurement is present in the collection of sensors, it might
deter and influence the outcome of the fusion algorithm. Depending on the number of
sensors available and the severity of the erroneous sensor, the EKF can be influenced by
reducing the estimation accuracy, producing divergence or creating instability. It is good
practice to develop appropriate tests to protect the EKF against incorrect measurements.
Since the EKF is reliant on the mathematical model of the system, the control inputs
should also be accurate. Due to actuator failure on satellites, the command control input
and the actual control input can differ significantly. This must be detected and isolated to
ensure robust estimation.

Fault detection, isolation and recovery (FDIR) is required for the satellite operation,
where the fault is any anomaly or failure that reduces the efficiency of the system. The
detection phase produces a binary output on whether the system is currently operating with
a fault or not. The isolation phase is required to classify the current fault into subsystems
or components that are responsible for the fault. The recovery phase is responsible for
ensuring that the fault’s influence on the system is reduced. The satellite must be able to
autonomously detect, isolate and recover from common anomalies to ensure safe operation
during orbit. Practical sensor and actuator anomalies influence the estimation of the EKF
that is commonly used in the ADCS of satellites. To ensure that these sensor anomalies
can be recovered from, this thesis focusses on different FDIR methods to provide robust
estimation of the EKF even with practical sensor and actuator anomalies.

Previous research on anomaly detection in satellite sensors have been investigated
where the current trend is to use generic sensor anomalies, such as bias drift, high noise,
sudden failure or any drastic change in the behaviour of the sensor to develop techniques
to detect these anomalies [5–10]. This is only a subset of possible errors and does not
assist in diagnosing the anomaly, detecting intermittent errors, or coupled events between
sensors. An example of a practical anomaly which can occur and which is difficult to
detect using standard techniques are solar reflections from solar panels on a sun sensor.
The majority of satellites, even with relatively low attitude requirements, have some form
of sun sensor. The sun sensor provides an accurate measurement during the periods of the
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1.2. Solution Overview 3

orbit where targeting and solar tracking is most likely and where the attitude requirement
is the highest. Thus, it would be beneficial to have good interventions to ensure robust
sun vector measurements for the EKF.

1.2. Solution Overview
This project aims to develop and test various methods of detecting sensor anomalies
with a satellite’s ADCS, and isolating the sensor responsible for the anomaly. The FDIR
techniques are tested in a simulation model wherein practical anomalies are simulated.
The simulation is also used to create a database of sensor measurements produced by
different anomalies. This database provides labelled data for the training of binary and
multi-class isolation models for detection and isolation, respectively (where multi-class
refers to more than two classes). The trained models should be tested on the simulation
environment and the estimation accuracy should be compared between different models
and different recovery methods.

The solution overview can be visually demonstrated with the system block diagram
provided in Figure 1.2. Each block within Figure 1.2 will be individually discussed and
analysed as far as possible. The simulated environment will be built based on a conceptual
design of the satellite. This is required to create a realistic environment and provide the
current state vector xk for the modelling of the anomalies as well as the sensors. This in
turn provides the sensor measurements vb as inputs to the EKF. The estimated state vector
x̂k from which the controller can provide accurate control torques, τ c, to the simulated
environment.

It is within this realistic simulation that anomalies can be modelled and create distur-
bances to the sensors of the satellite. It is at this point where the FDIR is required to
ensure robust and accurate estimation of the EKF during anomalous periods. The feature
extraction method provides addition features to the detection and isolation models to
determine whether an anomaly occurred and which sensor is responsible for the anomaly.
The recovery technique can thereafter incorporate techniques to lower the influence of the
anomaly on the EKF.

For the FDIR techniques there are multiple different techniques and methods for
detecting and isolating anomalies. Learning methods are frequently used in the current
research trend of FDIR methods. The testing of these learning methods do not focus on
practical orbit sensitive sensor anomalies. It is for this reason that learning methods are
therefore selected for the implementation and analysis of anomaly detection and isolation.

One aim is to develop an unsupervised learning detection algorithm that is only
trained on the “normal data”, wherein no anomalies occur. This detection algorithm is
required to label data samples as anomalies where the relationship between the sensors
are considered as an outlier. Although this is one of the aims of this thesis, supervised
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References
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Environment

Figure 1.2: System block diagram of the ADCS with the additional FDIR technique.

learning methods will also be used for detection to provide a comparison between the two
groups. Unsupervised learning for detection is desired since it only requires normal data
for training and provides a method of detecting anomalies based on a pattern of what
normal is. This means that various anomaly simulations are not required for the detection
method.

The process of classifying the sensor responsible for the anomaly is the isolation phase
of the FDIR. Anomaly isolation requires labelled data, since the isolation method needs
to determine which sensor is faulty. Supervised learning methods are therefore used to
isolate the sensor that is experiencing the anomaly.

A comparison of the detection accuracy as well as the estimation accuracy of a model
in the simulation environment after training on either the generic sensor anomalies or the
practical anomalies are discussed in Chapter 8. A thorough analysis of each individual
component of the FDIR should be conducted and discussed. In summary the objectives of
this thesis can be listed as:

• Develop a realistic simulation environment for testing of FDIR methods as well as
providing a database for training classification algorithms.

• Model specific anomalies for each sensor used in the measurement update of the
EKF.

• Test various recovery methods to ensure the robustness of the EKF during the
occurrence of a sensor anomaly.

• Compare various supervised and unsupervised learning methods for detection and
isolation of the anomalies.
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1.3. Thesis Outline 5

• Compare the developed FDIR method trained on general sensor anomalies such as
high noise with the FDIR method trained on the specific modelled anomalies for
each sensor.

1.3. Thesis Outline
The overview of the system developed for FDIR of the ADCS is shown in Figure 1.2.
This thesis will discuss each block in Figure 1.2 and analyse the results of these blocks
in isolation. The thesis is outlined in order to ensure that the research motivation is
accomplished. To provide the relevant context of this research within the wider field
of FDIR the literature study is provided in Chapter 2. Chapter 2 also provides the
background of the current research trends such as focusing on general sensor anomalies
instead of common practical anomalies that are specific for each sensor. Chapter 3 provides
the overview of the conceptual satellite design to ensure that the simulation is realistic and
to provide context of the satellite design and mission requirements. This sets the stage
for the discussion on the development of the simulation environment in Chapter 4 with
the development of the key elements required for the ADCS environment. This provides
the analysis for the normal operation of the satellite. The mathematical models of the
anomalies for each sensor is discussed in Chapter 5 after the development of the simulation
environment.

The anomalies require FDIR techniques to ensure that the anomalies do not negatively
influence the estimation of the EKF. The order in which the FDIR is discussed is in
the order of implementation. The feature extraction, anomaly detection and anomaly
isolation are discussed and analysed in Chapter 6 after the development of the anomalies.
Thereafter the recovery methods are developed and discussed in Chapter 7 with perfect
detection and isolation. Chapter 6 and Chapter 7 provides the analysis of the FDIR
methods in isolation. This can then be implemented on the various anomalies and the
results is discussed in Chapter 8. Thereafter the discussion of modelling orbit sensitive
practical anomalies as training data for the isolation method and the conclusion of this
thesis is provided in Chapter 9.

Stellenbosch University https://scholar.sun.ac.za



Chapter 2

Literature Study

Fault detection, isolation and recovery (FDIR) is implemented in systems that require
robust operation and desires continual functionality. For this thesis, FDIR for time-varying
systems which require fault tolerant control, are relevant as this is the broader research
field. It is therefore necessary to discuss the research done in the wider field of fault
tolerant control before focusing on FDIR for only satellites. Thereafter, the research done
in FDIR on satellites and, specifically the ADCS, will be discussed. An even narrower
research space is fault tolerant control with the focus on recovery of Kalman filters due to
faults caused by sensor anomalies.

2.1. Fault Detection, Isolation and Recovery in
Time-Varying Systems

Anomaly detection is a field in robotics which can be divided into three main categories,
namely data-driven, model-based and expert-system-based approaches [11, 12]. The expert-
system-based approach is implemented with human knowledge based logic tests or rules, also
known as rule-based [13,14]. expert-system-based approaches are traditionally implemented
in many FDIR systems. An expert can provide certain rules based on experience and
knowledge of the field to ensure that the system is behaving as expected. A simplified and
generic diagram thereof is shown in Figure 2.1.

Input

If · · · ≤ 0

If · · · > 0
Output Recovery

Expert

Figure 2.1: Development of FDIR technique according to expert-system-based approach.
Where the human expert provides logical rules based on the expert’s experience within
the field to detect and isolate faults or anomalies.

Expert-system-based methods are, however, very closely aligned to model based methods
and the lines between the two categories are sometimes blurred. This is due to many

6
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2.1. Fault Detection, Isolation and Recovery in Time-Varying Systems 7

expert-system-based methods relying on a model and sensor inputs to ensure that the
system is behaving as required. This is why many expert-system-based methods compare
sensor measurements with a mathematical model of a given sensor measurement to develop
a fault detection system.

Expert-system-based methods are required to create different rules for each sensor’s
implementation [13,14]. Focused tests with in-depth knowledge of the nominal operation
of the unit can eliminate many fault conditions. Unfortunately, these tests are normally
limited to the perspective of each sensor and does not take any other sensors or the state
of the satellite into consideration. Data-driven approaches allows one to classify complex
anomalies by training models on data across many sources specific to the anomaly at hand.
A diagram of the data-driven approach is shown in Figure 2.2.

In Figure 2.2 the database is provided as input to a training algorithm that after training
produces a model that can predict whether the current data sample is anomalous or not.
This can also be expanded to a model that can classify which component is responsible
for the anomaly, if the algorithm is capable of providing a multi-class prediction. This
approach requires a prediction model that is trained from the data. The prediction model
can consist of any algorithm from a wide repertoire of algorithms, such as K-nearest
neighbours, long short term memory (LSTM), Kalman filters, decision tree and isolation
forest [15–17]. These are used depending on the nature of the data. The decision of which
method to implement relies heavily on whether the data is based on a time-series model or
not. It also depends on whether labelled data is available, since certain methods require
labelled data to predict whether or not a data sample is anomalous.

Recovery

Training
Model

Prediction

Figure 2.2: Development of FDIR technique according to data-driven approaches. The
database is provided as input to a training algorithm that after training produces a model
that can predict whether the current data sample is anomalous or not.

This database can be either simulated data or data from actual satellite missions.
The problem with using actual satellite data is that it is difficult and expensive to get
the specific data required for practical anomalies and to have it labelled. Many research
therefore choose simulation environments to implement and test the developed methods for
FDIR. It is within these simulations that anomalies can be simulated and FDIR techniques
can be developed and tested.
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2.2. Fault Tolerant Control of Satellites 8

2.2. Fault Tolerant Control of Satellites
Traditionally, the expert-system-based approach combined with the model-based approach
dominated satellite fault detection. An expert in the field typically develops a rule-based
system for each failure the expert is aware of [13]. The expert is also required to manually
observe the satellite regularly. If the expert is able to observe anomalous data, the system
must be adapted to the failure. This should be done for every subsystem of the satellite.
Some subsystems are not as critical as others and, since many subsystems are dependent
on the ADCS for mission success, the ADCS must be able to autonomously recover from
faults to control the attitude of the satellite.

This leads to the need for fault tolerant control of satellites where the fault detection is
specifically focused on the ADCS subsystem. The fault tolerant control can be separated
into two categories, namely robust control to ensure accurate control during failed actuators
or robust estimation developed typically for failed sensor or anomalous sensor events. The
sensor or actuator fault is not necessarily a complete failure of the component or complete
failure of the mission, but negatively influences the mission success of the satellite or the
efficiency of a subsystem of the satellite. To ensure robust control after actuator failure,
FDIR methods for reaction wheels, gyroscopes and other actuator failures were developed
and focussed on the robust control and not the robust estimation.

Rahimi et al. [18] developed a data driven method for fault isolation which incorporates
random forests, decision trees, and nearest neighbours to classify failures of reaction wheels.
These failures were modelled for time-varying faults where the bus voltage or current of
the reaction wheels were varied to induce failures. This, however, only focuses on isolating
the failures and not recovering from these failures, whereas Jin et al. [19], implements a
fault tolerant control with four reaction wheels based on bias faults implemented on the
reaction wheels. On the other hand, a model-based technique that implements interacting
multiple model filters was implemented to recover from modelled reaction wheel failures,
such as viscous friction variations due to temperature [20]. Both Tudoroiu et al. [20] and
Rahimi et al. [18] provide two different implementations for fault tolerant control based
on practical modelled actuator failure on satellites, where Jin et al. [19] tests the provided
method on a bias fault condition and not a practical modelled failure.

The research conducted on the robust control category can be divided into research
that test methods on practical modelled failures of actuators or research which test their
methods on general failures such as bias drift. This thesis attempts to develop a FDIR
method for sensor anomalies and compare the developed method by training it on both
general sensor anomalies and practical modelled sensor anomalies.
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2.3. Fault Tolerant Control with Focus on Sensor
Anomalies

Although the robust control aspect of fault tolerance is of high importance, the attitude
estimation of the satellite should also be able to recover from anomalies to ensure a
successful mission. Sensor and actuator failures should also be detected and recovered
from, since it directly influences the attitude estimation. Most of the research conducted
to ensure robust estimation only focuses on sensor faults. The main categories within fault
tolerant control of satellites can be seen in Figure 2.3.

Fault tolerant

Control

Estimation

Sensor

Actuator

Actuator

Control law

control of
Satellites

Sub category Failure

Figure 2.3: Overview diagram of sub categories of fault tolerant control of satellites. The
green path provides the focus of this thesis.

Based on the assumptions of typical sensor failures, some work was done on the fault
detection of attitude sensors. For instance, due to considerable noise in sensors, Wang
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2.4. Innovation in Fault Detection 10

et al. [5] proposed an adaptive unscented Kalman filter with multiple-model adaptive
estimation for sensor fault estimation and isolation. The performance of this method was
tested on a simulation model where gradual failures, abrupt failures and high noise were
implemented on the sensors. Xiong et al. [6] provide a fault detection method by using the
residuals generated by an unscented Kalman filter to detect anomalies with a threshold
based on a confidence level. This method was tested on a simulation environment where a
sun sensor, horizon sensor and gyroscope was used for attitude determination. A sudden
bias failure for the sun sensor, horizon sensor and gyroscope was implemented as well as
an incipient fault on the sun sensor. Zhou et al. [7] implement a fault tolerant federated
Kalman filter with three sub-filters for multi-sensor fault estimation. The failures of
the sensors are measurements that are equal to 0, or experience constant bias faults or
noise amplification. Nasrolahi et al. [8] provide a fault detection and recovery method by
implementing a non-linear observer, to detect anomalies in attitude and rate sensors. The
recovery was implemented through the tuning of controller gains after the classification of
sensor failures. Another example was the development of an algorithm by Carvajal-Godinez
et al. [9] to evaluate the control of a gyroscope and to detect whether drifting exists.
If drifting was detected, another algorithm was deployed to ensure the recovery of the
gyroscope drift by updating the error state vector. Van Eykeren et al. [10] developed an
adaptive modification to the EKF with the testing thereof on an aircraft. The methods
that are provided in these research articles were tested on faults such as oscillation, bias
drift and increased noise of sensors.

All these research examples on sensor FDIR only test the techniques on general sensor
faults and not specific modelled faults for each sensor. This thesis models practical
anomalies for each sensor that are sensitive to the satellite orbit and not general anomalies
as given in the examples [5–10]. This is visually demonstrated in Figure 2.4, where the
norm of sensor fault detection is the red path of general anomalies, while the focus of
this thesis is demonstrated by the green path, which test methods on practical modelled
anomalies.

2.4. Innovation in Fault Detection
Detection of sensor anomalies and developing robust Kalman filters are not isolated to
satellites. All systems governed by underlying physics have many similarities in the
approach of fault detection. de Silva et al. [21] developed a novel method for feature
extraction which focuses on systems governed by underlying physics. This method is
based on the assumption that a complex relationship exists between different sensor
measurements and that the next measurement for a sensor can be predicted based on
the current sensor measurements. This leads to the development of an innovative moving
average of the predicted sensor vector, as estimated with dynamic mode decomposition
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Figure 2.4: Comparison of specific anomaly examples and general anomalies. The green
path provides the focus of this thesis.

(DMD) and a Kalman filter. This is provided as additional input to a predictive model –
a decision tree – to detect sensor anomalies.

2.5. Summary
Methods based on the research of various authors [5–10] were tested on sensor failures that
are not modelled by the orbital nature of the satellite or specific design failures. Within
the field of fault tolerant control it is clear that are various approaches to ensure robust
EKF model and measurements updates against anomalies and failures. These failures are,
however, limited to sudden failure, bias drift, oscillations or an increase in sensor noise.

This work is an example of implementing the anomaly detection on the sensor level
and diagnosing which sensor is experiencing the anomaly. Rather than building robust
Kalman filters for any sensor failure and still updating the Kalman filter with an anomalous
sensor measurement, the sensor measurement can, for instance, be excluded from the
measurement update sequence.

Furthermore, the FDIR techniques in this thesis are not developed and tested on only
generic sensor failures, but on specific practical failures and anomalies. This provides more
relevant and specific analysis of the techniques and it can be extended to the testing of
FDIR techniques on other modelled failures.
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Chapter 3

Conceptual Satellite Mission

To simulate the ADCS of the satellite, the sensors and actuators which will be used for
the CubeSat must be chosen. This provides a context for the satellite simulation and
the influence of the anomalies. The design decisions are based on historic trends and
previous implementation of CubeSats. The design decisions are also based on what is
required for a mission which points a payload towards the Earth during the eclipse phase
and pointing the solar panels towards the Sun during the sunlit phase. This mission is a
realistic example where the mission success relies on the operation of the ADCS.

3.1. Standard Aerospace Industry Implementation
To developed a realistic conceptual design the historic trend is accounted for to enhance the
relevance of this research. The trend from 1990 to 2015 of which sensors and actuators were
implemented for in nano satellites the ADCS is provided in Figure 3.1 and Figure 3.2 [22].
A study conducted by S. Jacklin [2] provides examples of two partially failed missions that
were due to sensor failure. One was due to magnetometer faults and the other due to sun
sensor failure. An example of total mission failure is when both the magnetometer and
sun sensor failed.
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Figure 3.1: The percentage of occurrences of different ADCS sensors on nano satellites [22].
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The percentage of ADCSs which utilize a variety of actuators is visualised in Figure 3.2.
It is evident in Figure 3.2 that the two actuators which are utilized the most are magne-
torquers and reaction wheels. The reaction wheels can have a significant influence on the
estimation due to the quaternion feedback controller and are thus dependent on current
attitude estimates. The magnetorquers will have a smaller influence, since it is mostly used
for momentum dumping. In order for a satellite to point nadir and then to be able to track
the Sun, it requires a number of sensors and actuators. The proposed simulated satellite
will be equipped with a sun sensor, magnetometer and horizon sensor to determine its
attitude. Reaction wheels and magnetorquer will also be simulated for accurate attitude
control and momentum control respectively.
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Figure 3.2: The percentage occurrences of different ADCS actuators on nano satellites [22].

3.2. Conceptual CubeSat Design
In order to ensure accurate modelling and simulation of both the satellite orbit and
anomalies, the dimensions of the exterior of the CubeSat is required. The elements which
require specific dimensions for the dynamics and kinematics are the solar panels and the
satellite body.

Since most nano satellites implement a magnetometer and a sun sensor and both
sensors cause partial or total failure of a satellite mission according to S. Jacklin [2], these
two sensors are used in the simulation environment of this thesis and practical anomalies
are modelled for these two sensors. The horizon sensor, although it is only utilized by
10% of nano satellite ADCS operations, has an interesting practical anomaly [23]. The
anomaly occurs when the Moon is present on the Earth’s horizon and in the horizon
sensor’s field of view (FoV). This might influence the algorithm for calculating the centre
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of the Earth. This anomaly is therefore modelled and the influence of the anomaly on the
sensor measurement is discussed in Chapter 5.

The sun sensor also requires specific dimensions for the Sun reflection anomaly discussed
in Section 5.1. The dimensions of the sun sensor are from the Sputnix CubeSat sun sensor
model [24]. A summary of the exterior dimensions are given in Table 3.1.

Directions Satellite Body Solar Panels Sun Sensor
xB 0.3 m 0.3 m 0.028 m
yB 0.3 m 0.3 m 0.023 m
zB 0.4 m 0.002 m N/A

Table 3.1: Physical dimensions of the simulated CubeSat.

A solar panel is denoted as the surface area ABCD, as shown in Figure 3.3. This is
referenced for the Sun reflection anomaly, as well as the magnetic moment disturbance
anomaly as both anomalies are due to behaviours of the solar panel due to interaction
with the Sun. This is once again provided to ensure accurate modelling of the satellite
during normal operation and during practical modelled anomalies. The coordinate frames
and the background thereof is discussed, in detail, in Section 4.1.1. The moment of inertia
of the satellite can therefore be given as

[
Ixx Iyy Izz

]
=
[
0.4 0.45 0.3

]
kgm2. (3.1)

x̄O
z̄O

ȳO
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x̄B

ȳB
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Figure 3.3: The conceptual satellite with solar panels.

Stellenbosch University https://scholar.sun.ac.za



3.3. Sensor Parameters 15

3.3. Sensor Parameters
The sensor parameters are design decisions to ensure realistic performance of the sensors
during normal operation and to create realistic responses thereof due to practical anomalies.
The noise of all the sensors are assumed to be zero-mean Gaussian noise. To model the
anomalies accurately, the position of the sensors are required. The standard deviation of
the noise, as well as the position for each sensor in the satellite body coordinate (SBC)
frame is therefore given in Table 3.2. The sensor model is discussed in further detail in
Section 4.3.1 after the theoretical background of the satellite simulation.

Sensor Standard deviation (%) Position {x̄B, ȳB, z̄B} FoV
Magnetometer 0.75 [25] {0.1, 0.1, 0.13} m N/A
Horizon Sensor 0.14 [23] {0.15, 0,−0.2} m 180◦

Sun Sensor 0.055 [24] {0.15, 0, 0.2} m 180◦

Table 3.2: Standard deviation for each sensor.

3.4. Actuator Parameters
The actuator parameters are also required to provide accurate response to control torque
outputs and the simulation of the control of the satellite during normal operation and
during anomalies. The magnetorquers and reaction wheels both have maximum torque
outputs, as well as parameters that influence disturbance models. The reaction wheel
chosen is the RW3-0.06 from Sinclair Interplanetary [26] and the magnetorquer is the
medium CubeTorquer by CubeSpace [27]. The parameters for that of the reaction wheel is
the static and dynamic wheel imbalance required to simulate the wheel imbalance discussed
in Section 4.2.3. The static imbalance and dynamic imbalance is given as Us = 0.0208 gcm
and Ud = 0.0208 gcm2 respectively. The maximum torque output of the reaction wheel is
20 mNm and peak momentum is 0.18 Nms. The moment of inertia of the wheel is given as
Iw = 88.1 × 10−6 kgm2. The only relevant parameter of the magnetorquer is the maximum
magnetic moment, which is 0.66 Am2.

Three magnetorquers as well as three reaction wheels are implemented to ensure
accurate and robust attitude control of the satellite. A single magnetorquer and reaction
wheel are positioned in each axis of the SBC frame. This allows for three-axis rotation
and control of the satellite.

3.5. Summary
This chapter provides the conceptual satellite design and mission overview for the simulation
environment. The satellite is designed with reaction wheels and magnetorquers as actuators.
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It is also provided with a sun sensor, magnetometer and a horizon sensor for attitude
determination. This design is based on common practice as well as research on sensor
failures. The satellite mission is to point a payload towards the Earth during an eclipse
and point the solar panels towards the Sun during the sunlit phase. This chapter provides
the context in which the normal operation of the satellite is simulated as well as the
modelling of the practical anomalies and the analysis of the FDIR methods.
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Chapter 4

Conceptual Satellite Simulation
Environment

In order to implement practical anomalies and research FDIR methods on a satellite, a
simulation that contains the satellite dynamics and kinematics needs to be developed. The
focus of this thesis is directed towards nano satellites and, more specifically, CubeSats.
The development of the satellite simulation is based on previous research [22, 28–30]. The
simulation was developed in Python to simulate the dynamics and kinematics during a
satellite orbit. This simulation environment also provides the environmental factors and
disturbances of the satellite orbit to ensure a realistic simulation for the EKF and the
testing of the FDIR methods.

4.1. Satellite Fundamentals
The main operational goal of the ADCS on this specific satellite mission is to control the
payload so that it points towards the centre of the Earth during an eclipse and points
the solar panels towards the Sun during the sunlit phase. In this section the different
coordinate frames dominating a satellite orbit, the attitude of the satellite, as well as the
satellite dynamics and kinematics are discussed.

4.1.1. Coordinate Frames

A coordinate frame A consists of three orthogonal vectors which is commonly referred to
as x̄A, ȳA, and z̄A. A vector rA within the coordinate frame can thus be expressed as

rA = ax̄A + bȳA + cz̄A, (4.1)

where the magnitude of r is
∥rA∥ =

√
a2 + b2 + c2. (4.2)

17
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The other aspect of vector notation that is required is that of the unit vector. The
calculation of the unit vector r̄A is given as

r̄A = rA

∥rA∥
. (4.3)

The coordinate frames is a fundamental part of the ADCS. In order to determine
the orientation and position of the satellite relative to the Earth, the Earth Inertial
Coordinate (EIC) frame E = {x̄E , ȳE , z̄E} is used. The EIC is defined as the Z-axis
pointing towards the north pole, the X-axis pointing towards the Vernal Equinox Υ and
the Y-axis completing the orthogonal set.

To determine the satellite orientation, satellite-centred coordinate frames are used.
Three satellite-centred coordinate frames are used, namely the inertial-reference coordinate
(IRC) frame, I = {x̄I , ȳI , z̄I}, the orbit-referenced coordinate (ORC) frame, O =
{x̄O, ȳO, z̄O} and the satellite body coordinate (SBC) frame, B = {x̄B, ȳB, z̄B}.

The IRC coordinate frame’s Z-axis points towards the centre of the Earth at perigee
(the position of the satellite orbit when the distance between the satellite and the centre
of the Earth is the smallest), with the Y-axis being in the opposite direction of the orbit
normal-vector and the X-axis completing the orthogonal set. The ORC coordinate frame’s
Z-axis points towards the centre of the Earth during orbit, with the Y-axis being the orbit
anti-normal and the X-axis completing the orthogonal set. The SBC on the other hand
rotates with the satellite body and the Z-axis, Y-axis and X-axis are defined based on the
positions on the satellite body and not other astronomical objects.

To transform a vector from the EIC frame to the ORC frame the satellite’s position
vector rsat and the satellite’s velocity vector vsat in EIC is required [31]. Both the satellite
position vector rsat and the satellite’s velocity vector vsat is in the EIC frame throughout
this thesis unless specified otherwise. The EIC to ORC transformation matrix AO

E is
calculate as

AO
E =

[
u v w

]T
where w = −r̄sat

v = − r̄sat × v̄sat

∥r̄sat × v̄sat∥
u = v × w.

(4.4)

4.1.2. Orbit Propagation

The satellite position rsat and velocity vsat at a given time step is required to determine the
multiple different variables required for the simulation environment. The refined version
and fourth generation of the simplified general perturbations (SGP) model, namely SGP4,
is therefore used as orbit propagator of the satellite after each time step [32].

To determine rsatk
and vsatk

at a specific time step k the two-line element (TLE) set of
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the satellite is required. The TLE set is an encoding of the specified satellite orbit, which
require orbit parameters. These parameters and the chosen value for the orbit parameter
include the:

• Semimajor axis a = 6879.55km which is half the distance of the longest diameter of
the ellipse.

• Right ascension of the ascending node (RAAN) defined as the angle Ω = 275◦ from
the origin of longitude to the direction of the ascending node.

• Argument of perigee (AP) defined as the angle ω = 57.4◦ from the ascending node
to perigee.

• Inclination i = 97.4◦ as the tilt of the satellite orbit with respect to the EIC frame.

• Eccentricity e calculated as

e =
√

1 − b2

a2 = 0.000092 (4.5)

where b is the semi-minor axis defined as half the distance of the shortest diameter
of the ellipse.

The time at the beginning of the orbit as a Julian date Jt is also required for the TLE. A
Julian date is a date represented as a single number. The numbers begin on the first of
January, 4713BC and ends on the 22nd of January, 3268AD. With these parameters and
the elapsed time since Jt, both rsatk

and vsatk
can be determined from the World Geodetic

System 72 constants that is implemented through the SGP4 model. An example of the
satellite orbit parameters are illustrated in Figure 4.1.

The SGP4 is implemented with the SGP4 Python package [33]. The SGP4 outputs
the rsatk

and vsatk
in the EIC reference frame. Therefore, with the satellite position rsat

and velocity vsat known, the EIC to ORC transformation matrix AO
E can be calculated

according to Equation 4.4.

4.1.3. Attitude of a Satellite

After discussing the background for the position of the satellite relative to the EIC frame
the background of the attitude of the satellite is required. The attitude of the satellite
is determined through the relative orientation of the SBC frame to the ORC frame. To
determine the attitude of the satellite the fundamentals of 3D object rotation is required.
This is firstly explained through the Euler angles method which is easily understandable
and can be demonstrated visually with Figure 4.2.

Euler angles describe the rotation of an object around three orthogonal axes. The
three axes of the SBC frame, denoted by x̄B, ȳB and z̄B, rotate with the object as depicted
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iΩ

ω

Perigee

Υ

z̄E

ȳE

x̄E

Figure 4.1: Illustration of orbit parameters and the Earth Inertial Coordinate frame.
This illustration is not according to scale.

in Figure 4.2. After the object is rotated by the angle ψ around ȳB, the axis x̄B and z̄B

translate to x̄′
B and z̄′

B respectively. Thereafter the object is rotated by the angle ϕ around
x̄′

B and the axis ȳB and z̄′
B translate to ȳ′

B and z̄′′
B respectively. The object is then rotated

by the angle θ around z̄′′
B where the axis x̄′

B and ȳ′
B translate to x̄′′

B and ȳ′′
B respectively.

z̄B

x̄B

ȳB

z̄′
B

x̄′
B

ψ

ψ

ȳ′
B

ȳ′′
Bz̄′′

B

x̄′
B

x̄′′
B

θ

θ

ȳB

ȳ′
B

z̄′
Bz̄′′

B

x̄′
B

ϕ

ϕ

Figure 4.2: Euler angle transformation of an object. The object rotates around ȳB by
the angle ψ, then it rotates around x̄′

B by the angle ϕ and lastly rotates around z̄′′
B by the

angle θ. The dotted lines represent the transformed axes after the rotation of an angle
around the other axis.

The Euler angles provide a method of rotating an object in 3D. This can be utilised
to transform a vector from one coordinate frame to another. The Euler angles can also
be given as a single matrix (transformation matrix) to transform the vector from a given
coordinate frame to a desired coordinate frame. The transformation of the vector is
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required in the EKF algorithm to compare the modelled vector vO in the ORC frame with
the measured vector vB in the SBC frame.

To transform a vector from the ORC to SBC frame, the direct cosine matrix (DCM),
also referred to as AB

O, is used. The DCM AB
O can be used to calculate the attitude

transformation from given Euler angle rotations. This is done by multiplying the transfor-
mation matrices representing each individual Euler angle rotation. AB

O can therefore be
calculated as

AB
O = AψAϕAθ

=


cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0
0 0 1



1 0 0
0 cos(ϕ) sin(ϕ)
0 −sin(ϕ) cos(ϕ)



cos(θ) 0 −sin(θ)

0 1 0
sin(θ) 0 cos(θ)

 . (4.6)

Euler angles, however, do not always prove a suitable method for determining the attitude
of a satellite. This is due to singularities that can occur, such as the gimbal-lock effect,
where two rotational axes coincide to form a single rotational axis. Consequently, not
all 3D rotations can be described with Euler angles, because with gimbal-lock only two
effective rotations can occur instead of three [34]. The method of describing 3D rotation
with quaternions is therefore more convenient and more often used [35]. A quaternion q
has four components that are dependent of one another and constrained by

q2
1 + q2

2 + q2
3 + q2

4 = 1. (4.7)

The attitude quaternion is also related to the Euler angles in that if the Euler rotational
axis from ORC to SBC is defined as a unit vector e =

[
e1 e2 e3

]T
and the angle of the

Euler rotation is Φ, then

q =


e1sin(Φ

2 )
e2sin(Φ

2 )
e3sin(Φ

2 )
cos(Φ

2 )

 . (4.8)

Although it is difficult to visualize a quaternion, the most simplistic method of con-
ceptualising it is shown in Figure 4.3. A quaternion can be simplified to a unit vector
protruding from the centre point of an object as well as the angle of rotation of that object
around the unit vector. As seen in Figure 4.2 the angle θ is the angle of rotation around
the z̄′′

B-axis. For quaternions the angle of rotation is a similar concept, however, the axis
around which the object is rotating, is the unit vector, q1−3. The quaternion element q4,
therefore provides the angle of rotation while q1−3 represents the unit vector with the
condition of Equation 4.7.

To adjust the DCM to rely on quaternions, AB
O can be transformed as a function of q
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z̄B

x̄B

q1−3

q4

ȳB

Figure 4.3: Graphical representation of a quaternion to explain the relationship between a
quaternion and the Euler angles. Where q1−3 represents the unit vector and q4 represents
the angle or rotation.

through

AB
O =


q2

1 − q2
2 − q2

3 + q2
4 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) −q2

1 − q2
2 + q2

3 + q2
4

 (4.9)

as provided by James Wertz [36]. With this the DCM can be calculated with quaternions.
This section is therefore concluded since the attitude can be determined by transforming
the vectors in the ORC frame to the SBC frame with the implementation of the quaternions
and the transformation matrices. This is a basic requirement for simulating the normal
operations of the satellite’s ADCS as well as the practical anomalies.

4.1.4. Satellite Kinematics and Dynamics

The dynamics of a satellite can be calculated with the Euler dynamic equation. This
consists of the torques applied to the satellite and are mainly control torques τc and
disturbance torques τd as well as the moment of inertia of the satellite J multiplied by
the inertial-referenced angular acceleration of the satellite ω̇I

B. The control torques used
in this design are only reaction wheel torques τw and magnetorquer torques τm. The
disturbance torques accounted for in this thesis are the gravity gradient torque τ gg, the
wheel imbalance torque τ rw, the gyroscopic coupling torque τ gyro, and the aerodynamic
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disturbance torque τ aero. The Euler dynamic equation can therefore be given as

Jω̇I
B = τc + τd,

where τd ≈ τ aero − τ gyro + τ gg + τ rw,

and τc = τm − τw.

(4.10)

The kinematics of the satellite is represented by the rate of change of the quaternions,
q̇. To determine q̇ the angular rate vector ωO

B is required. Where the angular rate ωO
B

is the angular rate of the SBC frame B relative to the ORC frame O. The angular rate
vector ωO

B is related to ωI
B through

ωO
B = ωI

B − AB
O


0

−ωo
0

 , (4.11)

where ωo is the angular rate of the satellite about the centre of the Earth. The angular rate
vector ωO

B can be divided into components ωx, ωy and ωz, from which q̇ can be calculated
as [22]

q̇ =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

q. (4.12)

Equation 4.10-4.12 are the overarching equations that will be used to determine the
control torque as well as the model update of the EKF. This section is implemented in the
simulation environment to determine the actual attitude of the satellite represented as a
quaternion q and the angular rate of the SBC frame relative to the ORC frame ωO

B . This
section provides the underlying kinematics and dynamics of the satellite which provides
the unique environment of a satellite in which the practical anomalies are modelled and
the FDIR methods can be developed.

4.2. Environmental Factors and Disturbances
To simulate the environment, certain aerospace phenomena must be modelled to create a
realistic representation of the satellite orbit and therefore ensure that the sensor measure-
ments and all anomalies can be accurately modelled. These anomalies also ensure that the
developed EKF is robust and accurate in normal operations when general environmental
disturbances occur. The position of the satellite with respect to the Earth (orbit propaga-
tion) is required for the simulation environment and is already discussed in the previous
section. The Sun’s position is also required since the combination of the Sun’s position
and the Earth’s position determines the eclipse and sunlit phases of the satellite orbit.
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The position of the Earth also determines the geomagnetic field that is simulated for the
measurements of the magnetometer. These environmental factors provide the elements for
the simulation environment as well as the modelling of the anomalies and therefore the
Sun’s position as well as the geomagnetic field is discussed in this section.

4.2.1. The Sun’s Position and Eclipse

For a mission to be successful it is critical to determine the position of the Sun relative to
the satellite. This is because the satellite must determine whether it is in an eclipse to
determine the required mode of operation. The model from D. Vallado [37] is therefore
implemented to determine the position of the Sun in the EIC frame.

From this model, the vector from the centre of the Earth to the centre of the Sun rsun
is provided in the EIC frame. For this calculation, the difference between the current
Julian date Jt and the J2000 epoch is required. Where J2000 = 2 451 545 and the difference
is thereafter converted to the amount of Julian centuries (365.25 days). The time difference
in Julian centuries TJC can therefore be calculated as

TJC = Jt − 2 452 545
365.25 . (4.13)

In addition to the Julian Centuries a few other parameters are required to calculate
the Sun’s position. The definitions and descriptions of these parameters are tabulated in
Table 4.1.

Symbol Definition Description
r⊕ Sun’s position magnitude The absolute distance of the Earth to the Sun

λe Ecliptic longitude The angle between the primary direction 0◦

of the plane in which the Earth is orbiting
and the current position of the Earth.

M⊕ Mean anomaly The fraction of the Earth’s orbit after it has
passed the furthest position from the Sun

ϵ Obliquity The inclination of the plane of orbit to the
celestial equator

λM⊕ Sun’s mean longitude The average angle subtended at the Earth
between the vernal equinox and the sun [38].

Table 4.1: Description and definition of the Earth orbit parameters.

With TJC known and with the background of the parameters in Table 4.1, the Sun’s
position rsun can be calculated as
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rsun = r⊕


cos(λe)

cos(ϵ)sin(λe)
sin(ϵ)sin(λe)

 ,
where r⊕ = 1.000 140 612 − 0.016 708 617 cos(M⊕) − 0.001 395 89 cos(2M⊕),

M⊕ = 357.527 723 300◦ + 35 999.050 340TJC ,
λe = λM⊕ + 1.914 666 471 sin(M⊕) + 0.019 994 643 sin(2M⊕),

λM⊕ = 280.460 618 400◦ + 36 000.770 053 610TJC ,
and ϵ = 23.439 291◦ − 0.013 004 200TJC .

(4.14)

After determining the Sun’s position, it is crucial to calculate whether the satellite is
in an eclipse or not. This can be done with basic geometry after calculating the position
of the Sun relative to the satellite through

sE = rsun − rsat. (4.15)

The assumption is made that whenever the satellite is not able to view the centre
of the Sun it is in an eclipse. This a valid assumption given the small angle required to
change the satellite from a partial eclipse (only a part of the satellite is in the shadow
of the Earth) to a full eclipse (the entire satellite body is in the shadow of the Earth).
This is due to the comparative distances of the Sun to the satellite and the satellite to the
Earth as well as the comparative sizes between the satellite and the other celestial bodies.
The eclipse is therefore defined as the period during which θs is smaller than θE. Where

θE = sin
(

RE

∥rsat∥

)
(4.16)

and
θs = cos

(
(rsat · sE)

(∥rsat∥ ∥sE∥)

)
(4.17)

as shown in Figure 4.4, where RE is the radius of the Earth. The satellite position rsat

is calculated according to the SPG4 model from the orbit propagation. This therefore
concludes the calculation for the Sun’s position in the EIC frame and the eclipse calculation.
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rsat

rsun

sE

Satellite

Earth

Sunθs

Figure 4.4: Geometry to determine satellite eclipse phases. To calculate whether the
satellite is in the eclipse the Equations 4.16 and 4.17 are implemented.

4.2.2. Geomagnetic Field

The geomagnetic field is another environmental factor that should be part of the simulation
environment. This is to ensure that the simulation of the magnetorquer — magnetic
alloy rod that provides additional control of the satellite by reacting with the Earth’s
geomagnetic field — and the magnetometer is realistic.

The Earth generates a magnetic field through electric currents due to motion within
the molten core of the Earth, which is commonly referred to as the geomagnetic field [39].
The magnetorquers interact with the geomagnetic field mostly for momentum dumping
and the magnetometers measure the geomagnetic field for attitude estimation.

The geomagnetic field is modelled with the time-varying International Geomagnetic
Reference Field (IGRF) model released by the International Association of Geomagnetism
and Aeronomy (IAGA). This model is used for increased ADCS accuracy and the 13th

generation of the model is implemented [40]. To calculate the geomagnetic field, the
scalar potential function as well as the function’s parameters is required. The parameters
required for the scalar potential function is the mean of the Earth radius (RE = 6371.2km),
the radial distance from the centre of the Earth rs, the latitude θ and the longitude ϕ.
Other parameters required is the Gauss coefficients gmn (t) and hmn (t) which change slowly
with time and, consequently, the IGRF-13 provide values for these coefficients at 5-year
epoch intervals. The Legendre functions Pm

n (cos(θ)) of the degree n and m are also part
of the geomagnetic field model [41]. The scalar potential function

V (rs, θ, ϕ, t) = RE

N∑
n=1

(
RE

rs

)n+1 n∑
m=0

(gmn (t)cos(mϕ) + hmn (t)sin(mϕ))Pm
n (cos(θ)) , (4.18)

is used to calculate the geomagnetic field. Where the geomagnetic field bE in EIC is the
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gradient of the scalar potential function

bE = −∇V. (4.19)

To provide insight on the change of the geomagnetic field during the satellite orbit,
the magnitude of the geomagnetic field at varying longitudes and latitudes is visually
demonstrated in Figure 4.5. Figure 4.5 provides a static map of the magnitude of the
geomagnetic field provided by the IGRF model [42].

Figure 4.5: A map of the Earth with varying longitude and latitude to provide the mag-
nitude of the geomagnetic field according to the 13th generation of the IGRF model [42].

4.2.3. Disturbance Models

A satellite is exposed to various disturbance torques during an orbit. It is these torques
that cause the modelled attitude to differ from the actual attitude. These torques are
therefore modelled and are assumed to influence the attitude of the satellite continuously.
Minor disturbances are excluded from the simulation environment and only the major
sources of disturbance torques are modelled and discussed.

Gyroscopic Coupling

The first disturbance torque is that of the gyroscopic coupling torque. A gyroscopic
coupling torque results due to the rotation of the reaction wheel’s axis and is perpendicular
to the rotor axis [43]. The gyroscopic coupling torque acts perpendicular to the rotor axis
which can be calculated as

τ gyro = ωI
B × (JωI

B + hw), (4.20)

where hw is the angular momentum of the reaction wheels, J is the moment of inertia of
the satellite and ωI

B is the angular rate of the SBC frame relative to the IRC frame.
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Gravity Gradient

The second major disturbance torque is the gravity gradient torque caused by both
the centrifugal force on the satellite due to the orbit around the Earth as well as the
gravitational force. The part of the satellite nearest to the Earth will experience the
largest gravitational force and the smallest centrifugal force, while the part of the satellite
furthest from the Earth will experience the smallest gravitational force and the largest
centrifugal force. According to J. Wertz [36] the gravity gradient disturbance torque τ gg

can be calculated as
τ gg = 3ω2

o(zB × JzB). (4.21)

Where ωo is the orbit rate and the orbit nadir vector zB is calculated as

zB = AB
O

[
0 0 1

]T
. (4.22)

The gravity gradient torque is the only torque that can be accurately modelled on-board
the satellite, and is therefore also included in the model update of the EKF. To provide
insight into the value of the gravity gradient disturbance torque the vector is provided in
the SBC frame in Figure 4.6. Although the gravity gradient torque is in the order of a few
dozen nN · m, this torque is required to simulate a realistic simulation environment as it is
comparable to the magnitude of the other major disturbance torques.
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Figure 4.6: The simulated gravity gradient torque in the SBC frame. The grey background
sections of the graphs are the eclipse periods, while the sections with the white background
is the sunlit phase of the orbit. The legend provides the axis of the coordinate frame for
which the magnitude of the torque is given.
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Aerodynamic Disturbance

The third simulated disturbance torque is that of the aerodynamic torque caused by air
in the atmosphere creating a force on each individual segment of the satellite [44]. The
aerodynamic disturbance is significant due to the low Earth orbit (LEO) of the satellite,
where the atmospheric density is higher. The aerodynamic disturbance torque τ aero is
therefore a summation of all the torques created by the air force on each segment’s surface
area Ai. The aerodynamic disturbance torque τ aero according to Steyn et al. [44] can be
calculated as

τ aero =
n∑
i=1

(
ρ ∥vBa∥2 AiH{cos(αi)} cos(αi)

(
σt(rpi × v̄B)

+
[
σnS + (2 − σn − σt)cos(αi)

]
(rpi × n̄i)

))
,

(4.23)

where n is the number of segments of the satellite. The factors that influence the
aerodynamic disturbance torque is the atmospheric velocity vBa in SBC, the atmospheric
density ρ and the offset vector rp between the segment’s centre of mass (CoM) and the centre
of pressure (CoP). H{x} is the Heaviside function which is equal to 0 when x is smaller than
0 and otherwise equal to 1. The other parameters required to calculated the aerodynamic
disturbance is the incidence angle αi of vBa on segment i, the tangential accommodation
coefficient σt and the normal accommodation coefficient σn. S is furthermore the ratio of
molecular exit velocity to vBa and n̄i is the unit inward normal vector of segment i [22].
The parameters σn, σt and S are assumed to be equal to 0.8 [45].

The atmospheric density is a function of the distance from the Earth surface. The
density model provided by D. Vallado [37] is given as

ρ = ρoe
− h(t)−ho

H , (4.24)

where ρo is the reference density at the reference altitude ho and h(t) is the satellite’s
altitude as a function of time and H is the scale height. According to Steyn et al. [45]
the atmospheric density can be approximated as 1

2ρ during an eclipse. The atmospheric
velocity vBa in SBC is furthermore calculated as

vBa = AB
OAO

E vE

where vE =


0
0
ωE

× rsat − vsat.
(4.25)

The angular rate ωE of the Earth is equal to 1.99 × 10−7rad/s. To provide insight into
the value of the aerodynamic disturbance torque axis components of the vector is provided
in the SBC frame in Figure 4.7 as calculated with Equation 4.23. The aerodynamic
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disturbance torque is in the order of a few hundred nN · m and has a larger effect on the
simulation of the satellite than the gravity gradient torque.
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Figure 4.7: The simulated aerodynamic torque in the SBC frame. The grey background
sections of the graph are the eclipse periods. The legend provides the magnitude component
of each axiswithin the SBC coordinate frame.

Wheel Imbalance

The fourth and final major simulated disturbance torque is that of the reaction wheel
imbalance. The reaction wheel imbalance torque is considered to be the most significant
disturbance attributed to the reaction wheel [46]. It is therefore the only reaction wheel
disturbance torque modelled for this simulation. Although reaction wheels are manufac-
tured with low tolerances, the reaction wheel will have a slight imbalance, since the mass
of the reaction wheel will not be perfectly uniform and evenly distributed.

The static imbalance of the reaction wheel is caused by the reaction wheel CoM offset
from the rotational axis. To model the static imbalance of the reaction wheels it is therefore
assumed that the unevenly distributed mass of the reaction wheel can be simplified to
a point mass m a distance r from the rotational axis as shown in Figure 4.8. The static
imbalance Us is equal to mr and this value is usually provided by the reaction wheel
manufacturers.

To determine the resulting torque from the wheel imbalance, the torque generated
by each wheel is individually calculated. The force fsx generated by Us on the reaction
wheel in the x̄B-direction denoted as RWx, is dependent on the the angular rate ω of the
reaction wheel as well as the current position of the point mass m. The force fsx can be
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Figure 4.8: Visual representation of the modelling of the static reaction wheel imbalance.

calculated as

fsx = Usω
2


0

sin(ωt+ ϕs)
cos(ωt+ ϕs)

 , (4.26)

where ϕs is an arbitrary phase. With the force fsx exerted on the reaction wheel RWx

known, the disturbance torque generated by the reaction wheel on the satellite can be
calculated with the known position vector w of the force fsx to the satellite CoM. The
disturbance torque due to the reaction wheel RWx can be calculated as

τ sx = w × fsx. (4.27)

This is calculated for each reaction wheel to determine the resulting static imbalance
disturbance torque on the satellite.

Another aspect of the reaction wheel imbalance is also modelled, namely the dynamic
imbalance. The dynamic imbalance is caused by the principal inertia of the reaction wheel
being misaligned with the rotational axis. This can be simplified to two equal point masses
m with an axial displacement d and distance r from the rotational axis. These two masses
are separated by an angle of 180◦ with respect to the rotational axis and consequently
create two forces equal in magnitude and in opposite directions. The dynamic imbalance
is graphically represented in Figure 4.9.

The dynamic wheel imbalance torque τ dx for RWx can be calculated as

τ dx = Udω
2


0

sin(ωt+ ϕd)
cos(ωt+ ϕd)

 , (4.28)

where Ud = mrd is the dynamic imbalance and ϕd is an arbitrary phase. Both Ud and
Us are provided by the manufacturer and based on the reaction wheel as discussed in
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Figure 4.9: Visual representation of the modelling of the dynamic reaction wheel
imbalance.

Section 3.4. The wheel imbalance torque from both the static and dynamic wheel imbalance
is provided in Figure 4.10. It is clear from Figure 4.10 that the wheel imbalance disturbance
torques are in the order of a few dozen µN · m.
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Figure 4.10: The simulated wheel disturbance torques in SBC. The grey background
sections of the graphs are the eclipse periods, while the sections with the white background
is the sunlit phase of the orbit. The legend provides the axis of the coordinate frame for
which the magnitude of the torque is given.

This is the largest simulated disturbance torque on the satellite and momentum
dumping is therefore required to reduce the disturbance torque. Figure 4.10, however,
already provides the reaction wheel disturbance torque with the implementation of the
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momentum dumping, since the satellite is unstable without the momentum dumping due
to the magnitude of the reaction wheel disturbance torque. This therefore concludes the
simulation block in Figure 1.2

4.3. Attitude Determination and Control System
This section discusses the overview of the ADCS implementation. This is required to
develop and simulate the controller, EKF and sensor blocks in Figure 1.2. The sensor
models, the extended Kalman filter (EKF) algorithm and the modes of control are therefore
discussed in this section.

The ADCS is the system of the satellite for which the FDIR methods will be developed.
This is to ensure accurate and robust operation of the EKF. This section therefore provides
the development and normal operation of the EKF and control of the satellite.

4.3.1. Sensor Models

The positioning of the sensors on the satellite is necessary to meet mission requirements.
The exact position of the sensors also impact the modelling of the anomalies on the sensors.
The sensors positions on the satellite are therefore provided in Section 3.3. It is further
assumed that each sensor has a zero-mean Gaussian noise and consequently, the low
frequency noise such as drift is negligible. The sensor measurement vB in the SBC frame
can be calculated as

vB = AB
OvO + mv, (4.29)

where mv is the measurement noise of the current sensor, AB
O is the DCM and vO is

the reference ORC vector. The measured unit vector of the sun sensor is provided in
Figure 4.11 as an example of the sensor measurements. This in addition to the simulation
environment concludes the sensor block in Figure 1.2.

4.3.2. Attitude Determination

This section discusses the sensor fusion algorithm for attitude determination of the satellite.
This is done with the EKF, which utilizes the sensor measurements as well as modelled
vectors according to mathematical models to estimate the current attitude. The EKF is
highly sensitive to sensor anomalies and actuator failures [4]. It is for this reason that
FDIR is required to ensure that the estimation remains accurate during sensor anomalies.

Extended Kalman Filter

The EKF is implemented to estimate the current satellite attitude with sensor fusion
of the magnetometer, horizon sensor and sun sensor. The EKF will be used due to the
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Figure 4.11: The measured unit vector of the Sun in the SBC frame. The grey background
sections of the graphs are the eclipse periods, while the sections with the white background
is the sunlit phase of the orbit. The legend provides the axis component of the coordinate
frame for the unit vector of the sun measurement.

non-linear nature of the system. The EKF consists of two fundamental parts, the model
update and the measurement update. The estimation of the state vector x will be denoted
as x̂ and an estimated vector before and after the measurement update will be indicated
with a superscript ‘−’ and ‘+’ respectively. The general form for a system model can be
expressed as

ẋt = f(xt) + st, (4.30)

where f(xt) is a non-linear function of xt and st is the system noise. To linearise the
function f(xt) an approximation of f(xt) according to the Taylor series expansion is
implemented as

f(xt) = f(x̂t) +
[
∂f

∂x̂t

]
(xt − x̂t) + 1

2!

[
∂2f

∂x̂2
t

]
(xt − x̂t)2

≈ f(x̂t) + Ft∆xt,

where Ft =
[
∂f

∂x̂t

]
and ∆xt = xt − x̂t.

(4.31)

The state vector x consists of the quaternion q and the inertial-referenced angular velocity
ωI

B given as
x = [q,ωI

B]T. (4.32)
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The model update of the EKF is calculated with the dynamics and kinematics of the
system model as discussed in Section 4.1.4. This is used to calculate ω̂I

B. The model
update of the EKF is implemented with Algorithm 4.1. The disturbance torques only
include τ gg and τ gyro since they can be accurately modelled on the satellite.

Algorithm 4.1: Model update of the EKF at time step k with Runge-Kutta 4th order.
1: Satellite Body Moment of Inertia J
2: Time step (Ts) = 1s
3: Number of iterations (I) = 10
4: Step size h = Ts

I

5: Disturbance torques τd = τ gg − τ gyro
6: Control torques τc = τm − τw

7: τ = τc + τd

8: for n := 1 to I do
9: k1 = h(J−1τ )

10: k2 = h(J−1τ + k1
2 )

11: k3 = h(J−1τ + k2
2 )

12: k4 = h(J−1τ + k3)
13: ωn+1 = ωn + k1

6 + k2
3 + k3

3 + k4
6

14: end for
15: (ω̂I

B)−
k = ωn+1

16: return (ω̂I
B)−
k

With reference to G. Janse van Vuuren [22], q̂−
k can be calculated as

q̂−
k =

[
cos(kq)I4×4 + 1

∥(ω̂O
B )−

k ∥
sin(kq)Ω−

k

]
q̂+
k−1

where kq = Ts

2 ∥(ω̂O
B )−

k ∥

(ω̂O
B )−

k = (ω̂I
B)−
k − Â

B
Ok

[
0 −(ωo)k 0

]T
=
[
ω̂x̄O ω̂ȳO ω̂z̄O

]T

∥(ω̂O
B )−

k ∥ =
√

ω̂2
x̄O

+ ω̂2
ȳO

+ ω̂2
z̄O

and Ω−
k =


0 ω̂z̄O −ω̂ȳO ω̂x̄O

−ω̂z̄O 0 ω̂x̄O ω̂ȳO

ω̂ȳO −ω̂x̄O 0 ω̂z̄O

−ω̂x̄O −ω̂ȳO −ω̂z̄O 0



(4.33)
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The estimated state vector, x̂−
k can now be expressed as

x̂−
k =

[
(ω̂I

B)−
k q̂−

k

]
(4.34)

The derivation of certain matrices required for the model update are provided in
the appendices. The overview of these matrices, however, are given to provide a better
understanding of the EKF. The first matrix is the system noise covariance matrix Qk which
is assumed to be zero-mean and Gaussian and is derived in Appendix 9.3. The system
noise covariance matrix Qk represents the discrete system noise sk. The second matrix is
that of the discrete system perturbation model Φk which is derived in Appendix 9.3.

The state covariance matrix Pk can be propagated as

P−
k = ΦkP+

k−1ΦT
k , (4.35)

where Φk is the discrete system perturbation model calculated as

Φk =
[
eTsFt

]
x=x̂, t=kTs

and simplified as Φk ≈
[
I + TsFt + 1

2!T
2
s F2

t

]
x=x̂, t=kTs

(4.36)

according to W. Steyn [47]. This concludes the model update of the EKF and the EKF
must now be updated with the sensor measurements.

The measurement update, thereafter, is implemented sequentially for each sensor
starting with the sensor with the largest noise. The measurement model in it’s general
form is provided as

yt = h(xt) + mt. (4.37)

The function h(xt) is a non-linear function and to approximate the function discretisation
is required. The discretisation of function h(xt) according to G. Janse van Vuuren [22]
can be represented as

h(xk) ≈ h(x̂k) + Hk∆xk,

where Hk =
[
∂h

∂xk

]
xk=x̂k

.
(4.38)

The discrete measurement perturbation Jacobian matrix Hk is derived in Appendix 9.3.
The discrete measurement model yk can be calculated as

yk = AB
Ok

vO + mk. (4.39)

The estimated discrete measurement model ŷk can therefore be calculated as

ŷk = Â
B
Ok

vO. (4.40)
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The estimated DCM Â
B
Ok

is calculated according to Equation 4.9 where q = q̂. The
innovation noise mk of the measurement model is zero-mean Gaussian noise with covariance
matrix Rk as derived in Appendix 9.3.

To determine the measurement update the error between the modelled sensor vector
vO and the measured vector vB is required. The error ek between the measured and
modelled vector is calculated as

ek = vB − Â
B
Ok

vO, (4.41)

To determine the influence of ek on the updated state vector x̂+
k the gain matrix Kk is

used. The gain matrix Kk can be calculated as

Kk = P−
k (H−

k )T
[
H−
k P−

k (H−
k )T + Rk

]−1
, (4.42)

after which the updated state vector x̂+
k can be calculated as

x̂+
k = x̂−

k + Kkek. (4.43)

The state covariance matrix can then be updated as

P+
k =

[
I7×7 − KkH+

k

]
Pk

[
I7×7 − KkH+

k

]
+ KkRkKT

k . (4.44)

This concludes the measurement update of the EKF. To validate the results of the EKF,
the estimation error or estimation metric for the first two orbits is given in Figure 4.12.
The estimation metric is the absolute difference between the attitude in quaternion qk
and the estimated quaternion q̂k in degrees.

The estimation metric indicates that the estimated quaternion q̂k is accurate to within
6◦ of the actual quaternion qk. This thesis does not focus on providing an estimation with
a smaller estimation metric since the estimation metric of 6◦ provides stable estimation
for control and therefore the EKF is considered to perform adequately.

During the measurement update, the error ek is largely affected by anomalous behaviour
in the sensor measurements. It is for this reason that FDIR of sensor anomalies are required.

4.3.3. Attitude Control

To ensure that the satellite is able to satisfy the mission requirements, control of the
satellite attitude is required. The satellite’s payload must therefore be in the direction of
the Earth during eclipse and the solar panels should be pointing in the direction of the
Sun during the sunlit phase. For this a quaternion feedback controller with the reaction
wheels as actuators is implemented. Momentum dumping with the magnetorquers as
actuators is implemented to ensure that the wheel disturbance remains within reasonable
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Figure 4.12: Estimation metric in degrees during the first two orbits during normal
operation. The estimation metric is the absolute difference between the attitude in
quaternion qk and the estimated quaternion q̂k in degrees.

boundaries [22].

Quaternion Feedback Controller

To ensure that the satellite is in the desired orientation with stable control in all three
axes, the quaternion feedback reaction wheel controller is implemented [48]. The controller
is provided with the state vector x̂ as input and outputs the desired reaction wheel torque
τw. To calculate the required torque τw the definition according to W. Steyn [49] for all
cases at time step k is given as

τw = KPJqerr +KDJω̂err − ω̂I
B ×

[
Jω̂I

B + hw
]
, (4.45)

where the angular rate error ω̂err is the difference between the estimated angular rate
ω̂ and the reference ωI

B = 0. The measured angular momentum of the wheels hw is the
actual momentum of the wheels with additional zero-mean Gaussian noise. The control
gains according to G. Janse van Vuuren [22] can be defined as

KP = 2ω2
n

KD = 2ζωn.
(4.46)
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The quaternion error qerr is calculated with the quaternion difference operator Θ as

qerr = qcΘq̂
q1e

q2e

q3e

q4e

 =


q4c q3c −q4c −q4c

−q3c q4c q1c −q2c

q2c −q1c q4c −q3c

q1c q2c q3c q4c




q̂1

q̂2

q̂3

q̂4

 .
(4.47)

The current estimated quaternion q̂ is provided by the EKF and the command quaternion qc
is
[
0 0 0 1

]T
during eclipse. During the Sun following phase, the command quaternion

qc according to X. Chen [50] can be calculated as

qc =
ūcsin( δ2)

cos( δ2)

 , (4.48)

where
ūc = ūs × s̄O

∥ūs × s̄O∥
. (4.49)

The modelled unit sun vector s̄O in ORC is provided by the Sun’s position model. The
main solar panel’s position is denoted as a unit vector ūs. The angle between ūs and s̄O

denoted as δ, can be calculated with the vector dot-product. The command quaternion qc

can then be used as the reference for the control.
The pointing error or the pointing metric is shown in Figure 4.13 to demonstrate the

efficacy of the quaternion feedback controller in combination with the EKF during the
first two orbits of simulation. The pointing metric is the difference between the command
quaternion qc and the actual quaternion q. It must be noted that the large spikes of the
pointing metric in Figure 4.13 is due to change in the mode of operation.

Momentum Dumping Controller

Momentum dumping is crucial to ensure that the wheel disturbance does not cause the
system to become unstable. Momentum dumping is implemented continually during
orbit to ensure that the momentum of the reaction wheels are kept at a minimum.
The momentum dumping is implemented with magnetorquers based on a Cross-Product
controller [22]. The magnetic dipole moment m is calculated as

m = e × bB

∥bB∥2 , (4.50)

where bB is the geomagnetic field in SBC and the error vector e can be calculated as

e = −Kw(hw − hw,ref ) (4.51)
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Figure 4.13: The efficacy of the quaternion feedback controller and the EKF provided
as the pointing metric. The pointing metric is the difference between the command
quaternion qc and the actual quaternion q.

where Kw is a positive gain, hw is the measured angular momentum of the wheels and
hw,ref is the desired angular momentum of the wheels (set as 0). The magnetorquers
torques τm can then be calculated as [22]

τm = m × bB (4.52)

and are shown in Figure 4.14. It is evident that when the satellite control changes from
eclipse to sunlit and from sunlit to eclipse the magnetorquers compensate for the increase
in reaction wheel torques and minimise the reaction wheel disturbance.

4.4. Simulation Overview
To demonstrate how the different aspects of the simulation environment and the FDIR
fit together a block diagram for the fault detection, isolation and recovery (FDIR) of the
EKF within the ADCS system is provided in Figure 1.2. The FDIR is provided with both
the inputs from the feature extraction component as well as the sensor measurements to
predict whether an anomaly has occurred. Thereafter, the anomaly must be isolated and
therefore classified as to which practical anomaly caused the current sensor measurements.
The anomaly is then recovered depending on the recovery method and anomaly type.

The anomalies discussed and modelled in this thesis are specific to the design of the
satellite as discussed in Chapter 3. The practical anomalies are the solar reflection from the
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Figure 4.14: Magnetic control torques of the magnetorquers to illustrate the magnitude
of the torques to ensure that the momentum of the reaction wheels remain at a minimum.
This is implemented to ensure that the reaction wheel disturbance torque is decreased.
The legend provides the axis of the coordinate frame for which the magnitude of the
torque is given.

solar panels on the sun sensor, the Moon on the Earth’s horizon influencing the algorithm
of an infrared horizon sensor and magnetic moment disturbances caused by the magnetic
induced dipole moment of the solar panels influencing the magnetometer. The general
sensor anomalies is that of high noise. The actuator failure is that of a reaction wheel not
responding to control inputs.

The theoretical background for the environment as well as the ADCS was discussed
in this chapter. This provides all the necessary elements to simulate the environment to
create a database for the training of the different detection methods. This also provides the
environment to induce the anomalies as modelled in Chapter 5. With all these elements
the overview of the software implementation can be given in Figure 4.15. The flow of the
calculations are provided and none of the blocks in the flow diagram are If Statements,
Figure 4.15 only provides the sequence of how the elements fits together.

The first block of Figure 4.15 represents the initialisation of the environment parameters.
These parameters include, but are not limited to, the sensors and actuators positions as
discussed in Chapter 3 as well as the initial quaternion q0 and ωI

B0 . Thereafter the second
block represents the environmental factors such as the Sun position, geomagnetic field,
orbit propagation and the associated factors such as the eclipse. The disturbance torques
τ d can be calculated according to the current state vector xk and in parallel the sensor
measurements can be calculated according to the sensor models. It is during the sensor

Stellenbosch University https://scholar.sun.ac.za



4.4. Simulation Overview 42

Initiate Parameters

Calculate τ c
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Update ωI
B

Update q

Calculate x̂k+1

Update dataframe with current time step data

Simulate
anomaly

Calculate sun and
magnetic field

Calculate vB
for each sensor from xk

from x̂k

Figure 4.15: The overview of the simulation provided as a block diagram.

measurement calculations where the models of the anomalies are implemented. After the
calculation of the current sensor measurements, the control torque τ c can be calculated
from the quaternion feedback controller and momentum dumping.

The control torque τ c and the disturbance torque τ d is used to calculated the angular
rate ωI

B. The calculated angular rate can thereafter be used to calculated ωO
B and q. From
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the current sensor measurements and the control torque τ c can implemented in the EKF
algorithm to calculate the estimated state vector x̂k+1. After a single time step of the
simulation has passed, the database can be updated for the training of the detection and
isolation algorithms.

4.5. Summary
In this chapter the theoretical background for the satellite environment is discussed. This
includes the coordinate frames, orbit propagation, attitude, satellite kinematics and dy-
namics as well as environmental factors such as the Sun’s position and disturbances torques
such as the gravity gradient disturbance torque. This provides a realistic environment
for the testing of the FDIR methods as well as an environment in which the anomalies
can be modelled. The background of the EKF and the quaternion feedback control and
momentum dumping is discussed to provide insight into the controller block of Figure 1.2.

This background is provided to ensure that the reader understands the specific environ-
ment in which the FDIR is required as well as the challenges for FDIR in the given context.
The simulation can be implemented after the discussion of the ADCS implementation and
the environmental factors, where the overview of the simulation is given in the software
block diagram of Figure 4.15. This chapter provides the background for the normal
operation of the satellite and discusses the controller, EKF, simulated environment and
sensors blocks of Figure 1.2.
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Chapter 5

Anomalies

To ensure that the prediction and classification of anomalies are not based on generalised
sensor failures an anomaly for each sensor is modelled as discussed in Chapter 2. These
anomalies are either chosen to show the significant effect of these anomalies on the ADCS
or are modelled based on research that label the anomaly as a possible influence on the
ADCS as discussed in Chapter 4. There is an anomaly for each sensor, that will create
inaccuracies for that specific sensor measurement. An anomaly for the reaction wheels is
also implemented to show the resulting estimation failure based on an inaccurate model
update, since the control torque τw and the torque implemented on the reaction wheel
would not be the same. All anomalies will also be predicted based on the sensor readings
and outputs from feature extractions, since the effect will be evident on all the sensors.

There are three separate classes of anomalies that influence the EKF. The first are
anomalies that only influence sensor measurements. This can be general anomalies such
as high noise or sudden failure as well us specific modelled anomalies that are highly
dependent on the orbital nature of the satellite, such as the reflection of solar panels on a
sun sensor and the Moon in the horizon sensor’s field of view. Another class is that of
anomalies that influence both the sensor measurements and cause an external disturbance
torques on the satellite. An example of this is the magnetic moment disturbance anomaly
that influence the magnetometer as well as the magnetorquers. The last class is that of
actuator failures that influence the model of the EKF. Examples of this is that of sudden
reaction wheel failures.

5.1. Reflection of Solar Panels on Sun Sensor
The Sun reflection anomaly occurs when the Sun reflects from the solar panels unto the
sun sensor. This influences the sun vector measured by the sun sensor. This is a practical
anomaly that is dependent on the orbital nature of the satellite.

The Sun reflection anomaly is modelled for the specific shape and design of the satellite
as shown in Figure 3.3. The modelling takes place within the satellite body coordinate
(SBC) frame. The modelling of the Sun reflection anomaly from the solar panels unto the
sun sensor is illustrated in Figure 5.1. The incoming sun vector rsun reflects from the solar

44

Stellenbosch University https://scholar.sun.ac.za



5.1. Reflection of Solar Panels on Sun Sensor 45

panel as the vector rref.
AB

C D
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B’ A’
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XB′C XA′D

XA′B′

XCD

Figure 5.1: Visual representation of the modelling for the Sun reflection from the solar
panels unto the sun sensor. The reflected position of a point A from the solar panel on
the geometric plane of the sun sensor WXY Z is denoted as A′.

The solar panel is modelled as a geometric plane, based on the assumption that the
solar panel’s surface is more or less smooth and the reflection area will be similar to that
of a perfectly smooth mirror. This model also assumes, that if the sun sensor detects
any reflection from the solar panel, the measured sun vector will default to the reflection
ray instead of the direct sun vector. In practice, this is a function of the exact detection
algorithm within the sensor, and some reflections might be ignored. This assumption
will, however, produce the worst-case behaviour. The intensity of the light vector is also
disregarded.

The solar panel geometric plane ABCD can be represented in the SBC by a point and
unit normal vector to the plane defined as

pABCD = [px, py, pz]T ,
and n̄ABCD = [nx, ny, nz]T ,

(5.1)

respectively. Similarly, the sun sensor geometric plane WXY Z is represented by the point
pWXY Z and normal vector n̄WXY Z .

The reflected sun vector rref can be calculated by

rref = r̄sun − 2n̄⊤
ABCD(r̄sun · n̄ABCD), (5.2)

where r̄sun is the incoming unit sun vector. To calculate the intersection of the reflected
vector with the geometric plane of the sun sensor WXY Z, the equation of WXY Z, the
reflected unit sun vector r̄ref, and the point of origin is required. The reflection of the sun
vector is illustrated in Figure 5.1. The reflection from the point Q to the point Q′ can
thus be calculated as a projection of rref unto the WXY Z-plane.
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To model reflection from the solar panels to the sun sensor, only two corners of the
solar panel and two corners of the sun sensor are to be considered. From Figure 5.1 it is
evident that if the solar panel reflects on Y that the reflection will also cover X. The same
is true for corner Z and W . Since C ′ will be at the same position as C, which is valid for
D′ and D, the calculation can be omitted. It is therefore only necessary to calculate the
reflected positions A′ and B′. This simplifies the reflection model significantly.

The reflected position A′ can be calculated as the intersection of the reflected vector
rref with plane WXY Z. The position of A is also known, based on the satellite design,
and A′ can therefore be calculated. The same applies to B and B′. To determine whether
Y or X is within the reflection region, it is assumed that the plane WXY Z is a 2D plane,
and the third dimension is omitted. The axes therefore change from x, y, z to only x, y.
To calculate whether X is between the lines of A′D and B′C and between the lines CD
and A′B′ the line equation between reflected points in the form

yA′B′ = mxA′B′ + c, (5.3)

can be implemented. From the coordinates of A′ and B′, the corresponding XA′B′,y can be
calculated by substituting Xx into Equation 5.3. With the same method the coordinates
of XB′C , XA′D, XA′B′ and XCD can be determined. After that, with logical If Statements,
it can be determined whether X is in the reflection zone. If Xx is to the right of XB′C,x

and to the left of XA′D,x, as well as Xy is above XA′B′,y and below XCD,y then X is within
the reflection zone.

The results for the sun vector with reflection are shown in Figure 5.2. There is a clear
difference between the sun vector during normal operation provided in Figure 4.11 and
the measurement influenced by the reflection. This sun reflection vector may affect the
estimation and, thus also the attitude control of the satellite.

5.1.1. Influence of the Sun Reflection Anomaly on the Estimation

To determine whether the reflection on the sun sensor has an influence on the ADCS, the
estimation metric is shown in Figure 5.3. The estimation metric, is the angle difference
between the true quaternion q and estimated quaternion q̂ in degrees. It is evident that
the reflection has a large influence on the estimation when Figure 5.3 is compared with
Figure 4.12. The maximum estimation error is 6◦ for normal operation and it is evident in
Figure 5.3 that the estimation error is sometimes larger than 150◦. It is also clear that
during the eclipse the estimation returns to a more accurate estimation. This is due to
the fact that sun measurement is not available during eclipse.
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Figure 5.2: Measured sun vector with Sun reflections in SBC. The red lines of the graph
are the periods when the anomaly occurs. The legend provides the axis of the coordinate
frame for the unit vector of the sun measurement.
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Figure 5.3: Estimation metric in degrees during the first two orbits due to the Sun
reflection anomaly. The estimation metric is the absolute difference between the attitude
in quaternion qk and the estimated quaternion q̂k in degrees. The red lines of the graph
are the periods when the anomaly occurs.
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5.2. The Moon in Field of View of the Horizon Sensor
An anomaly that can be experienced by an infrared (IR) horizon sensor is when the
Moon is overlapping the horizon of the Earth in the horizon sensor’s field of view (FoV).
This influences the edge detection and circular fit algorithm [23, 51] and consequently
the calculated centre of the Earth. It is required to simulate the image seen by the
horizon sensor and thereafter the algorithm for detecting the centre of the Earth can be
implemented.

5.2.1. Simulating the Horizon Sensor’s Infra-red Image

To model and simulate the horizon sensor’s image a few vectors providing the relative
positions of the objects should be determined. Firstly, the vectors of both the satellite-to-
Earth rSE and Earth-to-Moon rEM are required. The Moon’s position is determined with
the Julian date, since the propagation of the Moon position relative to the centre of the
Earth has been calculated in advance. These vectors are shown in Figure 5.4.

rSE

rSM

rEM

Figure 5.4: Visual representation of the Earth to the Moon rEM , the satellite-to-Earth
rSE and the satellite-to-Moon rSM vectors.
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From the vector rSE and the position of the centre of the Earth PEarth a 3D plane
normal to the vector rSE and at the position PEarth can be calculated. The position PEarth
and the vector rSE are defined as

PEarth = [px, py, pz], (5.4)

and
rSE = [rx, ry, rz]. (5.5)

The equation for the 3D plane is defined as

Ax+By + Cx = D, (5.6)

where the parameters A,B,C,D can be calculated as
A

B

C

D

 =


rx
ry
rz

rxpx + rypy + rzpz

 (5.7)

This 3D plane slices the Earth in half as shown in Figure 5.5. The Moon and the Earth
can both be projected unto the 3D plane to determine the image seen by the horizon
sensor. The horizon sensor’s centre of view vector must also be projected unto the 3D
plane. A circle can be drawn for the Earth, the Moon and the horizon sensor’s FoV based
on each projected radius.

The radius, of the Moon as projected on the 3D plane can be calculated as

Rmoon = ∥rSE∥ rmoon
∥rSM∥

, (5.8)

where the parameter rmoon is the actual radius of the Moon. The radius of the horizon
sensor’s FoV can calculated as

RFoV = ∥rSE∥ tan (θ) , (5.9)

where the angle θ is the FoV angle of the IR horizon sensor. The edges of the Moon
and the Earth within the nadir FoV can be determined with these variables defined and
calculated.

Firstly the edges of the Moon and the Earth are discretely determined due to the pixel
width of the horizon sensor. The discrete points are therefore based on a fixed number
of points N for the Earth and the number of discrete points on the Moon is determined
based on the ratio of Rmoon to REarth. The discrete points for the Moon is therefore equal
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rSE

Plane
Figure 5.5: Plane perpendicular to rSE and at centre of the Earth.

to N
(
Rmoon

REarth

)
. The Earth and the Moon’s outline projected as discrete points unto the

3D plane are shown in Figure 5.6. The discrete edges of the Earth and the Moon that
is within the FoV of the IR horizon sensor will be used by the algorithm to calculate
the centre of the Earth. The discrete points from the Earth must satisfy the following
conditions to be used by the algorithm:

1. Distance between a point and the centre of the horizon sensor’s FoV must be smaller
than RFoV .

2. Distance between a point and the centre of the Moon must be larger than Rmoon.

The discrete edges of the Moon used for the algorithm must satisfy the following conditions:

1. Distance between any discrete point and the centre of the Earth must be smaller
than REarth for the Moon to overlap the horizon. If any of the discrete points the
Moon outline satisfies this condition then conditions 2 and 3 are considered.

2. Distance between a point and the centre of the horizon sensor’s FoV must be smaller
than RFoV .

3. Distance between a point and the centre of the Earth must be larger than REarth.

This then creates the array of points that will be used in the algorithm to calculate the
centre of Earth.

The scaling of the circles in Figure 5.6 depends on the orbit parameters. The influence
of the anomaly will therefore depend on the satellite orbit parameters as this will change
the number of points within the horizon sensor’s FoV. This in turn will influence the
circular fit algorithm.
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Moon
Earth

Horizon Sensor

RFOV

REarth
Rmoon

Figure 5.6: Projection of the Moon, the Earth and the horizon sensor’s field of view on
the geometric plane.

5.2.2. Calculating the Centre of the Earth

The edges of the Earth are detected based on a gradient between the lowest temperature and
the highest temperature within the IR horizon sensor’s FoV. This will not be implemented
in this case, since it is possible to determine discrete points of both the Earth and the
Moon from the simulation environment. Furthermore the visible phases of the Moon will
not be accounted for. The reasoning for this is due to the coldest side of the Moon being
140K and the warmest part, 400K. The temperature of space is 2.7K and the coldest part
on the Earth is 180K. The IR horizon sensor must therefore be calibrated to always use
the minimum value for edge detection as 180K or it must use the smallest value in the
image, which will most likely be 2.7K. It can therefore be assumed that the Moon will not
have any detectable phases for the IR horizon sensor and it will always be seen as a full
moon, due to it’s lowest temperature being warmer than that of space.

With this assumption the circular fit algorithm as shown in Figure 5.7 can now be
used to determine the centre of the Earth on the plane [23]. For this calculation the 3D
plane is transformed to a 2D plane and all the coordinates is also transformed. The centre
of the Earth on the 2D plane is therefore given as (xc, yc). The goal of the algorithm is to
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calculate the centre of the Earth (xc, yc) and use it to transform the point to the 3D plane
and thereafter calculate the measured vector rSE.

y
-A

xi
s

x-Axis

(xc, yc)

rc

Figure 5.7: Visual representation of the circular fit algorithm for the horizon sensor. The
black dotted line represents the discrete dots of the Moon, while the blue dotted line
represents the discrete dots of the Earth within the horizon sensor’s field of FoV.

Firstly the curvature of a circle is described as

ax+ by + c = x2 + y2, (5.10)

where
a = 2xc
b = 2yc
c = r2

c −
√
x2
c + y2

c .

(5.11)

Therefore using all the coordinates of the discrete edges (xn, yn) within the horizon sensor’s
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FoV the values of a, b and c can be calculated as

x0 y0 1
x1 y1 1
... ... ...
xn yn 1



a

b

c

 =


x2

0 + y2
0

x2
1 + y2

1
...

x2
n + y2

n

 . (5.12)

It is thus evident that when the Moon overlaps the horizon of the Earth from the horizon
sensor’s perspective the centre of Earth will be incorrectly calculated. The error of the
calculation depends on the number of discrete points from the moon within the discrete
edges (xn, yn). A similar anomaly where the Sun is in the FoV of the horizon sensor will
not provide a measurement, since the Sun will saturate the IR horizon sensor [23]. The
anomaly will therefore not be modelled since it will only provide a sensor vector of 0 and
will be ignored by default.

5.2.3. Influence of the Anomaly on Estimation

To determine the effect of the discrete the Moon edges on the circular fit algorithm, the
measured Earth vector with the Moon on horizon anomaly is shown in Figure 5.8. From
Figure 5.8 the effect of the Moon on the horizon anomaly seems to be small and there is
no notable change at the sections when the anomaly occurs. The duration in which the
Moon is on the Earth’s horizon and within the FoV of the horizon sensor is short as is
evident by the thin red lines in Figure 5.8. Where the red background indicates the time
steps when the anomaly occurs.

Figure 5.9 furthermore provides the estimation metric due to the Moon on horizon
anomaly and comparing the estimation metric with that of Figure 4.12 it can be noted that
the estimation metric is slightly affected by this anomaly. The effect on the estimation
metric is, however, small. This anomaly is therefore not included in the FDIR development.
This is because including this anomaly in the FDIR developments might have a negative
influence on the detection and isolation algorithms, since the data from this anomaly will
be too similar to the normal data might decrease the accuracy of the anomaly detection
and isolation. In Figure 5.8 it can be seen that the anomaly’s influence falls within the
noise profile of the horizon sensor. This anomaly can, however, have a more significant
influence with other parameters for the field of view of the horizon sensor and the orbit
parameters.
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Figure 5.8: The Earth unit vector in SBC due to the Moon on the Earth’s horizon
anomaly. The red lines of the graph are the periods when the anomaly occurs. The legend
provides the axis of the coordinate frame for which the magnitude of the difference in
measurement is given.
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Figure 5.9: Estimation metric in degrees during the first two orbits due to the Moon
on the Earth’s horizon anomaly. The red lines of the graph are the periods when the
anomaly occurs. The estimation metric is the absolute difference between the attitude in
quaternion qk and the estimated quaternion q̂k in degrees.
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5.3. Magnetic Moment Disturbance
Magnetic moments produced by a coil in solar panels on a CubeSat can create a disturbance
torque and influence the magnetometer measurements due to the induced magnetic field
in the coil of the solar panel [30, 52]. According to C. Jéger [30] the current I in each
individual cell of the solar panel can be modelled as a cumulative current for the entire
solar panel, since the normal vector to each cell and the solar panel is the same. This
magnetic moment is modelled for the specific size of the CubeSat model in Figure 3.3.
The coil in the solar panel and the resulting magnetic field br as well as the resulting
dipole moment m is shown in Figure 5.10. The inner vector area of the coil a is assumed
to be the same as the surface area of the solar panel.

br

a

I

m

Figure 5.10: Dipole moment due to current in circular loop of circuit in solar panel.
The yellow line represents the circuit coil. The dipole moment m is perpendicular to the
surface of the solar panel

The dipole moment m is calculated as

m = Ia. (5.13)

The current is generated by the solar panel and thus depends on the incoming sun vector
as well as the area of the solar panel illuminated by the sun. A shadow of the satellite
body can cover areas of the solar panels as demonstrated in Figure 5.11. This decreases
the current in these solar panels and also the induced dipole moment from these solar
panels.

The current I can therefore be calculated as

I = Imax
Atotal

Ailluminated
cos(θ), (5.14)

where θ is the angle between the normal vector to the solar panel and the incoming sun
vector rsun and Imax depends on the solar panel model. Imax for this anomaly is given
as 0.45A. The areas Atotal and Ailluminated are scalar values and respectively represent
the total area of the solar panel and the illuminated area of the solar panel, where the
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Figure 5.11: Shadow created by CubeSat body on solar panels.

dimensions of the solar panels to calculate Atotal are provided in Section 3.2.
The dipole moment produces a disturbance torque on the CubeSat. With the resulting

torque τ dm, from the dipole moment, expressed as

τ dm = m × bB, (5.15)

where bB is the geomagnetic field of the Earth. The only external magnetic field that can
create a considerable resulting torque is that of the Earth. The resulting torque for two
orbits are shown in Figure 5.12. It is evident that τ dm is 0 during eclipse, since there is
no current from the solar panels and therefore no induced dipole moment. The magnetic
moment disturbance torque is similar in magnitude to that of the aerodynamic disturbance
torque τ aero shown in Figure 4.7.

The magnetometer measurement influenced by the magnetic field produced by the coil
in the solar panel can be calculated with

brm = µ0

4π
3rm(rm · m) − m

∥rm∥3 , (5.16)

where µ0 is the vacuum permeability constant and rm is the vector from the centre of
a solar panel to the centre of the magnetometer. The vector rm will therefore change
depending on each solar panel. The magnetometer measurement is then a summation of
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Figure 5.12: Magnetic moment disturbance torque in SBC. The grey background sections
of the graph are the eclipse periods, while the sections with the white background is the
sunlit phase of the orbit. The legend provides the axis of the coordinate frame for which
the magnitude of the torque is given.

each solar panel’s resultant magnetic field brm and the geomagnetic field bB.

5.3.1. Influence of Magnetic Moment Disturbance Anomaly on
Estimation

The vector rm between the position of the magnetometer and the solar panel influences the
magnetic field significantly. The experienced magnetic field by the magnetometer will be
different for each solar panel. The resulting measured vector by the magnetometer is the
summation of the Earth’s geomagnetic field bB and the magnetic field produced by the coils
in the solar panels br. The magnetometer measurement due to the induced dipole moment
is shown in Figure 5.13. The changes from the anomalous period to non-anomalous period
is significant especially for Mz as is evident in the jumps of the blue line from the white
sections to the red sections in Figure 5.13.

From Figure 5.14 it is evident that this anomaly has a significant effect on the estimation,
but not as large as the Sun reflection on the sun sensor. The estimation metric increases
during the sunlit phase, since this is when the magnetic moment disturbance occurs.
However, it is not yet clear whether the estimation error increases due to the difference in
the magnetometer measurement or the disturbance torque τ dm. This, however, will be
evident when the anomaly recovery results are discussed.
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Figure 5.13: Magnetometer unit vector in SBC due to the magnetic moment disturbance.
The red background sections of the graph are the periods when the anomaly occurs. The
legend provides the axis of the coordinate frame for which the magnitude in the unit
vector is given.

0 2000 4000 6000 8000 10000
Time (s)

0

5

10

15

20

Es
tim

at
io

n
M

et
ric

,θ
(d

eg
)

Figure 5.14: Estimation metric in degrees during the first two orbits due to magnetic
moment disturbance. The red background sections of the graph are the periods when the
anomaly occurs. The estimation metric is the absolute difference between the attitude in
quaternion qk and the estimated quaternion q̂k in degrees.
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5.4. Higher Noise on Sensor Measurements
As discussed in Chapter 1 and Chapter 2 many research that is conducted in the field of
FDIR of sensor anomalies base the research on general sensor anomalies. Increasing the
noise of the sensor is a good example thereof. The general anomaly of high noise on a
sensor is simulated with an increased standard deviation of 0.1 from the first orbit. An
example of the increased noise on the sun sensor is given in Figure 5.15.
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Figure 5.15: Sun sensor measurement with high noise as anomaly. The red background
sections of the graph are the periods when the anomaly occurs. The legend provides the
axis of the coordinate frame for which the magnitude in the unit vector is given.

To demonstrate the effect of the increase noise on the sun sensor on the estimation
metric, the first two orbits are provided in Figure 5.16, where the red background is when
the sun sensor is experiencing the anomaly. It is therefore evident that this is anomaly
influences the estimation enough to require recovery and must therefore be dwelt with.
The fault detection of general anomalies such as high noise can be done through waveform
analysis methods such as the Fourier transform. By determining the magnitude of the
various harmonics and frequencies within the data set, it can be determined whether the
noise has drastically increased. This, however, is not analysed as a possible detection
method, since the focus of the thesis is the implementation of learning methods for anomaly
detection and isolation as discussed in Chapter 2.

Stellenbosch University https://scholar.sun.ac.za



5.4. Higher Noise on Sensor Measurements 60

0 2000 4000 6000 8000 10000
Time (s)

0

20

40

60

80

100

120

140

Es
tim

at
io

n
M

et
ric

,θ
(d

eg
)

Figure 5.16: Estimation metric for the first two orbits due to high sun sensor noise
without any recovery. The red background sections of the graph are the periods when the
anomaly occurs. The estimation metric is the absolute difference between the attitude in
quaternion qk and the estimated quaternion q̂k in degrees.

5.4.1. Reaction Wheel Failure

Failures of actuators may effect both the estimation and the control of the satellite. When
an actuator fails it therefore influences all the sensor measurements. The anomaly will be
modelled as a sudden failure in the actuator when it does not react to inputs. The reaction
wheel will thus continue to spin, but the control input of the failed reaction wheel will be
equal to 0. The momentum dumping will decrease the failed reaction wheel’s momentum
over time. This will influence the EKF, since the model update will be inaccurate. This
anomaly is therefore included even though it is not a sensor anomaly, because this anomaly
often occurs and influences the estimation accuracy.

The recovery of the control torque τw within the controller is, however, not within
the scope of this thesis, but the model update for the estimation will be adjusted based
on a modified torque vector τ ′

w. The torque of the failed reaction wheel is set to 0 for a
possible recovery method on only the EKF. The anomaly is implemented from the first
orbit. The resulting estimation metric for this anomaly is shown in Figure 5.17 and it is
evident that this anomaly has a large negative effect on the EKF.
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Figure 5.17: Average estimation metric per orbit for 30 orbits of reaction wheel failure
without any recovery. The estimation metric is the absolute difference between the
attitude in quaternion qk and the estimated quaternion q̂k in degrees.

5.5. Summary
This chapter provides anomalies for both orbit sensitive anomalies (practical) and general
anomalies. An anomaly can be classified based on the influence that it has on either
the sensors, the actuators or both the sensors and the actuators. The orbit sensitive
anomalies are modelled and discussed since it might be more difficult to classify than
general anomalies and many literature studies only focusses on FDIR for general sensor
anomalies.

It is evident that the reflection of solar panels unto the sun sensor, reaction wheel
failure and the magnetic moment disturbance have considerable increases in the estimation
metric. These anomalies must therefore be recovered from, to ensure autonomous fault
tolerant control. The Moon in the FoV of the horizon sensor has a much smaller effect
on the estimation metric given the current conceptual design of the satellite. A FDIR
technique is required to ensure that these anomalies do not negatively effect the estimation
of the EKF. The anomaly should be detected and then classified based on the sensor
responsible for the anomaly (isolation). An appropriate action can be taken to minimise
the anomaly’s effect on the mission’s pointing performance. This chapter therefore provides
the detail of the anomaly block in Figure 1.2.
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Chapter 6

Anomaly Detection and Isolation

Detecting an anomaly is a binary classification problem. The method implemented must
be able to distinguish between normal data and anomalies. There are many different
classes of algorithms which can be implemented to detect anomalies. This ranges from
simple If Statement logic to neural networks. Learning methods are very popular within
the field of FDIR and this is consequently chosen as the method of implementation. This
is chosen especially due to the lack of testing of developed learning methods for FDIR on
practical satellite sensor anomalies. Although there are various learning methods which
can be implemented for this use case, only three supervised learning methodologies and
one unsupervised learning method are implemented. These methods are chosen due to the
literature study as discussed in Chapter 2.

The major difference between the supervised learning and the unsupervised learning
methods for anomaly detection is that the data must be labelled for supervised learning.
Moreover, the number of anomalous samples and normal samples should be more or
less the same for supervised learning, while in the case of unsupervised learning, the
anomalous samples should be sparse. This will be accounted for and will be discussed in
the application of the supervised learning algorithms.

The feature extraction methods are also discussed in this chapter. The feature extraction
methods are implemented to enhance the prediction accuracy of the detection and isolation
methods. As shown in Figure 1.2, the feature extraction method provides additional inputs
to the detection and isolation algorithms. This chapter will discuss the feature extraction
block, as well as the detection and isolation block in Figure 1.2.

The methods discussed in this chapter is shown in Figure 6.1. They are grouped
according to the functionality of the method and are discussed, starting with the moving
average of the estimated sensor measurements (MAESM) and ending with support vector
machines (SVMs). The feature extraction methods discussed in this chapter are the
MAESM and the local outlier factor (LOF) algorithms. The LOF can also be implemented
as an unsupervised learning detection algorithm and is therefore classified as both a feature
extraction and a detection method. The detection methods are divided into supervised
learning and unsupervised learning methods. The unsupervised learning method LOF can
only be implemented for detection (binary classification), while the supervised learning
methods like decision tree (DT), random forest (RF) and support vector machines (SVMs)

62
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can also be implemented for isolation (classifying the sensor responsible for the anomaly).

Fault Detection
and Isolation

Feature Extraction

Detection

Isolation

MAESM

LOF

DT

RF

SVM

Figure 6.1: The grouping of the various algorithms and methods into the subgroups of
feature extraction, detection and isolation. The abbreviations of the methods are provided
in the figure. The methods in the figure are the moving average of the estimated sensor
measurements (MAESM), local outlier factor (LOF), decision tree (DT) and random
forest (RF).

Based on the discussions in Chapter 5 the algorithms discussed here will be analysed
on practical anomalies. This is since these anomalies are not the general anomalies and
are specific to a satellite’s orbit. These anomalies are difficult to classify and since other
research papers do not test the proposed methods on these type of anomalies, these
anomalies will be the focus of the analysis in this chapter.

6.1. Moving Average of the Estimated Sensor
Measurements

The moving average of the estimated sensor measurements (MAESM) method is adapted
from a method proposed by de Silva et al. [21]. The method proposed by de Silva et
al. [21] implements Dynamic Mode Decomposition (DMD), to reduce the dimensionality of
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the data set. The method aims to develop a correlation between the sensor measurements
at time step k and the sensor measurements at time step k + 1. This can then be used to
predict the next sensor measurement and detect anomalies based on the difference between
the predicted sensor measurements and the actual sensor measurements. The method was
tested on various different systems by de Silva et al. [21] governed by underlying physics
and the results thereof is promising as it increases the prediction accuracy of a decision
tree for detecting anomalies of many systems.

MAESM is implemented with slight variations of the method proposed by de Silva
et al. [21]. These variations are discussed in the next sections and the reasoning for the
changes are also discussed.

6.1.1. Theoretical Background

Linear regression is a method of predicting the value of one variable based on the value of
another variable. Linear regression is implemented to predict the next time step’s k + 1
measurements from the current time step’s k measurements. This is a slight adaptation
from work done by de Silva et al. [21].

The proposed method by de Silva et al. [21] uses DMD, to provide an estimation of the
next time step sensor vector based on the current measurement of the sensor as well as
the measurements of the other sensors in the system. This is implemented to detect when
the estimated sensor vector deviates a lot from the actual sensor measurement. DMD
constructs a matrix A to relate the sensor vector x with the following time step of the
sensor vector xk+1. The next sensor vector can be calculated as

xk+1 ≈ Axk, (6.1)

where xk during a specified number n of time steps will be denoted as

X =
[
x1 x2 · · · xn−1

]T
(6.2)

and similarly xk+1 during a specified number n of time steps will be denoted as

X′ =
[
x2 x3 · · · xn

]T
. (6.3)

The method of DMD is useful for high order systems where the calculation of A is
computationally intensive. The main aspect of DMD is that it reduces the dimensionality of
the data. This reduction in the dimensionality is not required for the data from the sensor
measurements of the satellite simulation, and using DMD is not justifiable. Consequently,
a linear regression model is implemented.
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The pseudo-inverse of X′, denoted as X†, can be used to approximate the matrix A as

A = XX†. (6.4)

The matrix A is implemented to estimate the next time step sensor vector xk+1 from the
current sensor vector xk. This, however, does not include the other sensor measurements,
the control torques or any other variable that influences the prediction of the next time
step sensor vector.

de Silva et al. [21] includes the matrix B and the matrix of the sensor measurements
Y to relate the vector measurements of the other sensors to adjust the predicted state X′

of the monitored sensor
X′ ≈ AX + BY, (6.5)

Both A and B can be calculated as

[
A B

]
= X′

X
Y

†

(6.6)

After creating the database from the simulation environment during normal operation,
the matrices A and B can be calculated.

The matrix Y is adjusted for this use case, where the matrix Y is the control torques for
the magnetorquers and reaction wheels and the matrix X is all of the sensor measurements.
Both matrices are for the combination of the respective variables for n number of time
steps. The model of Equation 6.5 denotes the prediction of the sensor measurements at
time step k + 1 based on the current sensor measurements and control inputs.

After calculating both matrix A and B from the simulation environment, the model
for predicting the matrix of sensor measurements Xk+1 at the time step k + 1 can be
implemented. The matrix Xk is defined as the matrix of the sensor measurements of the
sun sensor vB,s, magnetometer vB,m and the horizon sensor vB,h at a given time step k

and is calculated as
Xk =

[
vB,s vB,m vB,h

]
. (6.7)

The matrix Yk is therefore also the control torquers of the magnetorquers τm and the
reaction wheels τw at a given time step k

Yk =
[
τw τm

]
. (6.8)

As implemented by de Silva et al. [21] the model for predicting the matrix of sensor
measurements Xk+1 is adjusted with a Kalman filter. The predicted sensor measurement
matrix at a time step k with be denoted as X̂k and will be referred to as the estimated
sensor measurement matrix. From the matrix A and the matrix B the Kalman filter can
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be implemented to estimate the next time step measurement matrix X̂k+1 as

X̂k+1 ≈ AX̂k + BYk +K(Xk − X̂k), (6.9)

where the Kalman gain K is set to 0.001 [21]. After the calculation of the estimated state
matrix X̂k+1 de Silva et al. [21] proposes a moving average of the innovation covariance

Vk = 1
N

k∑
i=k−N

(Xi − X̂i)(Xi − X̂i)T, (6.10)

where N is the number of time steps to account for. This is implemented to determine
how much the estimated sensor measurements deviate from the actual sensor measure-
ments. The moving average of the estimate sensor measurements Vk will therefore be the
feature extracted from the sensors and be the additional input parameter to the isolation
algorithms.

6.1.2. Application for Feature Extraction

In order to implement the MAESM for feature extraction, the aim must be to provide
additional features to the detection and isolation algorithms which will enhance the
prediction accuracy. The method is implemented by providing the sensor measurements as
an input to the MAESM algorithm as shown in Figure 6.2. This also correlates with the
Figure 1.2, where the sensor measurements are given as input to the feature extraction
block.

The matrices A and B in Equation 6.9 are determined after executing 30 orbits of a
normal run of the simulation (without any anomalies). The sensor data as matrix X and
the control torques as matrix Y after running the simulation can be used to calculate
matrices A and B according to Equation 6.6. Matrices A and B can therefore be stored
as arrays and be collected from memory during the execution of the simulation when the
MAESM algorithm is implemented as the feature extraction method.

During the execution of the simulation, Equation 6.9 and Equation 6.10 are implemented
to determine Vk from the current sensor measurements as the matrix Xk and the estimated
sensor measurements X̂k. The matrices Xk and X̂k are stored for N number of time steps
and the moving average is therefore recalculated every time step k. The matrices Xk and
X̂k are initiated as 0 matrices (where all the values are equal to 0). And the moving
average Vk is therefore not influenced by the time steps before time step 0.

6.1.3. Analysis for Feature Extraction

The moving average of the estimated sensor measurements provided by the linear regression
method is a matrix and is therefore difficult to visualize. To determine whether the method
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Figure 6.2: The input and output of the moving average of the estimated sensor
measurements method. Where the input is the sensor measurements and the output is
the moving average Vk.

provides a feature that provides information of whether the current time step contains an
anomaly cannot be done by plotting the matrix. The moving average can, however, be
simplified to a summation of the values in the moving average (SVMA) or the absolute
values thereof (SAVMA). This is implemented to demonstrate the increase of the values
within the matrix after an anomaly occurs. Since the moving average has, by definition, a
delayed response to the anomaly, it is expected that the SVMA and SAVMA will increase
after an anomaly occurs. The SAVMA, however, will only provide insight into whether
the estimated sensor measurements deviates from the actual sensor measurements during
an anomaly. The SVMA and the SAVMA for the Sun reflection is provided in Figure 6.3
and Figure 6.4 respectively. In the case of the Sun reflection, the SAVMA increases after
an anomaly occurs with a delayed response. The SVMA provides even more insight as it
creates spikes after an anomaly occurred and then returns to normal.

In Figure 6.5 and Figure 6.6, the SVMA and SAVMA seems to be smaller during a
normal period than a period when an anomaly occurs. The moving average of the estimated
sensor measurements provides the change in the relationship between the control input
and the sensors. Figure 6.6 provides the insight that the magnetic moment disturbance
has a smaller effect on the relationship between the sensor and the control input when
compared to that of the Sun reflection.
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Figure 6.3: Summation of absolute values in the moving average during first two orbits
during the Sun reflection anomaly. The red lines indicates when the Sun reflection
anomaly occurs.
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Figure 6.4: Summation of absolute values in the moving average during first two orbits
during the Sun reflection anomaly. The red lines indicates when the Sun reflection
anomaly occurs.

It can therefore be concluded that the moving average of the estimated sensor measure-
ments might not provide insight into whether a magnetic moment disturbance anomaly
occurred. The delayed response in both Figure 6.4 and Figure 6.6 seem to suggest that
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the moving average of the estimated sensor measurements might also trigger a detection
algorithm too late.
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Figure 6.5: Summation of absolute values in the moving average during first two orbits
during the magnetic moment disturbance anomaly. The red area indicates when the
magnetic moment disturbance occurs.
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Figure 6.6: Summation of absolute values in the moving average during first two orbits
during the magnetic moment disturbance anomaly. The red area indicates when the
magnetic moment disturbance occurs.
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6.2. Local Outlier Factor Algorithm
Most anomaly detection algorithms are based on a metric which accounts for the entire data
set [53]. Many anomalies are, however, identifiable in relation to the local neighbourhood
of data points and not the overall data set. Breunig et al. [53] therefore developed the local
outlier factor (LOF) algorithm that provides a measure of a data point’s “irregularity”
within a subset of data points. This implies that a data point is not merely classified as an
anomaly or not, but that a local outlier factor is calculated to determine how much a data
point is distantiated from its k nearest neighbours. This is a very attractive method for
detecting outliers on satellite sensor anomalies, since the satellite data can be classified into
two major neighbourhoods, namely the eclipse and sunlit phase. It is therefore necessary
to determine whether a data point is an anomaly within the local neighbourhoods where
the behaviour of the satellite is different in each instance. The advantage of this algorithm
is that the algorithm is only trained on simulated data without any anomalies and can
thereafter provide an outlier score of a data point based on the training data. This leads
to a method that can potentially detect multiple anomalies without any further training
after training on the normal data.

6.2.1. Theoretical Background

Breunig et al. [53] developed the LOF algorithm to provide an outlier score for a data
point relative to its k nearest neighbours. The outlier score O as the output of the LOF
algorithm is calculated as

ONmin
(po) =

∑
pi∈Nmin(po)

ρNmin
(pi)

ρNmin
(po)

|Nmin(po)|
, (6.11)

and a summary for the derivation thereof will be given in the next few paragraphs. The
outlier score for a random data set is demonstrated in Figure 6.7 where the data points
that are clustered together have smaller outlier scores compared to the data points that
are further away from the highly dense areas.

The LOF algorithm requires an understanding of the underlying concepts and definitions.
These definitions are provided by Breunig et al. [53]. Firstly, the k-distance of an object is
calculated. This can be demonstrated in Figure 6.8, where, given k = 5, the k-distance
of the object po is provided as the radius of the dashed circle. The k-distance can be
determined after a k number of objects are within a given radius from the object po. The
k-distance is, therefore, simply the distance from the current object to the kth object from
it. The k-distance of an object po will be denoted as k-distance(po).

To reduce fluctuations in the distance d(po, pi) between the object po and an object pi
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Figure 6.7: Local outlier factor of a random data set to demonstrate the outlier score
produced by the local outlier factor algorithm [54]. The colour map on the right provides
the value of the outlier score O.
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Figure 6.8: Reachability distance of the object po with k = 5.

the distance between po and pi is replaced with the reachability distance [53]

dk = max (d(po, pi), k-distance(po)) . (6.12)
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The reachability distance dk between the object po and the objects p1 to p4 are equal given
that k = 5. The reachability distance dk between the object po and the objects p5 to p8

are the distance from po to the respective object pi since it is larger than the k-distance
from the object po.

The parameter determining the number of points required to define a local neighbour-
hood is denoted as Nmin. The k-distance will therefore be replaced by the Nmin-distance
to determine the local neighbourhood. The parameter Nmin is fine tuned based on the
specific application and Breunig et al. [53] provides a method of determining Nmin for the
most accurate results. The equations and parameters that are influenced by this parameter
is given the subscript of Nmin.

To determine the local outlier factor the density of the local neighbourhood is required.
The inverse of the average reachability distance dNmin

for Nmin-nearest data points to the
data point po [53] is the local reachability density

ρNmin
(po) = 1/


∑

pi∈Nmin(po)
dNmin

(po, pi)

|Nmin(po)|

 . (6.13)

This local reachability density ρNmin
(po) enables the calculation for the outlier score of

point po in Equation 6.11.
The threshold for detecting an outlier is not fixed and the threshold can be changed

depending on the application. The rule of thumb for detecting an outlier is that when
the outlier score O is larger than 1, the point is considered an outlier with respect to its
neighbourhood. LOF can therefore be an anomaly detection algorithm if a given threshold
is implemented, otherwise the O can be given as an additional feature for other anomaly
detection algorithms.

6.2.2. Application for Feature Extraction

The LOF algorithm is aimed at producing a measure of the how much a given data point
is considered an outsider or anomaly within a local neighbourhood and not for all the data
points. This measure of “irregularity” is given as the outlier score O from Equation 6.11.
The implementation of the LOF algorithm for feature extraction is similar to that of
MAESM. The LOF algorithm is trained on normal data with the Scikit-learn model for
Python [54]. The fitted model produced by the algorithm is stored in memory and used
during simulation to provide an outlier score for a data sample at any given time step k.
This outlier score is then provided to a detection or isolation algorithm as an additional
input parameter.
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6.2.3. Analysis for Feature Extraction

The LOF algorithm is trained on the normal operation of a satellite simulation (without
any anomalies) using the simulation described in Chapter 4. Thereafter, the outlier score
O for both the Sun reflection anomaly, as well as the magnetic moment disturbance as
modelled in Chapter 5 is provided in Figure 6.9 and Figure 6.10, respectively. The time
steps when the anomaly occurs are given a red vertical line.

In Figure 6.9, the outlier score O increases after the Sun reflection anomaly occurs.
This is due to effect of the anomaly on the ADCS. The ADCS control is anomalous for a
duration after the anomaly occurred.
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Figure 6.9: Local outlier factor during the first two orbits of the Sun reflection anomaly.
The red lines indicate when the Sun reflection anomaly occurs.

In Figure 6.10, the same pattern as Figure 6.9 occurs, where the stable value of the LOF
without any anomalies is 0. Figure 6.10 demonstrates this, since the value significantly
increases after an anomaly occurs and decreases to a value of 0 after the anomaly period
is over. From both Figure 6.9 and Figure 6.10 it is clear that an anomaly will be detected
shortly after the anomaly occurs, if using the threshold for outlier score O of 1. The outlier
score O does, however, decrease during the magnetic moment disturbance anomaly. The
only purpose of the feature extraction method is to provide a feature that increases the
information gain of whether a data sample is an anomaly or not and it is clear that the
outlier score O does this.

It is important to note that the LOF algorithm provides a severity of the anomaly.
This is evident in that the outlier score O for the Sun reflection reaches a maximum of
55, while the maximum for the magnetic moment disturbance is 33. This is as expected
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Figure 6.10: Local outlier factor during first two orbits of the magnetic moment distur-
bance anomaly. The red area indicates when the magnetic moment disturbance occurs.

when comparing the estimation metric during the Sun reflection and the estimation metric
during the magnetic moment disturbance in Figure 5.3 and Figure 5.14.

6.2.4. Application for Anomaly Detection

The LOF algorithm can be implemented to detect anomalies through determining a
threshold for when an outlier score is considered an anomaly. When the outlier score of a
data sample is above the given threshold, the data sample is classified as an anomaly, and
otherwise classified as normal. During the implementation of LOF for anomaly detection,
the threshold value is kept as the suggested threshold of 1 [53]. The implementation of
LOF for anomaly detection is demonstrated in Figure 6.11. The LOF algorithm is the
exact same trained model as discussed in Section 6.2.2. The only difference is that the
outlier score (as the output of the trained model) is not used as an additional input to
another detection algorithm, but is used in isolation as the sole means of detecting an
anomaly using a basic If Statement to determine whether the outlier score is larger than 1.

6.2.5. Analysis for Anomaly Detection

In order to determine the performance of the LOF algorithm on the detection of anomalies,
a few key metrics are required. These metrics will be consistent throughout the analysis
of all the detection methods. The metrics will be a confusion matrix as well as a plot of
the average accuracy per orbit of the classification during 30 orbits.
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Figure 6.11: The input and output of the local outlier factor algorithm for anomaly
detection. The outlier score is passed through a simple If Statement to determine whether
the current data sample is anomalous or not. When the outlier score is larger than 1, the
data sample is anomalous.

A confusion matrix provides a summary of both the true/false positives and the
true/false negatives of the LOF prediction algorithm on a test data set. A positive
represents the prediction of that a condition is present and a negative represents the
prediction that a condition is not present, in this case an anomaly. A false and true of
either of these refers to whether the prediction is accurate. For instance, a false negative is
when the prediction algorithm classifies a data sample as normal (no anomaly), whereas a
false positive is when the prediction algorithm classifies a data sample as being anomalous,
when in fact the data sample is normal. The acronyms for false and true positives and
negatives are given as FP, TP, FN, TN. An example of the construction of a confusion
matrix for detection is provided with Table 6.1.

Predicted
Normal Anomaly

Normal TN FP
Anomaly FN TP

Table 6.1: An example of a confusion matrix. The row labels are the actual conditions of
the data samples, while the column labels are the classified condition of the data samples.

A parameter within the Sci-kit learn implementation requires the portion of anomalies
within the data set. This portion is typically referred to as the contamination parameter.
For two largely different contamination parameters 10−5 and 0.1, the confusion matrices
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of the prediction accuracy of the trained LOF algorithm on the test data set is given in
Table 6.2. The test data set is an uniformly selected 40% of 30 orbits of both the Sun
reflection anomaly, the magnetic moment disturbance, and normal data.

LOF
Normal Anomaly

Normal 144495 14460
Anomaly 19398 26085

(a) Contamination of 10−5.

LOF
Normal Anomaly

Normal 90961 65463
Anomaly 20 15845

(b) Contamination of 0.1.

Table 6.2: Comparison of confusion matrices of the local outlier factor algorithm with
10−5 and 0.1 contamination values. The row labels are the actual conditions of the data
samples, while the column labels are the classified condition of the data samples.

The prediction accuracy of the contamination at 10−5 is 80.8% overall, 57.35% for the
prediction of anomalies and 90.9% for the prediction of normal data samples. The accuracy
of the contamination at 0.1, on the other hand, is 62% overall, 99.87% for anomalous
data samples and 58.15% for the prediction of normal data samples. None of these results
can be viewed in isolation. It cannot simply be concluded that the lowest contamination
portion is the best, since it does not perform as well at predicting anomalies in comparison
with the higher contamination portion. The weight of importance in predicting anomalies
and in prediction normal data samples are not the same. It is of much more importance
to accurately predict anomalies. This, however, does not conclude that 0.1 provides the
best results, since it is not good at predicting normal data. A detection algorithm which
always predicts a data sample as an anomaly will produce a 100% prediction accuracy
for anomaly, but will produce a 0% accuracy in predicting normal data samples. It must
therefore be tested with the recovery and isolation method in place in order to determine
the best value for this parameter. This will be discussed further in Chapter 8.

It can be noted beforehand that the contamination parameter produces high anomaly
accuracy at a large contamination percentage and a lower anomaly percentage at a lower
contamination percentage, while the vice versa for the prediction of normal data samples.
It can, however, be predicted that the prediction of anomalous data samples is of higher
importance and the percentage accuracy of this will carry more weight in the optimisation
of the parameter compared to the prediction of normal data samples.

6.3. Decision Tree Algorithm
The decision tree algorithm is a method of splitting data samples into different groups
based on the thresholds of a given feature. These splits can be done numerous times and
depends on the application. The method of MAESM implemented by de Silva et al. [21]
provides the moving average feature as additional input to a decision tree, which classifies
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the data as anomalous or not. Since decision tree are a supervised learning method, the
data of both the simulation orbits with and without anomalies are used to train the
decision tree. The decision tree algorithm can also perform multi-class classification, and
can therefore also be implemented for anomaly isolation. The implementation of the
decision tree algorithm for anomaly detection and isolation in this thesis is due to the
application thereof by de Silva et al. [21].

6.3.1. Theoretical Background

The decision tree and random forest algorithms can be implemented to perform binary
classification on regular data samples and anomalous data samples. The decision tree and
random forest algorithms are supervised learning algorithms that classify data based on
threshold splitting [55–58]. Data samples are split based on a threshold of a specific input
parameter. The decision tree determines this split with the classification and regression
tree (CART) algorithm.

To split the data for the anomalies, however, the input parameter which will be used
to make the first split - the root node - must be decided. The Gini index GI measures
the probability of a data sample being wrongly classified at a given node. This can be
calculated by

GI = 1 −
n∑
i=1

(Pi)2, (6.14)

where Pi is the probability that a data sample is classified for a specific class and n is the
number of classes. The split that produces the lowest proportional Gini index will be used
as the root node. Thereafter the decision tree will train new nodes after the initial split at
the root node and once again the split with the lowest Gini index will be inserted as the
next split. The proportional Gini index will therefore decrease after each split (accounting
for the percentage of data samples within a node). For this use case, the CART algorithm
will be used to optimize the decision tree [59].

The depth of a decision tree determines how many splits occur from the root node to
the leaf node, which is the furthest from the first split. If the depth is unspecified, the
decision tree will split until all the data samples are perfectly split into anomalous and
normal data samples. The larger the depth, however, the more biased the decision tree is
to the training data. This depth can be altered to optimize the efficiency and accuracy of
the decision tree.

6.3.2. Application for Anomaly Detection and Isolation

The decision tree is trained on both the anomalous and normal data sets from the simulation
environment, where the anomalies are the Sun reflection on the sun sensor and the magnetic
moment disturbance. The data samples are labelled during the simulation environment as

Stellenbosch University https://scholar.sun.ac.za



6.3. Decision Tree Algorithm 78

either anomalous or not. The decision tree algorithm is implemented through the Sci-kit
learn package in Python [54]. Figure 6.12 provides a graphical illustration of the inputs
and outputs of the decision tree. The only difference between the implementation of
the decision tree algorithm for detection and the implementation thereof for isolation is
that the training data provided is labelled for the specific anomaly. It can therefore have
multiple classes depending on the number of anomalies.
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Figure 6.12: The input and output of the decision tree algorithm for anomaly detection.
The decision tree algorithm is provided with the sensor measurements and (potentially)
with an additional feature from a feature extraction method as input. The decision tree
performs binary classification to determine whether a data sample is anomalous or not.
The samples label provides the percentage of samples within the node with respect to
the total training data samples, while the value label provides the portion of each class
within the node i.e. normal samples or anomalous samples.

To demonstrate the splits of a trained decision tree on normal data as well as data
from the reflection anomaly, a visual representation of the first three layers of the decision
tree is given in Figure 6.13. This is implemented without any additional feature as input,
only the sensor measurements as input. From Figure 6.13 it can be derived that the most
significant splits are performed on the sun sensor as the root node as well as the second
split nodes are both performed on the sun sensor. This is as expected, considering that
the anomaly of the Sun reflection is most notable on the sun sensor.

Furthermore, it is clear from the Gini index in every node, that the Gini index decreases
after every split, demonstrating that the data samples are getting “purer” after each split.
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This excludes the nodes with a small percentage of data samples as these will not necessary
have a smaller Gini index as the node above it. The purpose of the decision tree is to
determine the split of a given node that will decrease the Gini index the most. Even
though the split of the Sunz ≤ −0.374 increase the Gini index if True, it decreases the
Gini index if False. It must therefore be noted that the sample size of the False split is
much larger than the True split. The False split therefore carries more weight. A better
comparison of the decrease in the Gini index is to multiply the samples percentage with
the Gini index. The node where the Sunz ≤ −0.374 split is performed provides a value of
0.036 after multiplication of the samples percentage with the Gini value, while the True
split has a value of 0.009 and the False node has a value of 0.024 The cumulative value of
the Gini index with the samples percentage (taken into consideration after the split) is
therefore smaller than before the split.

Sunz ≤ 0.906
gini = 0.041

samples = 100.0%
value = [0.979, 0.021]

class = N

Sunz ≤ −0.374
gini = 0.037
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Figure 6.13: The decision tree algorithm as a binary classification of the Sun reflection
anomaly. The orange nodes have more than 50% normal samples, while blue nodes have
more than 50% anomalous samples. The darker the shade of orange or blue, the larger
the percentage of the respective class. The class “A” refers to an anomaly and the class
“N” refers to a normal data sample.

The decision tree model is trained with a random 60% of the data set and evaluated
with the other 40% of the data set. This 40% of the data set is the data used to construct
the confusion matrices in the analysis of the decision tree for anomaly detection section.
The random 60% of the data set will be implemented the same for each supervised learning
algorithm. The decision tree is trained with an adjusted class weight to take into account
the unequal distribution between the number of normal data samples and the number of
anomalous data samples. This weight is the parameter that provides additional weight to
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the prediction accuracy of a particular class. If an algorithm always predicts that a data
sample is normal, the prediction accuracy of it will be very high since most of the data
samples are normal. This, however, is not an accurate model. To account for this, the
prediction accuracy of the anomalies require additional emphasis. This is implemented
with the class weight parameter calculated as

weight = nsamples
nclasses × ny

, (6.15)

where the parameter nsamples is the total number of training data samples and the parameter
nclasses is the number of classes which is equal to two for detection and three for isolation.
The parameter ny is the number of occurrences of the value y in the data set, where y can
be equal to any of the input classes [54]. This calculation then adjusts for the unequal
number of normal and anomalous occurrences in the data set during the training of the
supervised learning algorithms.

6.3.3. Analysis for Anomaly Detection

To determine the performance of the decision tree for detection and isolation confusion
matrices as well as the average prediction accuracy per orbit of the decision tree are
provided for 30 orbits. The confusion matrix provided in Table 6.3 is the combined
prediction of both the normal data set, the Sun reflection anomaly, and the magnetic
moment disturbance. This test data set is an uniformly distributed 40% of the provided
data sets. The prediction accuracy for binary classification is equal to 99.87%. Even
though this is a very high prediction accuracy, the influence of the recovery methods can
change the prediction accuracy of the detection methods, since the data changes due to
the influence of the recovery method on the attitude of the satellite.

Decision tree
Normal Anomaly

Normal 158837 118
Anomaly 139 45344

Table 6.3: Confusion matrix of the decision tree for detection on a test data set. The
row labels are the actual conditions of the data samples, while the column labels are the
classified condition of the data samples.

To determine what the detection accuracy of the decision tree are on each anomaly,
the performance thereof is plotted on Figure 6.14. It can be derived from Figure 6.14
that the decision tree is much more accurate in predicting the magnetometer anomaly of
magnetic moment disturbance than detecting the sun sensor anomaly.

The most plausible explanation for the higher accuracy in the prediction of the magnetic
moment disturbance is that during the training and prediction of anomaly detection,
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Figure 6.14: Average estimation metric per orbit of decision tree for both the sun sensor
anomaly and the magnetic moment disturbance anomaly. The legend is the sensor that
experiences the anomaly.

the magnetometer and sun sensor anomalies are grouped together as one class, namely
anomalies. This therefore causes the decision tree to be biased towards the magnetic
moment disturbance. Since only one decision tree is trained and there is no averaging of
the data selected due to bootstrapping, it is expected that the decision tree will split on the
most significant Gini index splits, which favours the magnetic moment disturbance, since
this occurs more often. Even though the class weight is calculated with Equation 6.15, this
still provides a single class for the magnetic moment disturbance and the Sun reflection.
This is most likely the reason for the higher prediction accuracy of the magnetic moment
disturbance anomaly in comparison with the Sun reflection by the decision tree model.

6.3.4. Analysis for Anomaly Isolation

The implementation of the decision tree for anomaly isolation can be done in two ways.
The one is to train the decision tree on only the anomalous data samples, while the other
is to train the decision tree on both the anomalous data and the normal data samples.
The reasoning behind training the decision tree on only the anomalous data is that the
isolation is, typically, only implemented to classify the anomaly after it has been detected
that the data sample is anomalous by the anomaly detection algorithm. The isolation and
detection can also be a single step where a single algorithm classifies a data sample as
either “normal” or as the sensor causing the anomaly.

There are potentially positive and negative aspects to both these methods. Firstly, it
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is assumed that a detection algorithm is more accurate in classifying anomalies, since it is
only a binary classification problem compared to the isolation algorithm which is usually
a multi-class classification problem.

In Table 6.4 it can be noted that the decision tree classifies normal and anomalous
data samples better if the sun sensor and magnetometer are in two separate classes. This
is most evident when columns labelled as “Sun” and “Mag” of Table 6.4a and the rows
labelled as “Sun” and “Mag” are merged into one. This is essentially a binary classification
and a detection algorithm. A data sample is therefore detected as an anomaly when it
is not classified as “Normal” and therefore can be classified as either “Sun” or “Mag”.
Providing the false positives and the false negatives of both models demonstrate this. The
decision tree trained for detection — “Sun” and “Mag” are in a single class — have 139
false negatives and 118 false positives. The decision tree trained for isolation and viewing
the “Sun” and “Mag” class as a two separate classes have 125 false negatives and 103 false
positives on the test data set.

Table 6.4a is be the result for implementing the decision tree either as both detection
and isolation simultaneously or as an isolation algorithm that can reclassify a data sample as
“normal” after the detection algorithm classified the data sample as anomalous. Table 6.4b
is the results of the decision tree when only implemented for isolation and thus classifies
which sensor is responsible for the anomaly.

Decision tree
Normal Sun Mag

Normal 158852 3 100
Sun 13 2909 0
Mag 112 0 42449

(a) Including normal data.

Decision tree
Sun Mag

Sun 2893 1
Mag 0 42751

(b) Excluding normal data.

Table 6.4: Confusion matrix of isolation for the decision tree algorithm. The row labels
are the actual conditions of the data samples, while the column labels are the classified
condition of the data samples. The magnetometer is abbreviated to “Mag” and the sun
sensor is abbreviated to “Sun”.

6.4. Random Forest
The random forest algorithm trains a number of decision trees and provides a classification
output from a majority vote of the decision trees. The decision trees are trained on
subgroups of the dataset and thus each decision tree will differ. This leads to higher
classification accuracy in general [60].
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6.4.1. Theoretical Background

The random forest algorithm is an extension of the decision tree. It generates various
decision trees from the data set and provides a classification output p, which can be any
of the labelled classes, for a data sample D∗, by utilizing a majority vote mode() from all
the decision trees classification outputs P. Random forest utilizes bootstrap aggregating
ba() to ensure that new random data sets D′ with size of n′ is created [56–58]. Bootstrap
aggregating a data set, simply means that the training data for a model is sampled
uniformly and the sampled data is replaced in the original dataset. This means that a
single data sample can be utilized numerous times for the training of multiple decision
trees. This ensures that every trained decision tree is independent from the training of the
other decision trees within the random forest. A number k of individual decision trees is
then trained with Algorithm 6.2.

Algorithm 6.2: Training of random forest from individual decision trees.
1: Input = Sensor measurements (vB)
2: for i := 1 to k do
3: D′

i = ba(D)
4: DTi = CART (D′

i) , where DTi is a single decision tree.
5: end for
6: Output = Trained random forest consisting of a number k decision trees

The classification output p, is then provided with Algorithm 6.3. The classification
output p can either be 0 or 1 for binary classification or any number within the range of
classes in multi-class classification.

Algorithm 6.3: Prediction of random forest from individual decision trees.
1: for i := 1 to k do
2: Pi = DTi(D∗)
3: end for
4: p = mode(P)

6.4.2. Application for Anomaly Detection and Isolation

The implementation of the random forest algorithm for anomaly detection is very similar
to that of the decision tree algorithm. The random forest is also implemented with
the Scikit-learn model provided in Python [54]. The random forest is trained with a
hyperparameter of a 100 decision trees. The more decision trees are implemented the
more accurate the random forest algorithm is, but this increases the training duration and
decreases the computationally efficiency of the model. The random forest algorithm is
trained on both the normal data and the anomalous data from the simulation environment.
Thereafter the model is stored and during implementation of fault detection and isolation,
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the model is implemented to classify the current data sample as anomalous or not. The
random forest model is trained with a random 60% of the data set and evaluated with
the other 40% of the data set. This 40% of this data set is the data used to construct the
confusion matrices in the analysis of the random forest section. The class weight parameter
is also adjusted according to Equation 6.15 for the training of the random forest model.

The implementation of the random forest algorithm for anomaly isolation distinguishes
between each anomaly. Two implementations are possible for anomaly isolation. The
one assumes that the detection method can be invalid and can reclassify the data sample
as normal during the isolation step, while the other assumes that the isolation can only
predict which anomaly is responsible for the nature of the current data sample. Both
of these methods will be analysed and the positive and negative aspects thereof will be
discussed.

6.4.3. Analysis for Anomaly Detection

The tested results of both anomalies after training are provided with both the confusion
matrix given in Table 6.5. The average prediction accuracy per orbit for each individual
anomaly for 30 orbits is shown in Figure 6.15. The random forest algorithm performs
significantly better than that of the decision tree when comparing Table 6.3 with Table 6.5.
The prediction accuracy of the random forest is 99.95% on the testing data.

Random forest
Normal Anomaly

Normal 158905 50
Anomaly 42 45441

Table 6.5: Confusion matrix of the random forest for detection on a test data set. The
row labels are the actual conditions of the data samples, while the column labels are the
classified condition of the data samples.

To determine the performance of the detection algorithm on each anomaly, the average
prediction accuracy per orbit is given for the anomaly of each sensor. The random
forest is more accurate in predicting the sun sensor anomalies compared to predicting the
magnetometer anomalies. This is different from the performance of the decision tree for
anomaly detection. The random forest algorithm trains multiple decision trees based on
subsets of the training data based on bootstrapping. This generally increases the average
prediction accuracy when taking the majority vote of all the decision trees. Even though
some decision trees within the random forest can be biased to a specific anomaly, the
majority votes hopefully reduces these biased decision trees. The prediction accuracy
is therefore not just based on the anomaly with the most occurrences, but based on
all anomalies. Both anomalies are predicted with a very high accuracy. The plausible
explanation for the lower prediction accuracy of the magnetometer anomaly is that it is
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less distinguishable from the normal data than that of the sun sensor anomaly. The sun
sensor anomaly has a larger effect on the control than that of the magnetometer anomaly
as is evident when comparing Figure 5.3 with Figure 5.14.
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Figure 6.15: Average estimation metric per orbit of random forest for both the sun sensor
anomaly and the magnetic moment disturbance anomaly. The legend is the sensor that
experiences the anomaly.

6.4.4. Analysis for Anomaly Isolation

The analysis of the random forest for anomaly isolation is done with the comparison of
the confusion matrices of the random forest trained on both normal data and anomalous
data samples with the random forest trained on only the anomalies. In Table 6.6a it
can be noted that if the “Sun” and “Mag” columns and rows were merged, it can be
renamed as a single class, namely Anomaly. Table 6.6a can therefore be compared with
Table 6.5. It can be noted that the differences in the false positives and false negatives
can be due to randomness in the training during the bootstrap method. This difference,
however, is very small. Both Table 6.6b and Table 6.6a have a 100% prediction accuracy
in distinguishing Sun reflections (Sun) from magnetic moment disturbance torques (Mag).
It cannot therefore be determined whether implementing detection (Table 6.5) and then
isolation (Table 6.6b) separately have better results than only implementing isolation
directly (Table 6.6a). This will depend on the time duration for each prediction as well as
the influence of the recovery on both accuracies. If the recovery decreases the prediction
accuracy of both the detection and isolation accuracies, it will probably be better to only
implement isolation directly. The two events, prediction and isolation, are dependent
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events and not independent. The prediction accuracy will therefore be the multiplication
of the accuracy of the detection method and the accuracy of the isolation method.

Random forest
Normal Sun Mag

Normal 158902 0 53
Sun 1 2921 0
Mag 39 0 42522

(a) Anomaly Isolation including normal data.

Random forest
Sun Mag

Sun 2894 0
Mag 0 42751

(b) Anomaly Isolation excluding normal data.

Table 6.6: Confusion matrix of isolation for the random forest algorithm. The row labels
are the actual conditions of the data samples, while the column labels are the classified
condition of the data samples. The magnetometer is abbreviated to “Mag” and the sun
sensor is abbreviated to “Sun”.

6.5. Support Vector Machines Algorithm
A study conducted by Colagrossi et al. [61] implemented support vector machines (SVMs)
for sensor and actuator failure detection on small satellites systems. This example, as
well as many other fault detection research in other fields, implement SVMs for anomaly
detection. The major advantage of SVMs is that it is able to increase the feature space
to determine splits between groups of data. SVMs is a supervised learning algorithm
and through training the algorithm on labelled data the algorithm is able to perform
classification on many complex data sets.

6.5.1. Theoretical Background

The feature space refers to the dimensions of the inputs to the prediction model. SVMs
create a hyperplane between the feature space to split the classes from each other. This
hyperplane is created to increase the distance between the data samples nearest to the
hyperplane [62,63]. The hyperplane can be defined as

wT(f) + b = 0 (6.16)

where w is the normal vector to the hyperplane. It is not, however, necessarily a unit
vector. This is also constrained to ensure that all vectors fn are on the correct side of the
hyperplane with

wT(fi) + b ≥ 1, for all1 ≤ i ≤ n. (6.17)

The hyperplane in its most simplified form on a binary classification problem is linear
and divides the data into two halves as shown in Figure 6.16. The distance between the
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hyperplane and any vector fi can be given as

d(fi) = wT(fi) + b

∥w∥2 (6.18)
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Figure 6.16: Support vector machine example of splitting data into two groups based on
a hyperplane. The blue and red circles are the data samples from two different classes.
The black circles emphasize the support vectors. The solid black line is the hyperplane
used to classify data samples and the data samples between the solid line and the dashed
lines are the support vectors. The dashed lines are calculated based on the soft-margin
algorithm.

For binary classification, all vectors fn will be classified into a group by determining
on which side of the hyperplane the point vector is. To increase the margin between all
point vectors fn and the hyperplane, the minimum distance of all the point vectors and
the hyperplane is required. The objective of the algorithm is therefore to maximise the
minimum distance between the hyperplane and any point vector fi for all data samples n.
The sub-gradient descent algorithm can be implemented to calculated the hyperplane as

g(w, b) = λ ∥w∥2 +
[

1
n

n∑
i=1

max
(
0, 1 − wT (fi) + b

)]
, (6.19)

where λ increases and decreases the margin size, to increase the number of training vectors
fi that is on the correct side of the hyperplane. The function g is a convex function and
can be solved with an adaptation of classic gradient descent methods.

The linear hyperplane is not always feasible, since certain data samples cannot be
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divided with a single line. There are two solutions to this problem. The first is to increase
the dimension size m of Rm. For instance, increasing m from 2 to 3 with

f [2] =
√

f [0]2 + f [1] (6.20)

provides a higher dimension for the split of the data. This can be implemented with any
equation for increasing m. Another method to divide the data into different classes is by
changing the kernel from linear to non-linear kernels, such as a polynomial kernel.

With this overview of the algorithm it can be implemented to perform anomaly detection
and isolation. The SVMs algorithm is trained on labelled data to calculate the hyperplane
that best splits the training data into the number of classes.

6.5.2. Application for Anomaly Detection and Isolation

The SVMs algorithm is implemented similarly to that of the decision tree and random
forest. The SVMs model is trained on the anomalous and normal data from the simulation.
It is trained with the Scikit-learn implementation of the SVMs algorithm in Python [54].
The model is trained with the same split and setup of the training data as that of the
decision tree and random forest algorithms. The class weight parameter is also adjusted
according to Equation 6.15 for the training of the SVMs model.

Two methods for isolation is implemented. The one method assumes that there is an
anomaly and that it can only classify the sensor responsible for the current data sample.
The other method, however, assumes that the detection algorithm can be incorrect in its
prediction and can therefore reclassify the data sample as “normal”. This method can
also be implemented without anomaly detection, and will depend on a few factors, such
as the computational efficiency of the isolation method. Isolation methods are usually
more complex and less computationally efficient than detection methods, unless both the
isolation and detection methods are binary classification (there are only two anomalies
and the normal data are excluded from the isolation method).

6.5.3. Analysis for Anomaly Detection

The SVMs are implemented for anomaly detection by performing binary classification on
the normal data samples as well as the merged group of the magnetic moment disturbance
anomaly and the Sun reflection anomaly. In Table 6.7 it can be noted that the SVM is
more prone to predicting anomalies. The SVMs overall prediction accuracy is 98.13%.

A plot of the average prediction accuracy per orbit is provided in Figure 6.17 to
determine the prediction accuracy of SVMs on each anomaly individually. This demon-
strates that the SVMs algorithm performs better on the magnetometer anomaly than
on the sun sensor anomaly. This is most possibly due to the way in which the SVMs
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Support Vector Machines
Normal Anomaly

Normal 155383 3572
Anomaly 40 45443

Table 6.7: Confusion matrix of the support vector machines for detection on a test data
set. The row labels are the actual conditions of the data samples, while the column labels
are the classified condition of the data samples.

algorithm splits the two classes with a single hyperplane. To draw a hyperplane between
this merged anomaly group and the normal data group is not the same as the method of
the decision tree. The decision tree performs multiple splits, while the SVMs perform a
single split as a hyperplane within the feature space. The SVMs algorithm will therefore
be biased towards the magnetometer anomaly, since this is the anomaly that occurs most
frequently within the anomaly group. To provide the best prediction accuracy, the SVMs
will provide a hyperplane that splits most of the data into the correct category and not
the individual subgroups within the anomaly class. This bias towards the magnetometer
anomaly is emphasized in SVMs due to the single split nature of the algorithm, since
different anomalies do not manifest as a single identifiable group within the feature space.
This does not create an easy split between the anomaly and normal class.
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Figure 6.17: Average prediction accuracy per orbit of support vector machines as anomaly
detection for both the Sun reflection and magnetic moment disturbance anomaly. The
legend is the sensor that experiences the anomaly.
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6.5.4. Analysis for Anomaly Isolation

The analysis of the SVMs performance for anomaly isolation is done by comparing
Table 6.8a with Table 6.8b. Table 6.8a provides the confusion matrix of the isolation
method that includes the normal data as a class. When merging both the rows and the
columns of “Sun” and “Mag”, the structure of the confusion matrix for only anomaly
detection is replicated from Table 6.7. From this it can be derived that the SVMs more
accurately predicts anomalous data than it predict anomalous data samples, as only
13 magnetometer data samples are incorrectly classified as normal. This is the desired
outcome as the false negatives are more crucial than that of the false positives, since it is
the false negatives that will cause the sensor anomalies to be incorporated in the EKF
measurement update step. The false positives on the other hand will only implement the
recovery method without it being necessary.

The trend of accurately distinguishing between the Sun reflection and magnetic moment
disturbance anomaly continues with the SVMs algorithm as it predicts with 100% accuracy
the difference between the “Sun” and “Mag” in both confusion matrices given in Table 6.8.
This emphasizes once again that the two anomalies are very different and grouping them
into a single class for anomaly detection might not always be the best solution. To
determine the final performance of all the methods requires the recovery step. This will
determine how bias the trained model is to the training data and whether it can accurately
classify new data that is different due to the implementation of the recovery method.

Support Vector Machines
Normal Sun Mag

Normal 155054 90 3811
Sun 0 2922 0
Mag 13 0 42548

(a) Anomaly Isolation including normal data.

Support Vector Machines
Sun Mag

Sun 2894 0
Mag 0 42751

(b) Anomaly Isolation excluding normal data.

Table 6.8: Confusion matrix of isolation for Support Vector Machines. The row labels
are the actual conditions of the data samples, while the column labels are the classified
condition of the data samples.

6.6. Computational Efficiency
The computational efficiency aspect is important when developing the prediction methods
for on board the satellite, since the satellite is constraint by on-board computation. To
finally decide which method is preferred for a system depends on the systems capabilities.
The exact time of the prediction can not be determined for on-board the satellite, only the
relative time difference can be determined, since the prediction time will differ depending
on the capabilities of the computer as well as what processes are running simultaneously.
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From Table 6.9a it can be calculate that the random forest algorithm for detection is
45 times slower in predicting an anomaly than that of the decision tree algorithm. This
makes sense as the random forest is a combination of a 100 optimised decision trees from
which the mean is used to classify a data sample. This is a substantial difference and is the
reason why less computation intensive algorithms are implemented for anomaly detection,
since anomaly detection runs continuously along with all the rest of the processes. The
classical approach of anomaly isolation is only required after an anomaly is detected. This
therefore means that the more computationally intensive algorithms are only implemented
once in a while. The anomaly detection algorithms should rather predict a false positive
and cause the anomaly isolation method to be invoked to accurately classify the data
sample. The SVMs prediction time lowers significantly from detection to isolation. This
is due to the implementation change to “one vs rest” of the SVM, which is an optimised
implementation.

This decision depends on the specific application and the constraints of the satellite. If
the satellite has the capabilities of running the more computationally intensive algorithm
continually with the rest of the processes, then this might be desirable by the engineers.

Time µs
Sun Mag

LOF 3798.61 3894.5
DT 166.91 177.36
RF 7856.43 7832.84
SVMs 1367.23 1371.46

(a) Average time per prediction for anomaly
detection methods. These are the anomaly de-
tection methods that are trained on the anoma-
lies grouped as a single class.

Time µs
Sun Mag

DT 174 159.95
RF 7705.08 7865.67
SVMs 230 198.68

(b) Average time per prediction for anomaly iso-
lation methods. These are the anomaly isolation
methods that are trained on both anomalous
and normal data.

Table 6.9: Average time per prediction method for both anomaly detection and anomaly
isolation. The average times are given in µs and are sub divided depending on the
anomaly, where “Sun” refers to the Sun reflection anomaly and “Mag” refers to the
magnetic moment disturbance anomaly.

6.7. Summary
The feature extraction methods discussed in this chapter focuses on extracting features
that provide additional information on whether a data point is an anomaly or not. For
the LOF algorithm, this is done by providing a value for the “irregularity” of that data
point relative to its nearest neighbourhood. The moving average of the estimated sensor
measurements is an adaptation of work by de Silva et al. [21] to provide an estimate of the
sensor measurements based on the previous sensor measurements, as well as the control
inputs. This can be extended to calculate a moving average for the difference between the
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estimated sensor measurements and the actual sensor measurements. The outlier score
O and the moving average Vk can be provided as additional inputs to the detection and
isolation algorithms to possibly enhance the accuracy by improving the information gain
of the features.

For the detection of anomalies, different binary classification methods are discussed.
This includes supervised learning methods such as decision tree, random forest and support
vector machines (SVMs), as well as an unsupervised learning method namely the local
outlier factor algorithm. Both supervised and unsupervised learning methods for detection
provide a binary split between anomalous and normal data points, while supervised learning
methods can also be implemented for anomaly isolation and can classify which anomaly is
responsible for the nature of the current data sample.

The random forest algorithm is the most accurate in detecting and isolating anomalies.
It is, however, also the most computationally intensive algorithm. LOF is the algorithm with
the lowest false positive value and the decision tree algorithm is the most computationally
efficient algorithm. Both the positive and negative aspects regarding the prediction
accuracy and the computational efficiency will have to be weighed by the engineers
implementing the FDIR on the satellite. This chapter provides detailed analysis and
discussion of the feature extraction block as well as the detection and isolation block of
Figure 1.2.
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Chapter 7

Anomaly Recovery

The main purpose of the FDIR is to recover from the sensor anomalies. The fault detection
and isolation methods are a means to predict the anomaly, but that still requires a solution
to the anomaly. The recovery methods are evaluated based on the simulation of perfect
detection and isolation to demonstrate the effectiveness thereof. The effectiveness of the
recovery methods will be evaluated based on the estimation metric, which demonstrates
whether the EKF remains accurate and robust during the simulation.

The estimation metric is used for analysis since this ensures that the entire FDIR
technique solves the problem induced by the anomalies. The maximum estimation metric
that is considered acceptable is determined as 10◦ since this is considered a reasonable
error for the satellite to still be able to meet it’s mission requirements. This does, however,
depend on the accuracy required for the pointing of the payload towards the Earth. The
anomalies also have different influences on the EKF and an estimation metric of 10◦ is
reasonable given the conceptual design of the satellite.

The recovery of the actuator failure or recovery that requires changes of the control
law is not within the scope of this thesis, since this thesis focusses on recovery of the EKF
and not of the controller. These are two separate blocks in Figure 1.2 and function as
two separate subsystems within the ADCS. The recovery methods will therefore only be
developed with the focus on the EKF, although the anomaly detection and isolation are
analysed for actuator failures. This is since the anomaly detection and isolation analysis
thereof provides insight into whether the anomaly detection and isolation techniques can
be used for future work during the development of recovery methods for the controller.

7.1. Recovery Methods
The recovery methods are implemented after the detection of an anomaly and the isolation
and classification of the error. Three different methods of recovery are proposed and
compared. These methods aim to mitigate the effect of the anomaly on the reliability
and stability of the EKF. If no recovery method is implemented the anomalous sensor
measurement will be used in the EKF measurement update. This influences the estimation
as discussed in Chapter 5.

93
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A method that ignores the sensor measurement from the EKF measurement update
of the detected anomalous sensor is referred to as the EKF-ignore. This is the most
straightforward approach, since the anomalous sensor measurement does not enhance
the accuracy of the EKF and can therefore be ignored during the time steps that the
sensor is anomalous. This, however, will highly depend on the accuracy of the anomaly
detection and isolation methods. A detection method with low accuracy in predicting the
anomaly will create instability of the EKF, since many anomalous measurements will still
be included in the measurement update of the EKF.

To provide a method that is not that dependent on the accuracy of the detection and
isolation methods another technique is considered that recalculates the EKF up until the
time step when the anomaly is detected without the anomalous sensor. This method
is triggered every single time the prediction shifts from anomalous to normal or from
normal to anomalous. During the anomalous periods the EKF-reset method ignores the
sensor measurement. This method is introduced based on the assumption that multiple
anomalous measurements are not detected. This method is referred to as the EKF-reset
method. The parameters required to update the EKF such as the control torques, sensor
measurements need to be in a buffer. By implementing a buffer En of size n of the
parameters ek that are used to update the EKF as

En =
[
ek−n ek+1−n · · · ek

]
, (7.1)

the EKF can be recalculated up until time step k. The gain matrix Kk and the state
covariance matrix Pk are reset to the initial values of the matrices. This is because of the
uncertainty of when the matrices within the buffer were trustworthy, since multiple sensor
anomalies could’ve occurred before the buffer time step k − n which are not accounted
for. If a sensor failure is detected, the measurements of the anomalous sensor is removed
from the buffer En for all the time steps and the EKF is updated with the data in the
buffer. The EKF is, therefore, reset with the EKF matrix parameters at time step k − n

and updated from time step k − n to k. The number of time steps n must, however, be
optimized based on the computational time used to reset the EKF and the size of the
memory buffer. If the sensor which was detected to have anomalous behaviour changes
back to normal operation, the sensor will be included in the measurement update of the
time step k, since it was anomalous for the time steps up until k.

A method that combines the EKF-ignore and the EKF-reset method is referred to as
EKF-combination. The EKF-combination method ignores the sensor measurement for a
N number of time steps just as the EKF-ignore method. After N number of detected
sensor anomalies, the EKF is reset according to the EKF-reset methodology. This method
is introduced due to the constant reset of the EKF-reset strategy. The constant reset of
the EKF will be very time consuming and might not perform well with high prediction
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accuracies. The EKF will continuously reset the EKF every time an anomaly is predicted
and might influence the convergence of the EKF. The EKF-combination is implemented
to increase the efficiency and hopefully attaining the result where the resetting of the EKF
is not detrimental and the multiple incorrectly classified anomalies do not drift the EKF
from an accurate measurement over time. The number N of predicted anomalies before
resetting is chosen as 20 after fine tuning the parameter.

7.2. Analysis of Recovery Methods
To determine the best recovery method, a comparison is done on the estimation metric
of each recovery method with a 100% prediction accuracy for both the detection and
isolation. This is done to determine what the best possible outcome is for each of the
recovery methods given that the other subsystems of the FDIR work perfectly. In order to
determine whether the recovery method provides a robust EKF, the results are given as
an average of the estimation metric for each orbit for a duration of 30 orbits.

7.2.1. Analysis for the Sun Reflection Anomaly

The simulation environment is implemented with the Sun reflection anomaly and each
of the recovery methods are individually implemented during 30 orbits. The detection
and isolation algorithms provide perfect results during this simulation. The estimation
metric is averaged for each orbit for ease of analysis. The comparison of the different
recovery methods are provided in Figure 7.1. It can be seen that the EKF-ignore method
outperforms both the EKF-combination and EKF-reset methods. The estimation metric
without any recovery is also given as “None” and it is clear that the EKF performs better
without any recovery compared to the EKF-reset method at a 100% prediction accuracy.
This is due to the EKF-reset method not ensuring convergence of the EKF and increasing
the buffer size might solve this issue, but this also decreases the computational efficiency.
The EKF-ignore method reduces the estimation metric to a result similar to that of the
EKF without any anomaly occurring.

7.2.2. Analysis for Magnetic Moment Disturbance Anomaly

The simulation environment is implemented with the magnetic moment disturbance
anomaly and each of the recovery methods are individually implemented during 30 orbits.
The detection and isolation algorithms provide perfect results during this simulation. The
estimation metric is averaged for each orbit for ease of analysis. The comparison of the
different recovery methods are provided in Figure 7.1. It is clear that the EKF-ignore
method once again outperforms the other methods at 100% prediction accuracy.
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Figure 7.1: Comparison of the average estimation metric θ per orbit for 30 orbits for
each recovery method during the Sun reflection anomaly. The estimation metric is the
absolute difference between the attitude in quaternion qk and the estimated quaternion
q̂k in degrees.
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Figure 7.2: Comparison of the average estimation metric per orbit for 30 orbits for each
recovery method during the magnetic moment disturbance anomaly. The estimation
metric is the absolute difference between the attitude in quaternion qk and the estimated
quaternion q̂k in degrees.

It can be seen that only ignoring the magnetometer measurement during the measure-
ment update of the EKF does not significantly enhance the estimation performance. This
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can be derived from the fact that “None” and EKF-ignore follows almost the same trend
in Figure 7.2. The EKF-ignore is slightly below the line without any recovery (“None”),
but this is a small difference as is more evident in Figure 7.3.

0 5 10 15 20 25 30
Number of Orbits

7.6

7.8

8.0

8.2

8.4

8.6
Es

tim
at

io
n

M
et

ric
,θ

(d
eg

)
EKF-ignore
None

Figure 7.3: Comparison of the average estimation metric per orbit for 30 orbits for
EKF-ignore recovery method and with no recovery (None) during the magnetic moment
disturbance anomaly. The sun sensor and magnetometer are alternated so that the
sun sensor is implemented first and the magnetometer is implemented last in the EKF
measurement update. The estimation metric is the absolute difference between the
attitude in quaternion qk and the estimated quaternion q̂k in degrees.

This can be due to the order of the measurement update where the magnetometer is
the first sensor in the measurement update and the sun sensor is last. This is confirmed
by reordering the sensors and implementing the same test as seen in Figure 7.4, where the
magnetometer is now last in the measurement update sequence of the EKF. The sun sensor
will therefore have a more prominent impact on the EKF compared to the magnetometer
due to the sequence of the sensors in the EKF measurement update.

It can also be noted that the EKF-ignore method shown in Figure 7.4 does not reduce
the estimation metric to the same result as without any anomaly. This is due to the
magnetic disturbance torque influencing the EKF. The magnetic moment disturbance is
still evaluated even though the recovery does not always enhance the performance of the
EKF by the same margin as in the case of the Sun reflection anomaly. This is because
it still provides an evaluation for the prediction accuracy of the detection and isolation
algorithms and is an example of the group of anomalies that can influence both the sensor
and create a disturbance torque on the satellite.

From both Figure 7.1 and Figure 7.2 it is evident that the EKF-ignore method
outperforms the other recovery methods. This, however, is implemented with a perfect
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Figure 7.4: Comparison of the average estimation metric per orbit for 30 orbits for
EKF-ignore recovery method with no recovery (None) during the magnetic moment
disturbance anomaly when the sequence for the measurement update is changed. The
magnetometer is implemented last in the EKF measurement update and the other sensors
are shifted. The estimation metric is the absolute difference between the attitude in
quaternion qk and the estimated quaternion q̂k in degrees.

detection and isolation. If none of the detection and isolation algorithms are able to
provide results for the EKF-ignore that are better than the EKF-combination at perfect
detection and isolation, then the recovery methods must be re-evaluated with the best
prediction and isolation methods.

The result of Figure 7.4 when the sequence of the sensors during the measurement
update are rearranged provides the possibility of another recovery method. A possibility is
to change the order of the measurement updates depending on whether a sensor anomaly
occurs. For instance if a sensor is predicted as anomalous, the sensor can be implemented
first in the measurement update. This can evolve into an anomaly detection and isolation
architecture where instead of predicting which sensor is anomalous a probability of anomaly
for each sensor is provided. The sensor with the highest probability of being anomalous is
implemented first in the measurement update and the sensor with the lowest probability is
implemented last. This is, however, added to future work since this significantly changes
the current anomaly detection and isolation architecture and design.
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7.3. Robustness of Recovery Methods
The performance of the recovery methods are highly dependent on the prediction accuracy
of the detection and isolation methods. The EKF-ignore will most probably perform
worse the less accurate the prediction is. If the prediction is inaccurate the EKF-ignore
method will include the anomalous sensor measurement in the EKF measurement update
or exclude an accurate sensor measurement from the update. There is no way of “resetting”
the EKF after this if the EKF-ignore method fails. The EKF-reset on the other hand
will most likely perform better the less accurate the prediction is (up to a point). This
is because the EKF-reset method will basically re-implement the EKF based on a buffer
of sensor measurements and states and exclude the incorrect sensor during that reset.
The EKF-combination will most probably perform in between these two methods as it is
combination of the two. To analyse the robustness of each recovery method the estimation
metric of each method is provided for 30 orbits with specific prediction accuracies varying
from 50% to 100%. The analysis will also be done on the Sun reflection anomaly. It must
be noted that at very low prediction accuracies (near to 0%) the implementation of the
EKF-reset will be as if the sun sensor is almost never included in the measurement update
of the EKF. This is because the Sun reflection anomaly does not occur frequently.

7.3.1. EKF-ignore

The analysis of the robustness of the EKF-ignore method is provided for varying prediction
accuracies. The result in Figure 7.5 are as expected and the EKF-ignore method performs
reasonably from 100% prediction accuracy up until 90%. This demonstrates that the
EKF-ignore method requires accurate detection and isolation methods to perform well
and recover the EKF from anomalous sensor measurements. This is because every data
sample that is inaccurately predicted influences the EKF and the EKF-ignore method
does not account for these inaccurate predictions.

At a prediction accuracy of less than 60% the estimation metric of the EKF-ignore
method is performing worse than the EKF would’ve performed without any recovery
method, when compared to “None” in Figure 7.1 after 30 orbits. This is because the
EKF-ignore method not only incorporates the anomalous sensor measurement during
incorrect predictions, but also excludes the normal sensor measurements if the prediction
is inaccurate.

7.3.2. EKF-reset

The EKF-reset method does not ignore sensor measurements, but “resets” the EKF every
single time the prediction shifts from normal to anomalous or the other way around. The
results for the robustness of the EKF-reset method at varying prediction accuracies are
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Figure 7.5: Comparison of the average estimation metric per orbit for 30 orbits for the
EKF-ignore method with varying prediction accuracies during the Sun reflection anomaly.
The estimation metric is the absolute difference between the attitude in quaternion qk
and the estimated quaternion q̂k in degrees.

provided in Figure 7.6. As expected the EKF-reset reduces the estimation metric the
lower the prediction accuracy. This, however, will only be up until a certain point and
the EKF-reset method is time consuming since it must reiterate through the entire buffer
every single time an anomaly is predicted.

If the EKF-reset method is continually implemented with a 0% prediction accuracy it
will be equivalent to ignoring the sun sensor for every time step. This, however, does not
take into account that this analysis is implemented for varying detection accuracies, but
not varying isolation accuracies. Varying isolation accuracies will ignore different sensors
at different time steps and the isolation accuracy will therefore also have a significant
impact on the EKF-reset method. The EKF-reset method does not, however, perform
with an estimation metric of less than 10◦ at a 50% detection accuracy. The analysis
of varying isolation accuracies is therefore not required since that will only increase the
estimation metric which is already not acceptable.

7.3.3. EKF-combination

The EKF-combination method is developed to try and get the best of both the EKF-reset
and EKF-ignore method. The results for the robustness of the EKF-combination method
is provided in Figure 7.7. Comparing the results with that of the EKF-reset and the
EKF-ignore methods it can be concluded that the EKF-combination method (without
varying isolation accuracies) outperforms both methods at prediction accuracies between
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Figure 7.6: Comparison of the average estimation metric per orbit for 30 orbits for
EKF-reset method with varying prediction accuracies during the Sun reflection anomaly.
The estimation metric is the absolute difference between the attitude in quaternion qk
and the estimated quaternion q̂k in degrees.

80% and 50%. The EKF-combination reduces the estimation metric to less than 8◦ after
30 orbits within that range of prediction accuracies. At high prediction accuracies the
EKF-combination method performs better than the EKF-reset method since it does not
“reset” the EKF as much. It does not, however, perform as well as the EKF-ignore method
at prediction accuracies between 80% and 100%.

The recovery method implemented therefore depends on the anomaly detection and
isolation accuracies. The EKF-combination will be implemented with prediction accuracies
less than 80%. It is, however, concluded that with high prediction accuracies the EKF-
ignore method will be implemented, which seems to be the case given the analysis done in
Chapter 6. If the prediction accuracies are lower during the final analysis, the analysis
might require implemented the EKF-combination method.

7.4. Summary
From both Figure 7.1 and Figure 7.2 it is clear that the EKF-ignore method outperforms
the other recovery methods. This is implemented by only excluding the sensor measurement
with an anomaly from the EKF measurement update. It is also derived from this chapter
that the sequence in which the sensor updates occur influences the EKF and also the
effect of the recovery method. The EKF-ignore method will probably be the best recovery
method given the prediction accuracies of the anomaly detection and isolation methods in
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Figure 7.7: Comparison of the average estimation metric per orbit for 30 orbits for EKF-
combination method with varying prediction accuracies during the Sun reflection anomaly.
The estimation metric is the absolute difference between the attitude in quaternion qk
and the estimated quaternion q̂k in degrees.

Chapter 6. This is concluded from the analysis of the robustness of the recovery methods
at varying prediction accuracies. This chapter provides the detailed analysis of the recovery
block in Figure 1.2. Each block in Figure 1.2 was discussed and analysed in the previous
chapters and the entire system can now be analysed as a whole.
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Chapter 8

Results of Fault Detection, Isolation and
Recovery Techniques

Each category within FDIR can be chosen based on the sequential analysis of each category
independently. Combining the methods and closing the loop can change the results as the
recovery method might change the response of the control output which in turn might
change the behaviour of both the detection and isolation algorithms. This chapter provides
the results for the entire system block diagram as shown in Figure 1.2. The different
anomaly detection and isolation methods were previously analysed in Chapter 6 with the
specific focus on the Sun reflection and magnetic moment disturbance anomalies. The
integrated system of recovery, detection, isolation as well as feature extraction is further
analysed in this chapter to determine the most suitable combination of methods.

In this chapter the results of the prediction accuracy for the isolation methods is
provided and analysed with the addition of the feature extraction methods. The best
method according to the analysis is thereafter also compared with small variations such as
with and without detection and the time efficiency of the method. The methods are then
compared to the traditional technique of training the FDIR method on only a general
anomaly, in this case high sensor noise. The method will then be implemented and tested
on the all the anomalies as discussed in Chapter 5 excluding the Moon on the Earth
horizon anomaly.

8.1. Comparison of Feature Extraction Methods
To determine the best performance of each detection and isolation method the outputs
of the feature extraction methods are provided as additional input to the detection and
isolation methods. This excludes the LOF algorithm for detection since it is already
considered as a feature extraction method and will not be tested with additional features
as input. The prediction methods — decision tree, random forest and SVMs — are
trained with either the outlier score O, as the output of the LOF algorithm, or the moving
average Vk, as the output of the MAESM algorithm, as additional inputs. The feature
extraction methods are trained beforehand on the normal operation of the satellite (without

103
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anomalies) and thereafter the output of the feature extraction methods for both anomalous
and normal data is provided as input to the prediction methods.

The confusion matrices of the detection methods with the moving average Vk as
additional input are provided in Table 8.1. If compared to Table 6.3, Table 6.5 and
Table 6.7 it can be noted that the prediction accuracy of both the decision tree and the
random forest have increased, while the prediction accuracy of the SVMs algorithm has
decreased. The prediction accuracy of the random forest algorithm has increased from
99.95% to 99.997% and the prediction accuracy of the decision tree algorithm has increased
from 99.87% to 99.95%. This demonstrates the enhancement of the the moving average in
the prediction accuracy of the decision tree and random forest algorithm as is evident in
the research done by de Silva et al. [21]. The prediction accuracy of the SVMs algorithm
has, however, dramatically decreased from 98.13% to 93.54%.

Random forest
Normal Anomaly

Normal 158955 0
Anomaly 6 45477

(a) Random forest as detection.

Decision tree
Normal Anomaly

Normal 158938 17
Anomaly 40 45443

(b) Decision tree as detection.

SVMs
Normal Anomaly

Normal 146944 12011
Anomaly 1182 44301

(c) Support vector machines as detection.

Table 8.1: Confusion matrices for anomaly detection of the decision tree, random forest
and SVMs trained with the moving average Vk as additional input on a test data set.
The row labels are the actual conditions of the data samples, while the column labels are
the classified condition of the data samples.

The detection algorithms are now expanded to also perform isolation and classify the
most probable cause. The confusion matrices are provided in Table 8.2 to determine the
performance of the isolation methods with the moving average as additional input. The
decision tree and random forest algorithms prediction accuracy increases as in the previous
case. The prediction accuracy of the decision tree increases from 99.88% to 99.97% and the
prediction accuracy of the random forest increases from 99.95% to 99.99%. The prediction
accuracy of the SVMs algorithm decreases as with the anomaly detection. The prediction
accuracy decreases from 98.09% to 94.49% with the moving average as additional input.
This is most probably due to the SVMs algorithm increasing the dimensionality of an input
feature space and since the moving average Vk is an additional 9 × 9 matrix, the feature
space might be too large and the SVM provides a hyperplane that is not as accurate due
to the additional feature.

The confusion matrices of the detection methods with the additional input of the
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Random forest
Normal Sun Mag

Normal 158955 0 0
Sun 18 2904 0
Mag 3 0 42558

(a) Random forest as isolation.

Decision tree
Normal Sun Mag

Normal 158938 9 8
Sun 32 2890 0
Mag 15 0 42546

(b) Decision tree as isolation.

SVMs
Normal Sun Mag

Normal 147764 3883 7308
Sun 51 2861 10
Mag 0 19 42542

(c) SVMs as isolation.

Table 8.2: Confusion matrix for anomaly isolation of the decision tree, random forest
and SVMs algorithm trained with the moving average Vk as additional input on a test
data set. The row labels are the actual conditions of the data samples, while the column
labels are the classified condition of the data samples. The magnetometer is abbreviated
to “Mag” and the sun sensor is abbreviated to “Sun”.

outlier score O, as output from the LOF algorithm, are provided in Table 8.3. This is the
results based on the LOF algorithm with the contamination hyper parameter set to 0.1.
Although all three algorithms have an increased prediction accuracy, the increase is quite
small for both the decision tree and random forest with an increase of 0.01% for both
methods. The SVMs algorithm on the other hand has an increased prediction accuracy of
98.13% to 98.87%. The outlier score definitely provides enhancement to the prediction
accuracy of the detection method.

Random forest
Normal Anomaly

Normal 158904 51
Anomaly 26 45457

(a) Random forest as detection.

Decision tree
Normal Anomaly

Normal 158829 126
Anomaly 118 45365

(b) Decision tree as detection.

SVMs
Normal Anomaly

Normal 156691 2264
Anomaly 40 45443

(c) SVMs as detection.

Table 8.3: Confusion matrix for anomaly detection of the decision tree, random forest
and SVMs trained with the outlier score O as additional input on a test data set. The
row labels are the actual conditions of the data samples, while the column labels are the
classified condition of the data samples.

The confusion matrices for the isolation methods with the outlier score as additional
input is given in Table 8.4. The change in performance of the isolation methods are similar
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to that of the detection methods due to the additional input of the outlier score as feature.
The prediction accuracy increases from 99.88% to 99.885% and the prediction accuracy of
the random forest increases from 99.95% to 99.96%. This a very small difference compared
to the increased prediction accuracy of the decision tree and random forest algorithm due
to the moving average as additional input. The prediction accuracy of the SVMs algorithm
for anomaly isolation increases from 98.09% to 98.81% with the outlier score as additional
input. This demonstrates the different nature of the SVMs algorithm and the decision
tree and random forest algorithms. The SVMs performs better with a single additional
feature which increases the accuracy of the classification slice from the hyperplane, while
the decision tree and random forest perform multiple splits on the data set and can make
accurate predictions with a larger feature space.

Random forest
Normal Sun Mag

Normal 158902 0 53
Sun 1 2921 0
Mag 27 0 42434

(a) Random forest as isolation.

Decision tree
Normal Sun Mag

Normal 158854 13 88
Sun 22 2900 0
Mag 112 0 42449

(b) Decision tree as isolation.

SVMs
Normal Sun Mag

Normal 156515 151 2289
Sun 1 2921 0
Mag 0 0 42561

(c) SVMs as isolation.

Table 8.4: Confusion matrix for anomaly isolation of the decision tree, random forest
and SVMs algorithm trained with the outlier score O as additional input on a test data
set. The row labels are the actual conditions of the data samples, while the column labels
are the classified condition of the data samples. The magnetometer is abbreviated to
“Mag” and the sun sensor is abbreviated to “Sun”.

From this section it can be concluded that the best results for the random forest and
decision tree algorithms are with the moving average Vk as additional input and the best
results for the SVMs algorithm is with the outlier score as additional input. This will
therefore be the implementation of these methods with the incorporation of the recovery
method. The method with the best isolation accuracy and detection accuracy is the
random forest algorithm which will be implemented for further analysis with recovery.

8.2. Integration of the Recovery Method
Based on the analysis of all the methods, the prediction accuracy seems to suggest that
the best method is to only have a single random forest performing anomaly detection and
isolation with the additional feature Vk from the MAESM output. The recovery method
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that will be implemented is that of the EKF-ignore method, since it outperforms the other
recovery methods with prediction accuracies above 80% as seen in Chapter 7.

The random forest can be implemented with either the moving average Vk or the outlier
score as additional input. From Section 8.1 it is clear that the best prediction accuracy
of the random forest is with the additional moving average as input. To compare the
random forest with and without the moving average as additional output the architecture
is as shown in Figure 8.1. The EKF-ignore as recovery method is implemented if the final
classification is not “normal”.

vB,s

vB,m

vB,h

x

y

z

Random

Forest
Sun sensor

Magnetometer

Normal

Vk or
No Additional Feature (NAF) EKF-ignore

Isolation

Figure 8.1: The random forest algorithm with an additional feature Vk as input or with
no additional feature (NAF) as input. The random forest can classify the cause of the
anomaly or reclassify the data sample as normal. The isolation triggers the EKF-ignore
recovery method if the classification is not normal.

From both Figure 8.2 and Figure 8.3 it is clear that the random forest with no
additional feature (NAF) performs well with the EKF-ignore method implemented. This
demonstrates that the current FDIR method is able to detect, isolate and recover from the
Sun reflection anomaly. It lowers the estimation metric to an average of less than 4◦ per
orbit, which is acceptable. This means that no re-iteration of the analysis for the recovery
methods and detection methods are required since there is a combination of methods that
does perform well.

The moving average as additional input, however, does not perform as well as no
additional input if the recovery method is also implemented. This is evident from both
the estimation metric in Figure 8.2 and the isolation accuracy in Figure 8.3. The most
probable reason for this is the influence that the recovery method has on the input features
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Figure 8.2: Comparison of average estimation metric per orbit of moving average Vk as
additional input and no additional feature (NAF) to the random forest isolation method.
This is implemented with the EKF-ignore method for recovery on the Sun reflection
anomaly.
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Figure 8.3: Comparison of average isolation accuracy per orbit of moving average Vk as
additional input and no additional feature (NAF) to the random forest isolation method.
This is implemented with the EKF-ignore method for recovery on the Sun reflection
anomaly.

of the MAESM. The recovery method changes the control output torques and therefore
influence the moving average Vk since the MAESM algorithm incorporates the control
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torques with the B matrix in Equation 6.9, where Yk is the control torques. The MAESM
algorithm is a linear approximation of a non-linear system. When this system changes
from the data that the linearisation was performed on, the results will differ. The random
forest that performs prediction only on the sensor measurements as input is not affected
by the changes in the moving average. Since the random forest predetermined the splits of
the features, any changes from the training data might not be correctly predicted and the
more the data deviates from the training data, the less accurate the predictions will be. It
is therefore concluded that the changes of the system influences the linear approximation
of the MAESM algorithm which in turn influences the accuracy of the trained random
forest model.

The random forest without any additional features as input can now be compared to
the scenario with and without an additional detection method. An additional detection
method can be implemented to increase the computational efficiency of the FDIR method.
This is demonstrated in Figure 8.4 where the data sample is either pass directly to the
random forest model or it is passed to the anomaly detection model which triggers the
random forest isolation model when it detects an anomaly. This trained random forest
model for isolation includes the classification of normal data. LOF will be implemented
as the anomaly detection method, since it has a very low false negative value as seen in
Table 6.2 and has a faster execution time than the random forest algorithm. These two
classification architectures will therefore be analysed.

The LOF algorithm is only implemented to reduce the average time spent on prediction,
since the random forest can reclassify any data sample as normal. The estimation metric
of the two methods is provided in Figure 8.5. The additional LOF algorithm for detection
performs just as well as the random forest without any additional detection algorithm.
Both architectures perform do not perform as well as 100% prediction in Figure 7.5 since
the average estimation metric for all 30 orbits are 1.83◦. This is due to the low false
negative value of the trained LOF model. Most of the data samples that are anomalous
are passed to the random forest model and a large percentage of normal samples as well.
The normal samples that are passed to the random forest can be reclassified as normal
even though the LOF algorithm predicted that the data sample is anomalous.

Comparing the timing of the two methods demonstrated that the LOF as detection
method reduces the prediction time by 38.5% after 30 orbits. This, however, is still slower
than either the decision tree’s or SVMs’ isolation time as given in Table 6.9b. The time,
however,will decrease with a smaller contamination parameter for LOF algorithm, since
this will decrease the number of false positives and increase the number of false negatives.
Depending on the time constraint the contamination parameter can be fined tuned by
taking into account the various design factors.
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Figure 8.4: The two different architectures for classifying a data sample. Either the
isolation is triggered with a detection algorithm or the isolation method performs both
the detection and the isolation continuously.
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Figure 8.5: Comparison of average estimation metric per orbit of LOF as detection
method or without any additional detection method to the random forest isolation method.
This is implemented with the EKF-ignore method for recovery.
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Figure 8.6: Comparison of average prediction time for each time step per orbit of LOF
as detection method and the random forest isolation method without any additional
detection method. This is implemented with the EKF-ignore method for recovery.

8.3. Fault Detection and Isolation on General Actuator
Anomalies

As discussed in Chapter 2 the actuators can influence the model update of the EKF,
since the control torques and the actual torques can differ. The actuator anomalies also
require fault detection, isolation and recovery. The design decision is to implement two
separate isolation models for actuator and sensor failures. The reason for this is due to
the different inputs that might be required for isolating which actuator is experiencing
an anomaly, compared to that of sensor anomalies. These inputs can for instance include
the measured angular momentum of the reaction wheels. The actuator anomaly will
also keep the correlation between the sensors the same. Including the control torques as
input to the random forest might aid in the isolation of the anomaly, since the correlation
between the control torques and the sensor measurements will change if the actual torques
differ from the control torques. This also simplifies the implementation. The recovery
method for actuator failure will be different to that of sensor failure. This design decision
is made to ensure that the FDIR techniques of the sensor and actuators can be developed
independently. This is because these two anomaly groups might require different techniques
due to the nature of the anomalies.

For the isolation of the reaction wheels a random forest model is trained on the sensor
and control torques as input to classify which reaction wheel is experiencing the anomaly as
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well as classifying it as normal. The LOF algorithm is implemented differently for actuator
anomalies and has the control torques as additional input. The FDIR for actuators and
the FDIR for sensors can therefore operate separately. The random forest for actuator
anomalies has four output classes, where three classes are the reaction wheel responsible for
the anomaly and one is a class for normal data samples. The reaction wheel anomalies are
implemented from the first orbit without any recovery. Three separate tests are conducted,
one for each reaction wheel failure. The results for the anomaly detection accuracy of each
wheel is provided in Figure 8.7 and the isolation accuracy is provided in Figure 8.8.

0 5 10 15 20 25 30
Number of Orbits

0.84

0.86

0.88

0.90

0.92

0.94

0.96

A
cc

ur
ac

y

RWx

RWy

RWz

Figure 8.7: Average prediction accuracy per orbit of LOF as detection method and
random forest as isolation method for reaction wheel failure.

The prediction accuracy and isolation accuracy for each reaction wheel is above 95%
and 98.8% respectively after 30 orbits. This demonstrates that the proposed method for
fault detection and isolation performs well on the simulated reaction wheel anomalies.
The estimation metric, however, does not improve with the proposed recovery method of
only adapting the input torque to the EKF model update based on the predicted actuator
failure. This demonstrates that if the actuators fail that the control law should also be
adapted to ensure robustness of the EKF.
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Figure 8.8: Average isolation accuracy per orbit of LOF as detection method and random
forest as isolation method for reaction wheel failure.

8.4. Fault Detection, Isolation and Recovery on General
Sensor Anomalies

This section provides the performance of the random forest algorithm for isolation of
general anomalies. This will be the high noise of both the magnetometer and sun sensor
as discussed in Section 5.4. The random forest algorithm can be trained and implemented
in three ways as demonstrated in Figure 8.9. The one is to group all anomalies of a sensor
into one group. This would mean that instead of classifying an anomaly, the algorithm
would only classify the sensor that is providing anomalous measurements. The other would
be to classify each anomaly individually and to determine the sensor based on the anomaly.
The last method is to train the random forest only on general sensor anomalies, which in
this case is high noise.

To abbreviate the anomalies and summarise the results, the orbit sensitive practical
modelled anomalies such as the Sun reflection and magnetic moment disturbance are
abbreviate with (P), while the general anomalies of high noise are abbreviated with (G).
The confusion matrix for the random forest trained on the general and practical anomalies
are provided in Table 8.5. The overall prediction accuracy of the model is 97.43%. This
is not the prediction accuracy of 99.9%+ with which the random forest performed on
only the orbit sensitive practical anomalies. It can also be noted that the random forest’s
prediction accuracy is the lowest when predicting either the high noise of the sun (Sun G)
or the high noise of the magnetometer (Mag G). This therefore demonstrates how a specific
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Sun sensor
Magnetometer
Normal
Sun sensor high noise

Magnetometer high noise
Magnetic moment disturbance
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Figure 8.9: The three different ways of training and classification of the random forest
algorithm for isolation. The random forest algorithm can classify data sample either as
Grouped, Separate or General. The output is always the anomalies on which the random
forest is trained and the anomalous sensor can be determined depending on the classified
anomaly.

method does not perform as well with the classification of different types of anomalies. A
more appropriate method for detecting high noise could be to perform waveform analysis
with methods like applying the Fourier transform. These waveform analysis methods,
however, might perform badly due to the orbital nature of the satellite with regards to
eclipse and sunlit phases.

Random forest
Normal Sun P Mag P Sun G Mag G

Normal 182859 0 53 119 1388
Sun P 0 2917 0 5 0
Mag P 38 0 42518 0 5
Sun G 385 6 11 41910 216
Mag G 6391 0 36 94 61760

Table 8.5: Confusion matrix for random forest algorithm trained on both general (G)
and orbit sensitive practical modelled (P) anomalies. The anomalies are separated into a
class per anomaly. The row labels are the actual conditions of the data samples, while
the column labels are the classified condition of the data samples.

The other method of isolation is grouping the anomalies into a single group based
on the sensor responsible for the independent anomalous measurement. This leads to an
overall prediction accuracy of 97.47%. This is slightly better than the prediction accuracy
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of each anomaly in its own class. Both methods will be implemented with the EKF-ignore
as the recovery method to determine the performance thereof later in this section.

Random forest
Normal Sun Mag

Normal 182704 132 1583
Sun 388 44800 262
Mag 6175 96 104571

Table 8.6: Confusion matrix for random forest algorithm trained on both general and
orbit sensitive practical modelled anomalies. The anomalies are grouped into a class
per sensor for the sun sensor (Sun) or the magnetometer (Mag). The row labels are the
actual conditions of the data samples, while the column labels are the classified condition
of the data samples.

To determine the prediction accuracy of the random forest algorithm on only high noise
the confusion matrix thereof is provided in Table 8.7a with an overall prediction accuracy
of 97.02%. In the field of FDIR there is many research that provide results of developed
methods based on general anomalies only. Table 8.7b provides the confusion matrix of
a model trained on general anomalies only and implemented on orbit sensitive practical
modelled anomalies. The prediction accuracy thereof is 70.62% which demonstrates how
this specific model does not perform well on the orbit sensitive practical modelled anomalies
and this could be the same for other proposed methods in the FDIR field that are only
tested on general anomalies.

Random forest
Normal Sun G Mag G

Normal 92290 26 1197
Sun G 140 42406 309
Mag G 4329 99 63642

(a) Random forest on general anomalies.

Random forest
Normal Sun P Mag P

Normal 117144 18979 22832
Sun P 0 2815 107
Mag P 4 18145 24412

(b) Random forest on practical anomalies.

Table 8.7: Confusion matrix for random forest algorithm trained on only the general (G)
anomalies. The same trained model is implemented on both the general (G) and orbit
sensitive practical modelled (P) anomalies. The row labels are the actual conditions of
the data samples, while the column labels are the classified condition of the data samples.

It must be noted that even though the methods perform well in the analysis, that when
the methods are implemented along with the recovery, that the estimation metric is high as
seen in Figure 8.10. This is due to the sensitivity of the recovery to the prediction accuracy
of the isolation method. The prediction accuracy of 97%+, means that 3% of the time
either an anomalous data sample is predicted as normal or even worse when the isolation
method predicts that another sensor is responsible for the anomalous measurement. This
then not only incorporates the anomalous measurement in the EKF measurement update,

Stellenbosch University https://scholar.sun.ac.za



8.5. Summary 116

but also excludes correct sensor measurements from the sensor that is performing as
expected.
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Figure 8.10: Comparison of average estimation metric per orbit of the different training
methods of the random forest algorithm as isolation. The general class refers to the
random forest trained only on high noise anomalies, the grouped class is that of training
on all the anomalies grouped per sensor responsible for the anomalous measurement. The
separate class is the random forest trained on each anomaly as an individual class. The
LOF algorithm is implemented as the detection method and EKF-ignore is implemented
as the recovery method.

This leads to the conclusion that although the random forest performs well on the
orbit sensitive practical modelled anomalies it is not the best method to classify high
noise. A combination of isolation methods could be implemented to isolate various types
of anomalies instead of relying on one method that is more applicable for certain anomaly
types. It is also clear that training a model on a specific type of anomaly and then
implementing that trained model on another type of anomaly does also not guarantee
good performance. The random forest algorithm which is trained on high noise and then
implemented on the Sun reflection anomaly provided bad results as is seen in Figure 8.10.
This demonstrates that FDIR testing should be conducted on both general anomalies as
well as practical anomalies, since the methods that perform well on one group will not
necessarily perform well on the other.

8.5. Summary
In this chapter the results for variations of the FDIR methods and algorithms were
discussed and analysed. Based on the analysis it was derived that random forest has the
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highest prediction accuracy for anomaly isolation. A comparison was given for LOF as
detection, random forest as isolation and EKF-ignore as recovery and variations of this. It
is clear that the estimation metric decreases with the integration of the recovery method
in Figure 8.5 where the estimation metric remains below 4◦. This demonstrates that the
FDIR technique is successful for the application of the Sun reflection anomaly.

The time efficiency of the random forest with and without LOF as detection was also
discussed and it was clear that LOF decreases the time per prediction by 38.5%. The
results for the fault detection and isolation method for the reaction wheel anomaly was
briefly given and was only analysed on the prediction accuracy, since the controller also
requires recovery, which is not within the scope of this thesis. The method was also
compared to the training of the random forest on the specific anomalies as well as the high
noise on the sensors. From the results it was concluded that the random forest performs
significantly better when trained on only the orbit sensitive practical anomalies compared
to the training on the high noise of the sensors. The prediction accuracy of the random
forest for isolation, however, decreases and highly influences the estimation metric when
the model was trained on both general and orbit sensitive practical anomalies. It was
therefore concluded that a combination of isolation methods could be the best solution for
FDIR in a system with diverse anomaly types.
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Chapter 9

Conclusion

The ADCS of satellites is a crucial subsystem for the success of a satellite mission. The
detection of faults and the recovery thereof is therefore required. While many research
has been conducted on the actuator or control law failure of the ADCS, little research
has been done on the attitude determination aspect of the ADCS. The sensor anomalies
used in previous research, however, are general sensor anomalies and consists of bias drift,
high noise, sudden failure or any drastic change in the sensor measurement. This does not
necessarily ensure that the proposed methods provide accurate estimation during specific
practical anomalies, such as the Sun reflection from the solar panels of the satellite unto
the sun sensor.

9.1. Summary and Evaluation
There are two different categories within fault tolerant control — the one category is
the recovery of the control law and actuator failure, while the other is the attitude
determination of the ADCS. It was determined from previous research on FDIR for
satellites, that the most attention was given to control law and actuator failure. The
objective of this thesis was to develop a FDIR method for sensor anomalies to ensure
robust EKF state estimation. Previous research on developing methods to ensure robust
attitude determination are based on general sensor anomalies. The objective of this thesis
was, however, based on specific practical sensor anomalies, that are orbit sensitive.

To fulfil this objective, a realistic simulation environment was developed in which the
effect of the FDIR techniques on the EKF could be evaluated. This simulation environment
was used to simulate a number of practical anomalies. The orbit sensitive anomalies are
specific to each sensor and are due to natural occurrences and not due to a failure in the
sensor itself. This makes the sensor inadequate at providing an accurate measurement from
which the attitude can be determined. The Sun reflection from the solar panels unto the
sun sensor is the most prominent anomaly due to the standard sequence of the sensor fusion
algorithm. The Moon on the horizon of the Earth and in the FoV of the horizon sensor is
accurately modelled, but the influence thereof is small due to the current orbit parameters.
The magnetometer can be influenced by a dipole moment induced by the circuitry in the
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solar panels. This will also create a disturbance torque. The influence of this anomaly is
mostly due to the disturbance torque and not due to the magnetometer measurements.
This is mostly due to the standard sequence of the sensor fusion algorithm, where the
magnetometer is normally implemented as the first measurement in the measurement
update of the EKF.

To enhance the performance of anomaly detection and isolation methods, extraction
of features that provide additional information was investigated. The feature extraction
was specifically designed to provide a feature that provides information on whether the
current data sample was anomalous and which sensor was anomalous. The local outlier
factor (LOF) algorithm provides a feature that offers information on whether the current
data sample was anomalous within a local neighbourhood. The linear regression method,
on the other hand, provided a moving average to increase the information gain on both
the abnormality of a data sample and which sensor was anomalous.

The simulation environment provides realistic data for the training of anomaly detection
and isolation algorithms. It was concluded, by comparing LOF, decision tree, random
forest and SVM, that the random forest has the highest prediction accuracy, but it is also
the least time and computation efficient. After detecting the anomaly, it is required to
isolate the anomalous sensor. The supervised learning methods, namely decision trees,
random forest and SVM were compared. The comparison was done within a simulation
where the detection method always predicts an anomaly. The supervised learning methods
are trained on both normal and anomalous data and could therefore classify a data sample
as normal. It was also concluded that the random forest algorithm is the most accurate
for anomaly isolation.

To develop a recovery method which ensures a robust EKF during an anomaly, different
recovery methods were compared. It was concluded that the best recovery method under
perfect conditions is the EKF-ignore method which only removes an anomalous sensor
from the measurement update of the EKF. The EKF-ignore provides a result similar to
an estimation where no anomaly is present if the prediction accuracy if higher than 90%
for the Sun reflection anomaly.

Different detection and isolation methods were analysed with the additional features
as input. It was, however, concluded that the random forest algorithm performs the best
without any additional feature from the feature extraction methods as input when the
recovery method is also implemented. The proposed FDIR method was thus LOF as
detection, random forest as isolation, and EKF-ignore as the recovery without any feature
extraction method as input to the random forest algorithm.

The method was thereafter analysed on the reaction wheel failures where it was
concluded that the proposed method can accurately predict reaction wheel failure and
isolate the wheel that failed. This was implemented without recovery, since the recovery
required changes in the controller which is outside the scope of this thesis. Implementing
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the method on the high noise anomalies demonstrated that different methods perform well
on different types of anomalies. The random forest can accurately predict high noise, but
not accurately enough to ensure a robust Kalman filter. This was demonstrated in the
increased estimation metric of the model trained of the high noise data samples. It was
therefore proposed that a combination of isolation methods might be better to classify
different types of anomalies.

9.2. Observations and Findings
Many observations and findings were made from the results in this thesis. The contribution
is therefore summarized and given as:

1. Implementing a random forest model trained on practical sensor anomalies and
ignoring a sensor during the EKF measurement update step when a sensor is
predicted as anomalous, restores the estimation stability and accuracy of the EKF.

2. The random forest algorithm does not perform well in the isolation of high noise as the
anomaly. There is most likely not a single method that will perform well in classifying
all anomalies. An architecture where multiple methods are used simultaneously to
isolate the anomaly is proposed.

3. Training a model on high noise of a sensor performs badly when implemented
on a practical anomaly. Testing proposed FDIR methods on practical anomalies
is required, since there is a substantial behavioural difference between practical
anomalies and general anomalies.

4. Rearranging the order of sensors in the measurement update can significantly change
the impact of an anomaly on the EKF. This leads to another possible recovery
method which only changes the order in which the sensors are used in the EKF
measurement update. This is, however, suggested for future work due to the change
that this has on the architecture of the anomaly detection and isolation.

9.3. Future Work
The observations and findings also lead to many recommendations and improvements for
the FDIR of the ADCS of satellites. These recommendations are for future work and are
summarized as:

1. The Sun reflections can be modelled for different influences on the sun sensor.
Currently the sun sensor latches unto the reflected sun vector, but this will not be
the case for all sun sensors.
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2. Research and development of models for more anomalies of each sensor can be
conducted. The isolation will still have to classify the same number of classes, since
it is only required to classify the anomalous sensor and not the specific anomaly.
This, however, depends on whether the anomaly requires control law recovery as well.
An important evaluation is to determine the performance of the FDIR technique on
sensor anomalies that are not part of the training dataset.

3. Develop recovery methods for anomalies that influence the controller as well as the
EKF. The magnetic moment disturbance anomaly and the reaction wheel failure are
both examples of anomalies that require recovery of the controller.

4. Develop anomalies for the magnetorquer to demonstrate the recovery law implemen-
tation for more than one actuator type.

5. High noise anomalies can be analysed with a Fourier transform and a combination
of isolation methods can be developed to predict different types of anomalies.

6. Multiple sensors and actuators can experience anomalies simultaneously and it is
necessary to develop FDIR techniques that are robust against this.

Implementation of this list and evaluating the results thereof can provide valuable
insight in the FDIR of the ADCS. The fault tolerant control of satellites can be improved
based on further research and determining the effect of multiple anomalies per sensor on
the FDIR method provided. This thesis provides the first steps to gaining insight in the
influence of training the FDIR techniques on orbit sensitive anomalies.
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System Perturbation Matrix

The derivation of the continuous system perturbation matrix, Ft, is repeated from G.Janse
van Vuuren [22], with slight adaptions in notation. This derivation is required for the
execution of the full state EKF, as described in Section 4.3.2.

The continuous system perturbation matrix Ft can be constructed by determining its
individual components, thus

Ft =

 ∂ω̇I
B

∂ωI
B

∂ω̇I
B

∂q
∂q̇
∂ωI

B

∂q̇
∂q


ωI

B=ω̂I
B,q=q̂

(1)

Note that the subscript ’t’ indicating the time domain has been dropped from Equation 4.31
to simplify the derivation. The non-linear function f(x) can be separated into two parts: a
non-linear function describing ω̇I

B and a non-linear function describing q̇. The continuous
non-linear system equation with regards to ω̇I

B is the Euler dynamic equation, or

ω̇I
B = J−1

(
τ c + τ d − ωI

B ×
(
JωI

B + hw
))

(2)

The individual components of Equation 2 can also be expressed as

ω̇x̄I = 1
Ixx

(Ncx̄B +Ndx̄B − ωȳI (Izzωz̄I + hz) + ωz̄I (IyyωȳI + hy))

ω̇ȳI = 1
Iyy

(NcȳB +NdȳB − ωz̄I (Ixxωx̄I + hx) + ωx̄I (Izzωz̄I + hz))

ω̇z̄I = 1
Izz

(Ncz̄B +Ndz̄B − ωx̄I (IyyωȳI + hy) + ωȳI (Ixxωx̄I + hx)) .

(3)

Using Equation 3, ∂ω̇I
B

∂ωI
B

can be determined by taking each individual partial derivative,
which delivers

∂ω̇I
B

∂ωI
B

=


0 ωz̄I (Iyy−Izz)−hz

Ixx

ωȳI (Iyy−Izz)+hy

Ixx
ωz̄I (Izz−Ixx)+hz

Iyy
0 ωx̄I (Izz−Ixx)−hx

Iyy
ωȳI (Ixx−Iyy)−hy

Izz

ωx̄I (Ixx−Iyy)+hx

Izz
0

 . (4)

∂ω̇I
B

∂q is however much more difficult to determine. The first step is to determine which
components of Equation 2 are dependent on the attitude quaternion of the satellite. The
control torque τ c is the sum of the torques generated by the ADCS actuators, which
means that τ c is independent of q. τ gyro is calculated using only the moment of inertia
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matrix, the angular rates and the stored angular momentum, which means that τ gyro is
also independent of q. Although there are many sources of disturbance torques, τ d at a
LEO orbit is simplified to contain only two major components, namely gravity gradient
torque (τ gg) and aerodynamic torque (τ aero). Even though both these components are
dependent on the attitude of the satellite, only τ gg can be calculated accurately, thus

τ d ≈ τ gg (5)

τ d can thus easily be expressed in terms of quaternions using a simplification of Equa-
tion 4.21 as

Ndx̄B ≈ kgx̄B (2 [q2q3 + q1q4])
(
−q2

1 − q2
2 + q2

3 + q2
4

)
NdȳB ≈ kgȳB (2 [q1q3 − q2q4])

(
−q2

1 − q2
2 + q2

3 + q2
4

)
Ndz̄B ≈ kgz̄B (2 [q1q3 − q2q4]) (2 [q2q3 + q1q4])

(6)

∂ω̇I
B

∂q can now be calculated as

∂ω̇I
B

∂q
= J−1

[
∂τ d

∂q

]
= K

[
d1 d2 d3 d4

]
(7)

where

K =


2kgx̄B 0 0

0 2kgȳB 0
0 0 2kgz̄B

 (8)

and

d1 =


−q1A23+q4A33

Ixx

−q1A13+q3A33
Iyy

q3A23+q4A13
Izz

 d2 =


−q2A23+q3A33

Ixx

−q2A13−q4A33
Iyy

−q4A23+q3A13
Izz



d3 =


q3A23+q2A33

Ixx

q3A13+q1A33
Iyy

q1A23+q2A13
Izz

 d4 =


q4A23+q1A33

Ixx

q4A13−q2A33
Iyy

−q2A23+q1A13
Izz

 .
(9)

∂q̇
∂ωI

B
and ∂q̇

∂q can be determined by partially deriving the time derivative of q, which is

q̇ = 1
2Ω(ωO

B )q, (10)

where

Ω(ωO
B ) =


0 ωzo −ωyo ωxo

−ωzo 0 ωxo ωyo

ωyo −ωxo 0 ωzo

−ωxo −ωyo −ωzo 0

 (11)
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The relationship between ωI
B and ωO

B is given by

ωO
B = ωI

B − AB
O


0

−ωo
0

 =


ωx̄I + ωoA12

ωȳI + ωoA22

ωz̄I + ωoA32

 (12)

which means that ∂q̇
∂ωI

B
can be determined as

∂q̇
∂ωI

B
=



∂q̇1
∂ωx̄I

∂q̇1
∂ωȳI

∂q̇1
∂ωz̄I

∂q̇2
∂ωx̄I

∂q̇2
∂ωȳI

∂q̇2
∂ωz̄I

∂q̇3
∂ωx̄I

∂q̇3
∂ωȳI

∂q̇3
∂ωz̄I

∂q̇4
∂ωx̄I

∂q̇4
∂ωȳI

∂q̇4
∂ωz̄I

 = 1
2


q̂4 −q̂3 q̂2

q̂3 q̂4 −q̂1

−q̂2 q̂1 q̂4

−q̂1 −q̂2 −q̂3

 (13)

∂q̇
∂q can be determined by substituting Equation 12 and Equation 11 into Equation 10,
which delivers

q̇1 = 1
2 (q2 (ωz̄I − ωoA32) − q3 (ωȳI − ωoA22) + q4 (ωx̄I − ωoA12))

q̇2 = 1
2 (−q1 (ωz̄I − ωoA32) + q3 (ωx̄I − ωoA12) + q4 (ωȳI − ωoA22))

q̇3 = 1
2 (q1 (ωȳI − ωoA22) − q2 (ωx̄I − ωoA12) + q4 (ωz̄I − ωoA32))

q̇4 = 1
2 (−q1 (ωx̄I − ωoA12) − q2 (ωȳI − ωoA22) − q3 (ωz̄I − ωoA32))

(14)

By partially deriving Equations 14 and performing some mathematical manipulation, ∂q̇
∂q

can be calculated as

∂q̇
∂q

= 1
2
[
Ω
(
ωO

B

)]
+ ωo


q̂1q̂3 q̂1q̂4 1 − q̂2

1 −q̂1q̂2

q̂2q̂3 q̂2q̂4 −q̂1q̂2 1 − q̂2
2

− (1 − q̂2
3) q̂3q̂4 −q̂1q̂3 −q̂2q̂3

q̂3q̂4 − (1 − q̂2
4) −q̂1q̂4 −q̂2q̂4

 (15)
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Measurement Perturbation Jacobian
Matrix

The derivation of the measurement perturbation Jacobian matrix, Hk, is repeated from
G.Janse van Vuuren [22], with slight adaptions in notation. This derivation is required for
the execution of the full state EKF, as described in Section 4.3.2.

The discrete measurement perturbation matrix Hk can be determined by partially
deriving the non-linear function h (xk), which is as

h (xk) = AB
OvOk

. (16)

Since AB
O is constructed from q only, Equation 16 suggests that h (xk) is independent of

ωI
B, thus

Hk =


0 0 0 ∂h1

∂q1
∂h1
∂q2

∂h1
∂q3

∂h1
∂q4

0 0 0 ∂h2
∂q1

∂h2
∂q2

∂h2
∂q3

∂h2
∂q4

0 0 0 ∂h3
∂q1

∂h3
∂q2

∂h3
∂q3

∂h3
∂q4


q=q̂

(17)

Hk can thus be calculated as

Hk =
[

0[3×3] H1 H2 H3 H4

]
, (18)

where

H1 = 2


q1 q2 q3

q2 −q1 q4

q3 −q4 −q1

vOk
,

H2 = 2


−q2 q1 −q4

q1 q2 q3

q4 q3 −q2

vOk

H3 = 2


−q3 q4 q1

−q4 −q3 q2

q1 q2 q3

vOk

and H4 = 2


q4 q3 −q2

−q3 q4 q1

q2 −q1 q4

vOk
.

(19)
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System Noise Covariance Matrix

The derivation of the system noise covariance matrix, Qk, is repeated from G.Janse van
Vuuren [22], with slight adaptions in notation. This derivation is required for the execution
of the full state EKF, as described in Section 4.3.2.

The system noise covariance matrix Qk can easily be determined from the continuous
domain system noise covariance matrix Qt if the following assumptions are made:

• The angular rate noise (due to unmodelled disturbance torques and modelling errors)
is uncorrelated.

• The system noise is small enough to allow the state matrix Φk to be approximated
using only two terms without significant inaccuracies, thus Φk ≈ I + [TsFt]t=kTs

.

• The angular rate noise for each axis is equal, thus σωx̄O
B

= σωȳO
B

= σωz̄O
B

= σωO
B

.

Given the above-mentioned assumptions, the angular rate noise covariance matrix Qω,t is
given as

Qω,t =


σ2
ω 0 0
0 σ2

ω 0
0 0 σ2

ω

 (20)

q is completely described by the equations in Section 5.4, which means that the noise
covariance of the last four states of the system (Qq,t) is simply a zero matrix, or

Qq,t = 0[4×4] (21)

Qt can be formed from Equations B.23 and B.24 as

Qt =
 Qω,t 0[3×4]

0[4×3] Qq,t


=
 Qω,t 0[3×4]

0[4×3] 0[4×4]

 (22)

Ft can also be express in the form of Equation B.26 as

Ft =
 F11[3×3] F12[3×4]

F21[4×3] F22[4×4]

 (23)
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Qk can now be determined by converting Qt to the discrete domain. Through a process of
integration [21],Qk is determined to be

Qk = TsS1 + 1
2T

2
s S2 + 1

3T
3
s S3 (24)

where S1 = Qt

S2 =
 Qω,tFT

11 + F11Qω,t Qω,tFT
21

F21Qω,t 0[4×4]


t=kTs

S3 =
 F11Qω,tFT

11 F11Qω,tFT
21

F21Qω,tFT
11 F21Qω,tFT

21


t=kTs

(25)

The computational load of calculating Qk can be reduced if the assumption is made that
F11 << F21 [21]. Qk can then be simplified to

Qk =
 TsQω,t

1
2Ts

2Qω,tFT
21

1
2Ts

2F21Qω,t
1
3Ts

3F21Qω,tFT
21


t=kTs

(26)
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Measurement Noise Covariance Matrix

The derivation of the measurement noise covariance matrix, Rk, is repeated from G.Janse
van Vuuren [22], with slight adaptions in notation. This derivation is required for the
execution of the full state EKF, as described in Section 4.3.2.

The relationship between the true measured vector vBk
and the true modelled vector

vOk
is given as

vBk
= AB

O (qk) vOk
. (27)

It should be noted that AB,k
O = AB

O (qk). The added notation, which merely implies that
AB

O is a function of qk, will prove to be useful in the remainder of this section.
The measured and modelled vectors are furthermore related to their respective true

vectors through
vBk

= vBk
+ mBk

and vOk
= vOk

+ mOk

(28)

If ∆qk is defined as the difference between the true quaternion qk and the estimated
quaternion q̂k,

∆qk = qk − q̂k (29)

then Equation 27 can also be expressed as

vBk
− mBk

= AB
O (q̂k + ∆qk) (vOk

− mOk
) (30)

The Taylor series expansion from Equation 4.31 can also be used to approximate AB
O (q̂k+

∆qk) as
AB

O (q̂k + ∆qk) ≈ AB
O (q̂k) + Ck∆qk

where Ck =
[
∂AB

O (q̂k)
∂q̂k

] (31)

Substituting Equation 31 into Equation 30 delivers

vBk
− mBk

=
(
AB

O (q̂k) + Ck∆qk
)

(vOk
− mOk

) (32)

Given that the innovation ek is defined by Equation 4.41 as

ek = vBk
− AB

O (q̂k) vOk
, (33)
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substitution can be used to manipulate Equation 32 into

ek = (CkvOk
− CkmOk

) ∆qk + mBk
− AB

O (q̂k) mOk
(34)

If it is assumed that mOk
and ∆qk are extremely small compared respectively to vO,k and

qk, then
mOk

∆qk ≈ 0 (35)

Equation 34 can thus be simplified to

ek =
[
0[3×3]CkvOk

]
∆xk + mk,

where mk = mBk
− AB

O (q̂k) mOk

(36)

The covariance matrix Rk of mk is defined as

Rk =E
{
(mk) (mk)T

}
=E

{(
mBk

− AB
O (q̂k) mOk

) (
mBk

− AB
O (q̂k) mOk

)T
}

=E
{
mBk

mT
Bk

−

mBk
mT

Ok
AB

O (q̂k)T −

AB
O (q̂k) mOk

mT
Bk

+
AB

O (q̂k) mOk
mT

Ok
AB

O (q̂k)T
}

=E
{
mBk

mT
Bk

}
−

E
{
mBk

mT
Ok

AB
O (q̂k)T

}
−

E
{
AB

O (q̂k) mOk
mT

Bk

}
+

E
{
AB

O (q̂k) mOk
mT

Ok
AB

O (q̂k)T
}

(37)

where E indicates the expected value operator. The last term of Equation 37 can be
simplified to

AB
O (q̂k) mOk

mT
Ok

AB
O (q̂k)T = mOk

mT
Ok

(38)

since mOk
mT

Ok
is a scalar value and AB

O (q̂k) AB
O (q̂k)T = 1. If it is furthermore assumed

that the measurement noise and the model noise are uncorrelated and that each noise
vector has equal variance in its 3 axes, then Equation 37 becomes

Rk =E
{
mBk

mT
Bk

}
+

E
{
mOk

mT
Ok

}
=
(
σ2

B + σ2
O

)
I3×3

(39)

where σB and σO are the respective standard deviations of mBk
and mOk

. It is also
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assumed that σB and σO are constant.
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