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Abstract

The rise of autonomous systems in the vehicle industry has highlighted their potential
to increase safety and convenience, transforming the way vehicles interact with their
environment. The racing domain is used to further explore the capabilities of autonomous
systems, as it serves as an ideal test bed to push these algorithms to their performance
and safety limits. In the racing domain, autonomous racing algorithms are tasked with
generating control commands (such as speed and steering angle) to navigate a vehicle
around a track as safely and as quickly as possible. In order to achieve this goal, autonomous
racing algorithms that employ classical control methods can be used. These methods
rely on accurate track and vehicle models to race according to preplanned trajectories
around racetracks. This allows for consistent and repeatable racing behaviour; however,
it limits their use to known, static environments. In comparison, deep reinforcement
learning algorithms can learn to race without the need for these preplanned trajectories.
These algorithms learn from a trial-and-error process, making them more applicable to
generalisation. This generalisation ability makes them an alternative to classical algorithms
in unseen and changing environments that are more reminiscent of real-world conditions.
However, RL algorithms do have limitations, as they tend to underperform in comparison
to classic methods.

In this thesis, we introduce an end-to-end racing framework with improved performance
that is comparable to classic algorithms while increasing its ability to generalise to unseen
tracks. Our method uses a centre-orientated twin delayed deep deterministic policy
gradient (CO-TD3) agent to race on the standard F1TENTH platform. We input sensor
measurements into a deep reinforcement learning network and teach an agent how to race
by controlling a vehicle’s speed and steering angle. We illustrate the effects that an optimal
agent state vector and reward function have on racing performance and generalisation
ability. In addition, we present a random track generator that can be used for research
and testing various algorithms in the F1TENTH simulator. To illustrate the performance
of our CO-TD3 agent, we conduct experiments in simulation and the results are compared
to a benchmark of current racing algorithms. Our algorithm demonstrates robustness
and generalisation ability by racing on a real vehicle after being trained in a simulated
environment. These results demonstrate that our CO-TD3 agents are capable of achieving
performance comparable to classic control algorithms in simulation, while also generalising
effectively to unseen tracks both in simulation and in the real world.
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Uittreksel

Die toename van outonome stelsels in die voertuigbedryf het hul potensiaal beklemtoon
om veiligheid en gerief te verhoog, wat die manier waarop voertuie funksioneer en met hul
omgewing saamwerk, verander. Een van die opwindende maniere om verder ondersoek
in te stel oor die vermoëns van outonomiese stelsels is outonomiese wedrenne. Wedrenne
bied ‘n unieke en uitdagende omgeving wat die limiete en grense van outonomiese stelsels
verder uitbrei. Hierdie outonome wedrenalgoritmes het die taak om beheeropdragte (soos
spoed en stuurhoek) te genereer om ’n voertuig so veilig en so vinnig moontlik om ’n
baan te navigeer. Om dit te bereik, gebruik outonome wedrenalgoritmes wat klassieke
beheermetodes gebruik, akkurate baan- en voertuigmodelle om op optimale trajekte om
renbane te jaag. Dit maak voorsiening vir konsekwente en herhaalbare wedrengedrag;
dit beperk hul gebruik egter tot bekende, statiese omgewings. In vergelyking, kan diep
versterking leer algoritmes leer om te jaag sonder die behoefte aan hierdie modelle. Hierdie
algoritmes leer uit ’n proef-en-fout-proses, wat hulle meer toepaslik maak op veralgemening.
Hierdie veralgemeningsvermoë maak hulle ’n alternatief vir klassieke algoritmes in ongesiene
en veranderende omgewings wat meer aan werklike toestande herinner. Versterking leer
algoritmes het egter beperkings, aangesien hulle geneig is om te onderpresteer in vergelyking
met klassieke metodes.

In hierdie tesis stel ons ’n end-tot-end-renraamwerk bekend met verbeterde werkverrig-
ting wat vergelykbaar is met klassieke algoritmes, terwyl ons die vermoë daarvan om te
veralgemeen na ongesiene bane verhoog. Ons metode gebruik ’n middelpunt-georiënteerde
dubbel vertraagde diep deterministiese beleidgradiënt (CO-TD3) agent om op die stan-
daard F1TENTH-platform te jaag. Ons voer sensormetings in ’n diep versterkingsleer
netwerk in en leer ’n agent hoe om te jaag deur ’n voertuig se spoed en stuurhoek te
beheer. Ons illustreer die effekte wat ’n optimale agenttoestandvektor en beloningsfunksie
op wedrenprestasie en veralgemeningsvermoë het. Daarbenewens bied ons ’n lukrake
baangenerator aan wat gebruik kan word vir navorsing en toetsing van verskeie algoritmes
in die F1TENTH simulator. Om die prestasie van ons CO-TD3 agent te illustreer, word
dit in simulasie geëvalueer en die resultate word vergelyk met ’n maatstaf van huidige
wedrenalgoritmes. Ons algoritme demonstreer robuustheid en veralgemeningsvermoë deur
op ’n regte voertuig te jaag nadat dit in ’n gesimuleerde omgewing opgelei is. Dit wys
dus dat ons CO-TD3 agente in staat is om prestasie te verrig wat vergelykbaar is met
klassieke beheeralgoritmes, terwyl hulle in staat is om te veralgemeen na ongesiene bane
in simulasie en in die werklike wêreld.
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Chapter 1

Introduction

Autonomous systems have seen significant advances in recent years, proving effective in
controlled environments across various industries. However, their application in complex
real-world scenarios, such as autonomous racing, presents unique challenges that remain
largely unsolved. Human racers possess the ability to interpret visual input and make
decisions based on past experiences, even if they have never experienced that exact
situation before. Replicating this capability is one of the biggest challenges faced with
fully autonomous racing algorithms, as it is nearly impossible to predict and plan for every
possible scenario in an ever-evolving environment such as the real world. An autonomous
racer’s ability to generalise its actions to a set of unseen features is crucial to its ability
to perform in these complex environments. Achieving this ability will allow autonomous
racers to successfully navigate unseen tracks with performance comparable to that of an
autonomous racer on a seen track. Additionally, generalising will enable the autonomous
racer to perform in dynamic environments, a crucial aspect in multi-vehicle racing. Having
an autonomous racer with these capabilities will greatly benefit the field of autonomous
racing, highlighting the potential and efficacy of these autonomous racers in unpredictable
real-world conditions.

The increased interest in this field has led to the emergence of many autonomous racing
leagues, such as the Abu Dhabi Autonomous Racing League [1], Indy Autonomous Racing
Challenge [2] and the F1TENTH league [3]. For this project, the F1TENTH platform will
be used. This platform is commonly used among universities to test autonomous racing
algorithms, facilitating direct comparisons between algorithms developed on this platform.
Furthermore, it offers a simulated and a physical platform, which allows algorithms to
be developed safely using the simulated environment and then tested on the real vehicle,
allowing a direct comparison between simulated and real-world tests.

1.1 Research motivation

The primary objective of autonomous racing algorithms is to safely and quickly navigate a
vehicle around a racetrack, a task made significantly more challenging on unseen tracks.
Although classic control algorithms have been applied to address this, they tend to perform
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2 1.2. Aims and objectives 2

well only in known conditions, often struggling with changing environments and unknown
scenarios, which limits their broader applicability.

Furthermore, this task becomes increasingly difficult as the complexity of the environ-
ment grows and uncertainties arise about how performance in simulated environments will
transfer to real-world conditions. The complexity of these challenges highlights the need for
methods that can reliably operate in new environments without additional tuning between
deployments. Additionally, the racing environment serves as an ideal platform for develop-
ing these systems as they compel autonomous systems to operate at the performance edge.
The complexity of this challenge fosters creative innovation, which has historically driven
advancements in the commercial automotive sector. Developing autonomous systems that
excel at the performance edge not only advances the field of autonomous racing but also
lays the groundwork for future innovations in commercial autonomous vehicles.

1.2 Aims and objectives

In response to the challenges posed by complex and unpredictable real-world environments,
this project aims to develop a deep reinforcement learning (DRL) autonomous racing
agent capable of reliable performance on unseen tracks. The objectives of this agent can
be identified as follows:

• Increasing the performance and reliability of current DRL autonomous racing algo-
rithms on seen track.

• Achieving the ability to generalise racing behaviour to unseen tracks.

• Increasing the robustness of these algorithms to allow for seamless simulation-to-
reality transfers.

If successful, the development of this agent aims to enable autonomous racing in real-world
environments. Additionally, our agent should operate with performance comparable to
that in simulation without additional training.

1.3 Solution overview

Classical racing algorithms have been able to achieve consistent racing performance using
different frameworks such as model predictive control [4] and trajectory optimisation with
tracking [5]. These classic frameworks, which use a model of the track and vehicle, are able
to achieve good racing performance on seen tracks due to their ability to plan an optimal
trajectory. All of these algorithms have one hurdle that prevents them from performing on
unseen tracks, which is their reliance on track models and predefined plans. Furthermore,
these methods are more susceptible to model mismatch when transferring from a simulated
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3 1.3. Solution overview 3

environment to a real environment as they rely on the accuracy of simulated vehicle models
for real world performance. These limitations highlight the need for algorithms that can
be used to achieve more adaptive performance and negate the effects of model mismatch.

Deep reinforcement learning (DRL) end-to-end algorithms have emerged as a possible
alternative to classic control methods [6]. Through trial and error, deep reinforcement
learning agents can develop a robust policy that can generalise well to unseen situations [7].
This eliminates the need for extensive modelling and allows these algorithms to adapt to
diverse environments. These algorithms do have downsides, as they can have unpredictable
and inconsistent behaviour [8, 9]. Furthermore, tests using these RL algorithms are
generally performed in simulation, not on physical vehicles [6]. However, addressing these
challenges would enable the deployment of these autonomous racing systems in unseen
environments with the robustness and adaptability needed for real-world success.

To address the limitations of classical algorithms and improve the adaptability of
deep reinforcement learning methods, we introduce a new method to achieve end-to-
end racing on the standard F1TENTH platform [3]. This DRL method uses the twin
delayed deep-deterministic policy gradient algorithm (TD3) to control the vehicle using
processed LiDAR sensor data, resulting in a centre-orientated TD3 (CO-TD3) racing
agent. By developing a general racing strategy, we improve the limitations of current
DRL formulations by increasing the repeatability and reliability of these methods. This
implementation highlights strategies that can be used to increase the generalisation ability
of RL racing agents. This includes optimising the training of these agents to expose them
to features of a racetrack in such a way as to allow for the development of a robust and
comprehensive racing policy.

Our method shows that including a well-constructed agent state vector, comprising
of sensor measurement and a centring reference term, increased the consistency of the
agent’s action selection and consequently improved the overall performance of the agent.
This centring term is calculated from the data captured by the LiDAR scan and provides
the agent with an indication of how far it is from the centre of the track at each time
step. This term is used by the agent to better position itself on the track. Lastly, a reward
function is designed that incorporates aspects such as the centring term and the lap time
of the agent to reward the agent for making safe and fast progression around the track. All
of this combined to create an agent that has increased performance compared to classic
and other DRL methods. Additionally, this method was able to easily transfer from a
simulated environment, where it was trained, to hardware, where it was able to perform
as expected. Thus, we overcome the obstacle of not only traditional sim-to-real transfer
but additionally sim-to-real transfer in an unseen environment.
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1.4 Thesis outline

This thesis presents a structured approach to using Deep Reinforcement Learning (DRL)
for autonomous racing. Specifically, the work investigates how DRL can provide a robust
solution to the autonomous racing problem by allowing agents to navigate previously
unseen tracks and perform effectively in both simulated and real world settings.

A comprehensive review of the literature in Chapter 2 examines the progression from
traditional control strategies in autonomous racing to modern DRL techniques. The
discussion highlights notable performance achieved using both classic control and DRL
methods and concludes with an evaluation based on the use of these methods to solve the
autonomous racing problem. Chapter 3 delves into the theoretical background required
to understand the methodologies used in this research, covering reinforcement learning
concepts such as Markov decision processes (MDPs), deep neural networks (DNNs), and
the twin delayed deep deterministic policy gradient algorithm (TD3).

In Chapter 4, the racing problem is formulated and discussed. This chapter also presents
specific information about the simulated environment used in this thesis. Chapter 5 focuses
on the design and structure of our CO-TD3 agent’s state and action vectors, the reward
function, as well as the tuning of reward function weights and network hyperparameters.

Chapter 6 outlines a training strategy that focusses on the development of a robust
racing policy. This approach enables the identification of the maximum speed at which
the algorithm can effectively control the vehicle.

Chapter 7 shows the impact the training track has on the agent’s generalisation ability,
as well as describes the creation of a random track generator that is used to increase the
number of tracks in the set and create tracks similar to those expected in the real world.

Chapter 8 addresses the sim-to-real transfer challenge, exploring the gap between
simulated training and real-world deployment. The effectiveness of noise modelling in
LiDAR scans, as well as the robustness of agent behaviours to unseen physical conditions,
is discussed in relation to bridging this gap.

Chapter 9 examines the racing performance achieved by these our CO-TD3 agent both
in simulation and on physical hardware. Finally in Chapter 10 we provide a conclusion
and a discussion of possible future work.
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Chapter 2

Literature review

The field of autonomous racing uses many different methods and algorithms in the pursuit
of fast and safe racing behaviour. These approaches can be broadly categorised into three
methods: classic, end-to-end, and partial-end-to-end. This section provides a brief overview
of these methods and distinguishes them by their implementation of the autonomous
driving pipeline. Key algorithms from each category are introduced, first by giving a brief
technical overview and then by providing a review of their application in autonomous
racing. This is done to investigate the potential generalisation ability of each algorithm and
to identify how aspects of these algorithms can be used in the creation of an autonomous
racing algorithm that can race on unseen tracks, in both simulation and in the real world.
These algorithms are then evaluated according to the objective described in Chapter 1
and the methods and techniques required by each algorithm.

2.1 Classic autonomous racing methods

The classic autonomous racing approaches focus on using traditional control algorithms.
These methods rely on mapping the track to generate an optimal path around the track.
The goal of these algorithms is to follow this path by assessing its position on the track
relative to the optimal preplanned position. Based on its position on the track, the
algorithm issues control commands based on rules and constraints incorporated into the
algorithm that aim to keep the vehicle on this optimal path. Furthermore, it is possible to
incorporate ideal speed profiles for the vehicle to match along its trajectory [6]. These
aspects of classic methods allow for consistent and competitive performance. However,
classic methods are more suited to static environments, as the predefined plan usually
does not account for environmental changes.

The classic autonomous vehicle pipeline is used to differentiate the subsystems responsi-
ble for different tasks within the algorithm. Therefore, a brief overview of the pipeline will
be discussed before addressing technical information and use cases for various algorithms
like model predictive control, trajectory optimisation and tracking, and follow-the-gap.

5
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6 2.1. Classic autonomous racing methods 6

2.1.1 Autonomous driving pipeline

Classical methods operate using a commonly referred to classic driving pipeline [6].
This pipeline encompasses the subsystems that enable the vehicle to go from inputting
environmental data from a sensor to calculating control commands to navigate the vehicle.
The three subsystems (perception, planning, and control) can be optimised and arranged
in various ways depending on the requirements specified by the algorithm used. This
allows for variations in how data flows between subsystems and how each subsystem is
optimised, depending on the algorithm’s requirements. Figure 2.1 shows one of these
implementations.

Perception

Planning

ControlSensors Actuators

Hardware HardwareSoftware

Environment

Figure 2.1: A possible implementation of the autonomous driving pipeline where the
black arrows show the flow of information along the pipeline. The feedback arrow shows
that the output of the pipeline makes the vehicle change its position in the environment
and thus a new vehicle state can be identified by the sensors which starts the process
again

Perception

Perception refers to the mechanism that gathers information about the environment. This
is done with sensors that detect information about elements of the environment or of the
vehicle. Perception systems typically involve localisation, which determines the vehicle’s
position within its environment, object detection to identify obstacles or other vehicles,
boundary detection to recognise lane markings or road edges, and mapping to create a
detailed representation of the surrounding area, enabling it to make informed decisions [10].
It is an integral aspect of the system, as it forms an important connection from the software
to the information available from the environment. Perception provides crucial information
for other elements of the pipeline and allows autonomous vehicles to execute plans based
on their current state in the environment [10].
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Planning

A common approach to planning involves a 3-level hierarchical structure, comprising route
planning, behavioural planning, and motion planning, each addressing different aspects
of navigation [11]. The 3-level hierarchical approach is shown in Figure 2.2 [12]. This
subsystem is key in dynamic and unseen environments as it aims to react to environmental
elements.

The route planner’s goal is to execute a plan based on the path that it’s required to
take. This planner is more orientated towards navigating to a way point rather than the
specific behaviours of the system [10,12].

A behavioural planner aims to achieve local objectives by interacting with elements
of the environment and following a specific set of rules that dictate the limit of its
behaviour [11]. This planner handles immediate changes such as obstacle avoidance or
lane changes. [10, 12].

A motion planner is used to generate trajectories or sequences of actions to navigate
to local objectives. This should aim to find the optimal path for the current state. The
solutions to these motion planning problems are often complex and require immense
computing power; therefore, numerical approximations are typically used [12].

Route planning Motion planning

Path Follow

Unstructured
Environment

Parking
Maneuver

Navigate
Intersection

Lane Change

Task

Reference trajectory

Behavioural
planning

Map

Waypoint
sequence

Behavioural
state 

Sensor data

Estimated pose
and collision free

space

Figure 2.2: The hierarchy of the autonomous driving planning process adapted from
Pandel et al. [12]

Control

This subsystem focuses on keeping the vehicle on the planned trajectory. The controller
works in conjunction with the planner by translating high-level trajectories into executable
actions. This involves having a controller with effective feedback mechanisms that aim
to reduce tracking errors. Feedback mechanisms are crucial, as they allow the system to
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8 2.1. Classic autonomous racing methods 8

detect and correct deviations from the planned path, ensuring that the vehicle remains
on course despite external disturbances or inaccuracies. The controller processes this
information to generate specific actions, such as adjusting the steering angle and speed,
which propel the vehicle along the predefined trajectory.

2.1.2 Model predictive control

Model predictive control (MPC) is a control strategy that makes use of the classic
autonomous pipeline. MPC predicts the vehicle’s future trajectory for a finite future time
window called the horizon. It bases this prediction on the vehicle’s current parameters
and system constraints. These constraints can be path boundaries, safety requirements, or
vehicle dynamics. The computation of an optimal sequence of states is done by solving
an optimisation problem [4]. Once this sequence of states is determined, the first control
action is executed. This happens repeatedly on the next time step with the information
from the updated state.

MPC is often referred to as ’receding horizon’ control as the algorithm attempts to
achieve long-term optimality using short-time optimisation. The combined use of optimi-
sation and prediction is the feature that differentiates this algorithm from conventional
control methods [13]. As MPC aims at finding control inputs by solving an optimisa-
tion problem that minimises the cost function rather than just following a pre-planned
trajectory, it can be used in more dynamic environments.

Figure 2.3 shows an MPC at time K with a prediction horizon of N3. The MPC aims
to follow the reference by issuing control commands to get the control variable to match
the reference.

Reference

Control Variable

Error

Prediction Horizon

Figure 2.3: MPC predictions with horizons N1, N2, N3 with each prediction getting
closer to the reference trajectory
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It issues steering and speed commands to attempt to achieve the reference trajectory and
speed profile. It shows that the predictions on the horizon are closer to the reference as
the MPC algorithm reduces the error.

Brown and Gerdes [4] created a nonlinear MPC to handle complex racing situations.
These authors make use of mathematical encoding and accurate models to quickly compute
control inputs. Their implementation was able to achieve lane switching, on a real vehicle,
caused by a pop-up obstacle. This shows some generalisation ability by reacting to
dynamic scenarios. However, this deviation is only for a limited period, and it returns to
the original planned path after the deviation. The authors note that the controller has
to solve a non-convex optimisation problem whenever it is faced with an obstacle, and
convergence is not guaranteed for this problem. Therefore, this controller would not be
able to handle a completely unseen environment as the lack of certainty in convergence
and the computational cost of continually solving this optimisation problem will hinder its
ability to perform. Lastly, the vehicle model used to transfer from the simulated to the
real environment was highly accurate, which makes the system more susceptible to model
mismatch if there are ever discrepancies between the simulated and real versions. However,
Brown and Gerdes [4] ability to achieve dynamic response on a real vehicle shows the
potential adaptability of MPC to unseen environments.

Alcala et al. [14] used a linear parameter varying (LPV) MPC that aims to reduce
the computational cost of MPC algorithms, which was a major hurdle in preventing
performance in unseen environments. The F1TENTH platform was used to test their MPC
algorithm and the vehicle was modelled using the standard bicycle model [15]. This model
is used to simplify the vehicle model by creating a two-wheeled vehicle model similar to a
bicycle. They tested their implementation in simulation and found that the vehicle was
able to follow a reference trajectory and complete laps on a mapped track. The authors
did note that they were unable to eliminate the steady-state error in the longitudinal
direction due to slow convergence. They perform the same tests on hardware and achieve
successful laps comparable to their simulated results. They do find limitations brought
on by the localisation error. The system was not robust enough to handle errors in the
sensors used for the localisation, even with the addition of a Kalman filter. These authors
show that MPC is capable of racing in both software and hardware. Their attempt to
lower the computational cost of MPC addresses one of the main limitations preventing
performance on unseen tracks. However, the results that the authors achieved are still
limited to seen tracks.

Yue et al. [16] developed a simplified Gaussian process (SGP) that reduces the com-
plexity of the residual model. This is an attempt to reduce the computational burden
of complex optimisation problems. Furthermore, these authors developed a novel meta-
learning-based multi-scenario model (MLMS). This model updates the model online to
increase its ability to adapt and generalise to unseen scenarios. A gradient descent function
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is used to adjust the weight of the online parameters to achieve this. The generalisation
ability is tested using vehicle masses that differ from the initial model. The controller
was able to update the model parameters to account for these discrepancies. They also
reported that their SGP reduced overall computational cost. This work shows that there
are ways to mitigate the computational cost of traditional MPC and this can be done to
increase generalisation; however, this generalisation is focused towards the model and not
the environment.

MPC has shown to be a viable option for autonomous racing; however, the computa-
tional cost involved seems to limit its uses to seen environments where it can handle only
slight deviations like unexpected obstacles. The computational cost of continuously solving
optimisation problems needs to be overcome if it is to be implemented in a completely
unseen environment.

2.1.3 Trajectory optimisation and tracking

Trajectory optimisation is a method of extracting an optimal trajectory that minimises
lap time around a race track. This is used in conjunction with a pure pursuit controller
that enables the vehicle to follow this generated path. This controller attempts to stay on
the path by reducing the error between the reference trajectory and the current position.
It uses localisation to generate a reference position for the vehicle based on sensor input
usually in the form of a LiDAR scan. The algorithm then uses a ‘lookahead point’ on the
preplanned path as the target to navigate towards. Consequently, the steering angle is
computed to ‘pursue’ this lookahead point [5].

This pure pursuit controller finds a curvature path from its current position to the
lookahead point. Figure 2.4 shows the curved path, with curvature derived from R, from
its current position to the goal.

R

Pure pursuit curvature

Goal

Figure 2.4: Calculating the desired path using a pure pursuit algorithm adapted from
Sukhil and Behl [5].
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Geometric constraints are added to the driving equation to create Ackermann steering.
This enables the calculation of a steering angle δ to guide the vehicle along the curvature [5].

An important aspect of the pure pursuit controller is the lookahead distance. An
optimal value of the lookahead is crucial for the fastest lap time around the track. It also
influences its ability to navigate track features. When the lookahead value is too small, it
can cause unwanted oscillations in the vehicle’s motion. In contrast, if the value is too
large, it can cause the controller to miss features in the track causing it to collide with the
boundary as seen in Figure 2.5.

Figure 2.5: Non-optimal lookahead value that causes a collision with the track boundary
as the goal point is too far ahead and the curvature path fails to account for the track
boundary between the vehicle and the goal.

Kapania and Gerdes [17] designed a feedback-feedforward steering controller. The
controller aims to minimise lateral path deviation while operating at the steering limits. The
incorporation of steering feedforward better estimates a steering angle for a known velocity
profile and curvature path. This should reduce tracking error as the compensation required
by the steering feedback is minimised. Additionally, they included side slip information in
the feedforward portion of the controller to remove the system’s dependence on real-time
side slip feedback. This created a system with robust stability. The development of this
algorithm was to test if it would be effective as a real world control algorithm. This was
proven as the system was successfully deployed on a full-scale Audi TTS. However, the
authors did note that the system is limited by its sensitivity to model uncertainty, which
is more prominent at the physical limits of handling. This shows the feasibility of these
methods to operate in the real world.

Sukhil and Behl [5] proposed an adaptive lookahead algorithm to change this lookahead
value based on the upcoming track geometry. With long straights, the lookahead distance
should be greater, as it allows for higher speeds, but in sharp turns, the value should
decrease to avoid the vehicle cutting corners and colliding with the track boundaries. They
define three driving objectives, a maximum speed, a minimum deviation, and a convex
combination of the previous two objectives. The convex combination uses a trade-off factor
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to prioritise one of the objectives. These three methods were tested using the same path
around a track. The convex combination outperformed the other methods by achieving
faster lap times and higher average speeds. Furthermore, they managed to transfer their
algorithm to the F1TENTH hardware and achieve similar results to their simulated tests,
as shown in Table 2.1.

Environment Lap Time [s] Average Speed [m/s]

Simulation 9.33 2.097

Real-world 9.44 2.042

Table 2.1: Results from tests achieved by Sukhil and Behl [5] showing these authors
ability to achieve comparable results between simulation and hardware tests

This shows that the author’s implementation is robust to sim-to-real transfer; however,
this implementation was tested in ideal and static environments where localisation error
and track uncertainties were not hindering factors. In addition, the track has to be mapped
to generate the trajectory. Therefore, these methods do seem to have the robustness
required for real-world use; however, their reliance on a predetermined plan really hinders
the ability to operate in unseen environments.

Becker et al. [18] introduce a lateral geometric controller combined with a non-linear
Pacejka tyre model [19]. The tyre model is used to model the interaction between the
vehicle tyre and the ground. This creates a hybrid method that combines elements of
classic geometric methods and model-based methods that they call MAP. This method
aims to increase performance by leveraging the simplicity of geometric control and the
accuracy of model-based methods. The authors compared three versions of controllers
to establish a baseline for their methods’ performance in simulation. MAP with Pacejka
outperformed MAP with a linear tyre model and a regular pure pursuit controller by
achieving the lowest tracking error and deviation while achieving a maximum speed of
11 m/s. This method is also tested on hardware where a maximum speed of 8 m/s was
achieved. Becker et al. [18] show how accurate geometric controls can aid in performance
and lower the computational cost of traditional MPC controllers. Although this is still
limited to known and static environments, advances in these two methods could aim
to lower the controller complexity and computational cost to incorporate more reactive
control methods that are adaptive to changing environments.

The performance and simplicity of pure pursuit controllers make them attractive for
high-speed racing. However, accurate localisation limits its use to environments where
reliable localisation can be achieved. Therefore, it is currently not plausible to deploy
them in dynamic or unseen environments. However, the possibility of using aspects of
pure pursuit controllers to simplify more complicated control algorithms such as MPC
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could lead to their use in more complex environments.

2.1.4 Follow-the-gap

Follow-the-gap is an obstacle avoidance algorithm that surveys the current environment
and plans a trajectory based on the observation. Various aspects are used to determine
the optimal path. The main mechanism that dictates the trajectory of the vehicle is the
gap between the obstacles. The size of the gap and the distance to the obstacles dictate
the required heading to manoeuvre through the most optimal gap [20].

The algorithm follows a continuous three-step process. First, the maximum gap is
identified in the gap array. Next, the angle to the centre of the gap is then calculated.
Finally, the heading angle is determined. This allows the algorithm to navigate the
vehicle through diverse and dynamic environments, and no prior information about the
environment is required. This contradicts many classic algorithms that first generate a
plan and then execute it, as this algorithm generates a plan based on the current state
of the environment. This also negates the reliance on accurate localisation methods and
the need for track and vehicle models. Figure 2.6 shows how a LiDAR would scan the
environment and identify the largest gap through which the vehicle can fit. The blue arrow
shows the heading that the vehicle should follow to pass through the centre of the gap.

Figure 2.6: An overview of the LiDAR scan for a follow-the-gap algorithm with the
green beams representing a viable path and the red beams representing a gap that is too
small. The blue arrow represents a viable path that the algorithm has identified.

Demir and Sezer [21] used a follow-the-gap method to plan overtaking manoeuvres.
They specified a two-vehicle problem where the ego vehicle’s goal is to overtake the actor
vehicle. The algorithm uses a goal point in the front of the actor vehicle. The trajectory
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to this point accounts for obstacles like the actor vehicle and the boundaries. The goal
point is also used as a reference point to prompt the ego vehicle to merge back into the
correct lane. They tested their implementation in simulation and found it to be 13% safer
and 41% more comfortable than other overtaking algorithms.

Hossain et al. [22] propose a follow-the-gap method with a dynamic window to determine
control commands for mobile robots. This proposed solution aims to generate collision-free
trajectories with moving obstacles. They showed that their method was able to generate a
goal-orientated collision avoidance trajectory for low-speed robots in dynamic environments.
They also showed that their algorithm works on hardware by testing it on a TurtleBot
Robot [23]. These experiments showed their method’s ability to generate smooth and safe
trajectories in the presence of static and dynamic obstacles at slow speeds.

The follow-the-gap method shows promise as it is robust to environmental changes. Its
lack of dependence on previous track knowledge and highly accurate vehicle models makes
it ideal for racing on unseen tracks. Despite this, the algorithm is more suited to slower
velocities as the lack of optimal path planning and vehicle models limits this algorithm. Its
lack of foresight, sensitivity to sensor noise, and inability to handle high-speed cornering
make it less suitable for racing and, therefore, it is unlikely that it will be able to compete
in a racing environment.

2.2 End-to-end autonomous racing methods

As classic control methods are more suited to known environments, other methods with
the capability to generalise need to be considered. Methods that have the potential for this
are end-to-end methods. These racing methods replace the 3 components of the classic
pipeline with a neural network. As seen in Figure 2.7 a neural network is now responsible
for the perception, planning, and control of the autonomous vehicle.

Sensors Actuators

Hardware HardwareSoftware

Environment

Figure 2.7: End-to-end autonomous driving pipeline
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2.2.1 Reinforcement learning

Reinforcement learning has emerged as a popular method for robotic control [24–26]. The
structure of an RL network consists of layers of artificial neurons that form a connection
between the input and output of the network. It learns by updating these neurons by
using experiences and trial and error in the environment. The learning process is guided
by a reward function that quantifies the quality of certain actions by assigning it a numeric
value. The RL agent aims to maximise this value by taking actions that it considers to be
the most optimal [27].

Applications of racing using reinforcement learning vary widely based on the type of
input data and algorithms used. Researchers have investigated using RL in the racing
domain by applying it to different tasks. For example, Cai et al. [28] used a soft actor-critic
(SAC) to achieve autonomous drifting instead of racing. These authors showed that the
RL-based drift controller can drift on tracks that it had not seen in training; however, a
reference trajectory is provided. This showed robustness to different vehicle types and
friction coefficients. These authors showed the benefits of RL by having a controller with
the ability to generalise, whereas a traditional classic controller would not be able to
perform in these conditions.

RL has also been used in racing with visual data as the input [29,30]. Jaritz et al. [29]
used an asynchronous actor-critic (A3C) algorithm with image input to control a vehicle
in a realistic rally game. They attain results that prove the generalisation ability of this
algorithm on an unseen track. However, it was only able to do so in simulation with ideal
inputs generated for the game. Similarly, Fuchs et al. [31] were able to achieve racing
performance that outperformed human drivers in the video game Gran Turismo. The
authors use a soft-actor-critic (SAC) algorithm to achieve these results. The agent’s state
space consists of the velocity, acceleration, the previous steering command, a binary crash
indicator, the Euler angle (the angle of horizontal vehicle rotation from the tangent at the
current centerline point), distance measurement (from the vehicle centre to its surrounding
objects and track boundaries with a 180◦ field-of-view) and a sample of N upcoming
centerline curvatures. The network used this to select actions that consisted of a steering
angle and a throttle-break signal. This is used with an exponentially discounted future
reward signal based on progress along the track. This is accompanied by a crash penalty
that is scaled relative to the car’s kinetic energy on impact.

Using this implementation, the authors achieved lap times quicker than the game’s
built-in AI and 52, 303 human drivers. To test the robustness of their agent, it was
transferred to a different car from the one it was trained on and tested on the same track
it was trained on. Furthermore, it was tested on a different track than it was trained on
while using the same car as in training. Both of these cases showed the generalisation
performance of their agent as it achieved a faster lap time than the built-in AI and humans
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once again.
The authors did note limitations of this generalisation where in difficult track features

like hairpin turns, the agent was not able to extrapolate its behaviour to these unseen
scenarios. This shows that end-to-end methods are highly effective and can generalise
better than any classic method. The development of end-to-end methods for racing games
does have limitations if it were to be transferred into the real-world. These limitations
include the reliance on difficult-to-access information that is used in the state space
such as the Euler angles and the upcoming curvature of the track. These would require
detailed previous knowledge of the real track and highly accurate localisation if it were
to be recreated in the real world. With this limitation, its ability to race on hardware is
unknown. Therefore, if the end goal is to race on unseen tracks in simulation and in the
real world, there cannot be a reliance on information that is only available in simulation.
Despite this, their implementation was successful and aspects of it can be adjusted to fit a
domain more closely orientated to the real world.

In contrast, Stachowicz et al. [32] had a hardware-forward approach. These authors
used a camera-based system to achieve a high-speed driving policy that can be deployed
in a variety of diverse indoor and outdoor environments. The network underwent offline
training before being trained via the input from the vehicle camera. The offline training
was done by training the agent on a large-scale dataset with navigation trajectories from
many existing environments. This data focused on low-speed driving, which is not the
desired behaviour. Consequently, aggressive, high-speed behaviour must be developed in
real-world online training. This method enabled the agent to learn a real-time driving
policy on hardware. This implementation shows the robustness and transferability of
end-to-end methods by achieving results from a combination of simulation and real world
learning. This highlights the usability of these methods in unseen real-world scenarios.

To simplify the racing problem, Bosello et al. [33] discretised the action space. This
allows for the use of simpler algorithms, such as a deep Q-network (DQN). Using this
simpler action space, Bosello et al. [33] achieve consistent racing performance and show that
this method has some generalisation capabilities by racing it on unseen tracks. However,
to achieve racing performance comparable to that of human drivers, these methods must
work in a continuous action space. Their discretised action space does not allow for precise
control over the vehicle, which is necessary in high-speed racing. These authors note
that the next advancement in their research is to address this limitation. Although this
limitation exists, their implementation aims to address the generalisation problems in
racing and therefore can be used as a baseline comparison.

LiDAR as an input to an RL racing algorithm on the F1TENTH platform has been
shown to be a viable option [34–36]. Ivanov et al. [35] compared the results of the deep
deterministic policy gradient (DDPG) algorithm with the twin delayed deep deterministic
policy gradient (TD3) algorithm. The authors also reported on how the number of beams
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in the observation space affects the performance. This showed that the TD3 algorithm used
with 21 beams resulted in a good performance that showed robustness to the sim-to-real
transfer. However, they reported that their solution was not robust enough to overcome
any LiDAR faults on the real vehicle.

Notably, Brunnbauer et al. [34] showed that a model-based deep-RL algorithm using
LiDAR data can generalise to unseen tracks. Although their methods performed well, it
was unable to achieve 100% completion on seen or unseen tracks consistently. The authors
achieved results, on a real vehicle, by successfully driving around a seen track and showed
some generalisation performance by driving the track in the reverse direction, although no
success rate was reported. Once again, this research can serve as a comparison for future
results.

RL end-to-end methods address many limitations of classic methods and are more
suited to the general behaviour required to race on unseen tracks. Although it is still very
rooted in simulation, the advancements of these algorithms have led to more instances of
researchers addressing the sim-to-real problem. The robustness and generalisation ability
of these algorithms contribute to their ability to bridge the sim-to-real gap, as there is less
of a reliance on accurate vehicle and track models.

2.2.2 Imitation learning

Another technique that complements RL by enhancing learning efficiency is imitation
learning (IL). IL is a machine learning method where an IL agent learns by mimicking the
behaviour of an expert. The agent learns from a dataset that contains demonstrations
that the expert has generated. Through this, the agent attempts to recreate the behaviour
in this dataset [37].

Pan et al. [38] used IL to implement agile off-road autonomous driving. They aimed to
map high-dimensional sensor data to continuous speed and steering commands. They used
an MPC as the expert with a combined batch and online algorithm. They tested their
algorithm on a 1/5th scale rally car on an outdoor dirt track. They aimed to show the
benefit of an IL agent trained on MPC data rather than just using an MPC as the learner
can operate from image data. The authors showed that IL with online training performed
better than batch training. Furthermore, the online agent achieved speeds similar to the
MPC expert on the dirt track, proving the effectiveness of their algorithm.

Zhang and Cho [39] aim to address the unexpected behaviour that is usually encountered
when using IL by selecting examples from different sources. The authors alternate between
collecting from both trained policies and reference policies. This allows for the primary
policy to correct its path which results in better vehicle states. The authors implementation
of a safety classifier is an extension of a previous IL algorithm called DAgger. This
implementation reduces the number of queries to a reference policy. This was tested
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in a simulated environment called TORCS. The authors showed that their algorithm
outperformed DAgger by producing a faster and safer racer. Their method also allowed
the primary policy to mimic the reference policy more closely.

2.3 Partial end-to-end autonomous racing methods

Partial end-to-end methods offer a middle ground, combining the strengths of both classic
and end-to-end approaches. These methods typically involve the integration of learnt
components within a traditional pipeline, enabling the system to take advantage of the
precision of classic methods while still benefiting from the adaptability of machine learning
techniques. This hybrid approach allows for a more structured learning process while still
providing the flexibility needed to handle dynamic and unseen environments. Figure 2.8
shows an example of a partial end-to-end pipeline. This implementation is commonly
used with the MPC algorithm to create a learning MPC (LMPC) [40–42] where model
parameters or trajectories are learnt rather than being explicitly defined.

Sensors Actuators

Hardware HardwareSoftware

Environment

Perception

Figure 2.8: An example of a partial end-to-end autonomous driving pipeline where the
planning and control aspects are done using a neural network

Ghignone et al. [43] present a trajectory-conditioned RL controller (TC-Driver) that
aims to use RL to increase the robustness of autonomous racing controllers. Their
framework uses a classic planner and an RL agent for the control. They used the capabilities
of RL models to heuristically deal with model mismatch and track generalisation while
using reliable classic planning methods. They focus on using RL to model lateral tyre
forces as that is difficult to model in high-speed racing. Their implementation was tested
in simulations and was able to outperform traditional MPC in the presence of model
mismatch by lowering the crash rate by 23.81%. However, the MPC was able to achieve
much faster lap times. They also achieved track generalisation with their method achieving
a crash rate of 12.7% on portions of a track that their algorithm has not been exposed to,
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although these were done in ideal situations when no model mismatch was present. This
result shows that it improves the generalisation as compared to classic methods without
any learning elements. However, it is not able to reliably generalise its racing behaviour.

Evans et al. [36] used trajectory-aided learning (TAL) to increase the reliability of RL
racing agents. TAL uses an end-to-end framework but incorporates aspects from classical
methods such as providing the agent with the racing line and speed profile. The racing line
provides the agent with an optimised trajectory to minimise lap time, and the speed profile
gives the optimal speeds along this racing line. This information enables the agent to have
better positioning and action selection on the track. Therefore, it is not in the pipeline
but the use of a classic path planner in addition to the end-to-end framework distinguishes
it from other implementations. The agent receives more reward if its trajectory is similar
to that of the pre-calculated trajectory. This is shown to increase the performance of
end-to-end agents by increasing the completion rate on seen and unseen tracks. Although
the authors showed that TAL was better than their baseline end-to-end implementation,
they were still unable to reliably achieve 100% completion on seen or unseen tracks.

2.4 Evaluation of methods

Each framework used for autonomous racing provides insight into how we can achieve
robustness and reliability for autonomous racing. However, some methods are more
suited to racing on unseen tracks than others. Classic algorithm’s requirement for track
models severely limits their use in dynamic or unseen environments. This also significantly
affects these algorithms’ ability to bridge the sim-to-real gap. Classic methods require
that the environment and models are nearly identical to what is used in simulation,
and any deviation from this can cause a decrease in performance. The incorporation
of neural networks into the classic frameworks aims to solve these frameworks’ reliance
on these models and addresses the decrease in performance seen from model mismatch.
However, these models still rely on some trajectory planning or classic control, making
them unsuitable for unseen tracks. Full end-to-end DRL algorithms negate the need
for any prior knowledge of the track as they can generalise their actions to perform on
unseen tracks. DRL relies on the training phase to prepare the agent to perform in the
environment. The aspects of the training phase and the DRL agent can be adjusted to
increase its generalisation performance. These DRL methods are less affected by the
sim-to-real transfer as they do not rely on accurate models or localisation to perform.
This is highly beneficial in real world environments, as it will not hinder the agent’s
ability to select actions. All of these make DRL methods ideal for racing competitively on
unseen tracks and effectively bridging the sim-to-real gap. Table 2.2 shows a collection of
popular autonomous driving algorithms along with the prerequisites and limitations of
each algorithm.
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Algorithm Instances of Use Prerequisites Common Limi-
tations

Trajectory optimi-
sation & tracking [5, 17, 18,44–49]

Track and vehicle
model, Trajectory
optimisation algo-
rithm

Model accu-
racy, Lookahead
distance optimisa-
tion, Localisation

MPC (Model Pre-
dictive Control) [4, 14, 50–59] Accurate vehicle

and track model
Localisation,
Model mismatch

Follow the Gap [20–22] Vehicle dimen-
sions

Poor performance
in complex envi-
ronments

End-to-end RL
(Reinforcement
Learning)

[28–30, 32–35, 60–
62]

Training phase,
simulation envi-
ronment

Sensor data qual-
ity, long training
time

End-to-end IL (Im-
itation Learning) [38,39]

Training phase,
Expert demonstra-
tion data

Quality of expert
data

Partial end-to-end
(combination of
IL and traditional
methods)

[36,40–43,63,64] Some model,
Training phase

Model accuracy,
Localisation, per-
formance variance

Table 2.2: Comparison of different algorithms
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Chapter 3

Preliminaries

Vehicle control using deep reinforcement learning (DRL) introduces unique challenges that
differentiate it from classical control methods. One of the primary difficulties is the inherent
lack of interpretability within DRL models. Unlike traditional approaches, where control
logic and decisions are clearly defined, RL agents operate through a policy learnt from the
data, making it difficult to understand the reasoning behind their actions. This black-box
nature of neural networks limits the ability to track the agent’s decision-making process,
making it challenging to diagnose performance issues or identify areas where improvements
are needed. Understanding the technical details of the RL algorithms becomes essential to
guide the agent’s behaviour and ensure it meets the intended performance criteria. This
chapter provides the necessary preliminary knowledge of DRL and the TD3 algorithm,
highlighting the key concepts required to address the unique challenges of using it for
vehicle control.

3.1 Reinforcement learning

Reinforcement learning describes the process of learning optimal behaviours through trial
and error. In an RL problem, the goal is typically to maximise the agent’s cumulative
reward over time by selecting actions that achieve desirable outcomes. Depending on the
algorithm, this may involve learning an optimal policy π that maps a state s to a possible
action a or learning a value function that predicts the future reward of actions taken from
different states. Some RL methods aim to directly learn this mapping (as in policy-based
methods), while others focus on evaluating action values (as in value-based methods).
Formally, RL operates within the context of a Markov Decision Process (MDP), where
the future is independent of the past, given the present state. This property, known as
the Markov property, ensures that the decisions made by the agent depend solely on the
current state, which makes it unnecessary to reference previous states [7, 65]. A game of
chess is a useful analogy for this concept. At any point in the match, the best move can
be determined solely by the current position of the pieces, without needing to know the
sequence of moves that led there [7]. 1

1There are chess exceptions that should be known and accounted for such as castling or en passant
(capturing a pawn on a double move)

21
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In an MDP, the agent interacts with the environment, observes its state st at time
t, takes action at according to its policy π(at|st), and receives a reward rt based on the
outcome of the action. The environment then transitions to a new state st+1 according to
the transition probability p(st+1|st, at) as shown in the flow diagram Figure 3.1. The value
of the reward rt received by the agent is dictated by the reward function. This function
is designed to encourage preferred behaviour and discourage unfavoured behaviour. It
is important that the reward function effectively represents the desired behaviour, as
this is the main mechanism that guides the agent’s performance. The agent does not
actually know what task it is supposed to complete, its only goal is to maximise its rewards.
Therefore, the reward function must ensure that the agent will only receive the maximum
reward when performing the task optimally.

Reward

Action

State

Agent Environment

Figure 3.1: Reinforcement learning agent’s interaction with the environment where an
action at is executed in the maze environment. This action produced a reward rt based
on the quality of the action and a new state st+1 that the agent can use for the next
action at+1 selection

The objective is for the RL agent to maximise the expected cumulative reward, or
return,

Gt =
T∑

k=t

γk−trk, (3.1)

where rk is the reward at time step k and γ ∈ [0, 1] is the discount factor that determines
the trade-off between immediate and future rewards. The expected return Gt allows
the agent to account for long-term consequences of its actions, not just the immediate
reward [7, 66].

In simple Markov environments, such as the grid world shown in Figure 3.2, it can
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easily be seen that the optimal path to the goal of the golden star can be determined by
observing the current position of the agent in the grid. Hence, it is unnecessary to know
the events that led up to the current state of the agent. In this grid world example, we can
also see that the agent has the possibility to only exist within one of the blocks; therefore,
the agents state space can be described by an index in the range of 1 to 9. The agent’s
action space consists of the possible actions in the environment, which are moving up ↑,
down ↓, left ←, or right →.

1 2 3

4 5 6

7 8 9

Figure 3.2: Grid world environment where the goal is to reach the gold star. The red
crosses indicate a danger state where the agent can lose reward. Each block in the grid
world is a possible agent state and is described with an index 1 to 9. The arrows indicate
two possible paths, path 1 (orange) and path 2 (green)

Given this, to evaluate the quality of a state, we define the value function Vπ(s), which
represents the expected return starting from state s and following policy π

Vπ(st) = Eπ[Gt | St = st]. (3.2)

where St represents all possible states and st describes the current state. By doing this,
the value function identifies states that are more beneficial to be in [7, 66]. We can define
the reward for reaching the goal state as 5. Subsequently, if the agent transitions into
a danger state, it gets a reward of -10, and if it transitions to an empty state, it gets 0
reward. Based on the reward values and constraints, we can determine the actual reward
of the agent in the grid world. In the grid, states surrounding the goal will have a higher
value than those far away, that is, state 8 will have a higher value than state 1.

Similarly, the action value function, or the Q-function Qπ(s, a), represents the expected
return from state st, taking action at, and subsequently following policy π

Qπ(st, at) = Eπ[Gt | St = st, At = at]. (3.3)

where At is all possible action and at is the action taken in that state [7].
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The Bellman equation provides a recursive relationship for these value functions. For
the state-value function, it can be expressed as

Vπ(st) = Eπ[Rt+1 + γVπ(st+1) | St = st]. (3.4)

This equation shows that the value of the current state is the immediate reward plus the
discounted value of the next state. For the action-value function, the Bellman equation is
similarly defined as

Qπ(st, at) = Eπ[Rt+1 + γQπ(st+1, at+1) | St = st, At = at]. (3.5)

To illustrate this, we consider two possible paths to the goal state. Path 1 (indicated
in orange in Figure 3.2) can be described as a sequence of states followed by the actions
taken to reach the subsequent states. For example, 4 ↑ indicates that the agent is in state
4 and takes the action to move up. The full path is described as

4 ↑ 1→ 2→ 3 ↓ 6 ↓ 9

The return for this path, when γ = 0.99, can be calculated following Equation 3.1 as

Gt = 0 + γ(0) + γ2(−10) + γ3(0) + γ4(5) = −5

Next path 2 is considered
4 ↓ 7→ 8→ 9

The return here would be
Gt = 0 + γ(0) + γ2(5) = 4.9

We can see that when in the state 4, it is much more beneficial to go down than up, as
it will ultimately lead to more reward. This is the exact thing the Q-function aims to
predict. The Q-function would predict that when in state 4, going down in more optimal
than going up, therefore,

Q(4, ↓) > Q(4, ↑)

This is how Q-value estimates of the expected return based on the state and action can
guide the agent to select an action that lead to more reward. Understanding Bellman
equations is crucial as they serve as the basis for many reinforcement learning algorithms.
By defining how future rewards are computed based on current actions and states, the
Bellman equation enables the development of policies that optimise decision-making
processes over time. This recursive nature not only simplifies the computation of value
functions but also establishes a framework for learning optimal strategies in complex
environments [7].
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Although the simple and discrete nature of the grid-world problem effectively illustrates
how the Q-function can be used to determine the most rewarding action given the current
state, real-world applications of reinforcement learning often involve continuous state and
action spaces. In these scenarios, traditional Q-learning approaches become impractical
due to the vast number of possible states and actions, necessitating the development of
more complex methods. Deep reinforcement learning (DRL) addresses this challenge by
using deep neural networks (DNNs) as function approximators, enabling the agent to
predict Q-values in a continuous domain [27,66].

3.2 Deep neural networks

Deep neural networks (DNNs) form a subset of machine learning techniques that focus on
using multilayer networks to map complex relationships between inputs and outputs [7].
These algorithms have recently demonstrated their ability to perform tasks in many
domains from image processing to large language models. The advantage of DNNs is their
ability to approximate non-linear functions even when there is noise present in the data,
which makes them an invaluable tool when using noisy real-world data [27].

These networks consist of an input layer, hidden middle layers, and an output layer.
The layers consist of artificial neurons. Each neuron in a layer receives an input xi from
neurons in the previous layer, a weighted sum wi is then applied to these inputs, and a
bias term b is added before getting the result

ŷ =
n∑

i=1
wixi + b, (3.6)

This output ŷ is then passed through an activation function which allows the network to
model complex, non-linear relationships between the input data and the target output [67].
These layers are fully connected, meaning that each node in one layer connects to all nodes
in the next layer, making them dense layers. The hidden layers introduce non-linearity
into the network, which allows DNNs to learn complex functions and representations of
the data. A model of a layer and the activation function is shown in Figure 3.3.
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Layer

Activation
function

Figure 3.3: Basic model of a neuron showing the inputs x and their corresponding
weights w summed with the bias b and passed to the activation function. The output y
will be fed into each neuron in the next layers

In order for these DNNs to learn the mapping between the inputs and outputs, the
neurons are updated after every forward propagation of the initial input through the
network. The weight update is performed using a technique called backpropagation [67].
To do this, the loss function quantifies how well the prediction of the network matches
the target value. This is called the loss L. The algorithm then calculates how much each
weight contributed to this loss. This begins at the output layer and moves back through
the network to the input layer. For a neuron in the output layer, the derivative of the
loss with respect to the output is first calculated. Then, this derivative is propagated
backwards through each layer, allowing the algorithm to compute the derivative of the
loss with respect to the weights for each neuron as

∂L

∂w
= ∂L

∂y
· ∂y

∂w
. (3.7)

Once the gradients are computed, the weights are updated using gradient descent

w = w − α · ∂L

∂w
(3.8)

where α is the learning rate which dictates how much the loss derivative contributes to
the change in the weight. This iterative weight update of all neurons is what allows
these networks to learn the complex nonlinear relationship between the input and output

https://scholar.sun.ac.za



27 3.2. Deep neural networks 27

variables.
This structure of DNNs is an integral part of many learning algorithms that form the

backbone of Deep Reinforcement Learning (DRL), where they are utilised to approximate
complex functions, enabling agents to effectively learn optimal behaviours through interac-
tions with their environment. For racing applications, DNNs are particularly valuable in
handling continuous action spaces and complex state representations.

3.2.1 Deep Q-networks

Deep Q-Networks (DQNs) are a class of deep reinforcement learning (DRL) algorithms
that use deep neural networks to approximate the Q-function (Equation 3.3). In DQNs,
the agent learns by minimising the temporal difference (TD) error, which is the difference
between the predicted Q-values and the target Q-values derived from the Bellman equation.
The TD error is calculated as the difference between the current estimate of the Q-value
Q(st, at) and the sum of the observed reward plus the maximum future Q-value,

TDerror = rt + γ max
a

Q(st+1, at+1)−Q(st, at), (3.9)

where rt is the reward received after taking action at in state st, γ is the discount factor,
and maxa Q(st+1, a) is the estimated maximum future Q-value for the next state st+1.
This error quantifies the gap between the current Q-value estimate Q(st, at) and what the
agent has just learnt from its interaction with the environment [67]. To minimise this
error, the Q-function is updated iteratively using the update rule,

Q(st, at)new ← Q(st, at) + α
[
rt + γ max

a
Q(st+1, at+1)−Q(st, at)

]
, (3.10)

where α is the learning rate. This equation adjusts the Q-value estimate for the current
state-action pair based on the TD error. Over time, by repeatedly applying this update rule,
the Q-values become more accurate, and the agent’s policy converges toward the optimal
policy that maximises cumulative future rewards. The process of minimising the TD error
is fundamental in guiding the agent’s learning, ensuring that the Q-function reflects the
cumulative expected reward and improves the agent’s decision-making capabilities. Using
the approximation ability of DNNs, DRL can handle high-dimensional state spaces and
complex environments and can guide the agent to select the most optimal action given the
current state. [7, 66,68].

3.2.2 Policy gradient methods

While DQN methods focus on learning value functions to derive optimal policies, policy
gradient methods take a different approach by directly learning the policy π that maps
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states to actions. Instead of first computing value functions and then selecting actions
based on these values, policy gradient methods directly optimise the policy parameters
to maximise expected rewards. This direct approach makes them particularly suitable
for continuous action spaces, such as those found in autonomous racing, where precise
controls are required [27, 66]. In policy gradient methods, the policy π is represented by a
neural network with parameters θ that directly outputs control actions. The fundamental
objective in policy gradient methods is to maximise the expected cumulative reward,

J(θ) = Eτ∼πθ
[

T∑
t=0

r(st, at)] (3.11)

where τ represents a trajectory (sequence of states and actions) sampled according to
policy πθ. The key theoretical foundation of these methods is captured in the policy
gradient theorem, which provides an expression for the gradient of the expected return
J(θ)

∇θJ(θ) = Eτ∼πθ
[

T∑
t=0
∇θ log πθ(at|st)Gt] (3.12)

This gradient indicates how the policy parameters θ should be adjusted to increase the
expected rewards. For each trajectory, ∇θ log πθ(at | st) indicates how responsive the
likelihood of selecting action at in state st is to minor changes in the policy parameters θ,
effectively showing the influence of these parameters on action choices within the policy [7].
However, this term alone does not determine whether the action at is good or bad. This is
where Gt, the total expected future reward, becomes important. Gt serves as a score for
the action at based on subsequent rewards. If taking action at in state st leads to high
future rewards, then Gt will be large, encouraging the policy to select similar actions in the
future. In contrast, if Gt is small, indicating that the action resulted in poor outcomes, the
update will work to reduce the probability of selecting that action in similar states [7, 27].
Thus, Gt guides the strength and direction of the policy update, enabling the agent to learn
which actions are beneficial. The policy parameters are adjusted accordingly, increasing
the likelihood of actions that maximise rewards. This process is captured in the policy
update rule, where the parameters are updated through gradient ascent,

θt+1 ← θt + α∇θJ(θt), (3.13)

where α represents the learning rate [7]. Policy gradient methods offer several compelling
advantages in continuous action spaces. They can directly output continuous control
actions, naturally learning smooth control policies that are essential for stable performance.

However, policy gradient methods are not without limitations. They often suffer
from high variance in gradient estimates, which can lead to unstable training. They also
tend to be sample-inefficient, requiring many interactions with the environment to learn
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effective policies. Furthermore, these methods can struggle with credit assignment, which
is determining which actions in a sequence were truly responsible for obtaining rewards.
These limitations make policy gradient methods suboptimal as a standalone solution for
complex racing problems [7, 27].

The limitations inherent in both DQN and policy gradient approaches motivate the use
of actor-critic methods which combine the strengths of both methods. Actor-critic methods
merge direct policy optimisation of policy gradient methods with the value function
learning of DQN, while introducing additional techniques to address their respective
limitations. This combination proves particularly effective for demanding continuous
environments [7, 66].

3.3 The twin delayed deep deterministic policy gradi-
ent algorithm (TD3)

Having examined both value-based methods and policy gradient approaches, the twin
delayed deep deterministic policy gradient (TD3) algorithm is introduced, which combines
and improves upon these concepts. TD3 is an actor-critic algorithm that builds on its
predecessor, the deep deterministic policy gradient (DDPG) algorithm, one of the first
algorithms to merge value-based and policy-based learning for continuous control tasks.
While DDPG implements an actor-critic architecture where the actor (policy network)
directly maps states to actions and the critic (value network) evaluates these actions
using Q-learning principles, it often suffers from training instability and sensitivity to
hyperparameter tuning. A common issue is the tendency towards overestimation bias
in the critic network, where Q-values are overestimated, leading to suboptimal policy
learning [66].

TD3 addresses these limitations through several improvements that make TD3 par-
ticularly suitable for complex continuous control tasks, where stable learning and precise
action selection are important [69,70]. The algorithm uses six neural networks, two for the
actor (model ϕ and target ϕ′) and four for the critics (two models θ1, θ2 and two targets
θ′

1, θ′
2 ). The model networks, also known as primary networks, are used to select actions

and calculate Q-values during each step of training. The target networks, in contrast, are
periodically updated copies of the model networks. They provide a stable reference for
updating the Q-values of the model network, helping to reduce volatility and improve
learning stability. In this way, the target networks serve as a stable baseline for comparing
and adjusting the model network’s values. The actor networks implement a deterministic
policy π, mapping states directly to actions, while the critic networks implement action-
value functions Q, evaluating state-action pairs. This dual-critic architecture is important
for the improved stability of TD3 [70].
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The learning process begins by collecting experience tuples (st, at, rt, st+1) in a replay
buffer. During training, the algorithm selects actions using the current policy with added
exploration noise,

at = πϕ(st) + ϵ, (3.14)

where ϵ represents Gaussian noise with standard deviation σ,

ϵ ∼ N (0, σ). (3.15)

The target Q-value, which is used to predict the total return based on the information in
the tuple, is computed using the minimum of both target critic Q-value estimates,

Qt = rt + γ min
i=1,2

(Q′
θ′

i
(st+1, at+1)), (3.16)

where the next action at+1 is found by giving the next state st+1 to the target actor
πϕ′(st+1),

at+1 = πϕ′(st+1) + ϵ̃, (3.17)

where ϵ̃ is clipped Gaussian noise with standard deviation σ̃

ϵ̃ ∼ clip(N (0, σ̃),−c, c). (3.18)

The critic networks are updated by minimising the mean squared error between the more
accurate target Q-value, Qt, and the models estimated Q-value,

θi ← argminθi

(
2−1

2∑
i=1

(Qt −Qθi
(st, at))2

)
. (3.19)

Here, the model attempts to predict the future return using only the current state-action
pair (st, at). The target Q-value, Qt, incorporates both the immediate reward rt and
information from the next state-action pair, (st+1, at+1). This access to future information
makes the target Q-value a more accurate estimate of the true expected return.

The mean squared error between the target and the model’s Q-values is used to update
the model critic networks via backpropagation and gradient descent (as shown in Equation
3.8). The goal is for the model critic networks to learn how to predict the total return
based on the current state and action, without needing the additional future information
available to the target network. Over time, this enables the model critics to become good
estimators of the future return based solely on the current state-action pair.

This role of the critic is crucial, as it serves to judge the quality of the actions chosen
by the actor. If the critic believes that a poor action has been selected, it will assign a
lower predicted return; conversely, if the action is deemed optimal, the predicted return
will be higher [7, 27, 66].
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The model actor network is then periodically updated by performing gradient ascent
based on the first model critic predicted return,

∇ϕJ(ϕ) = 1
N

N∑
i=1
∇aQθ1(si, a)

∣∣∣∣
a=πϕ(si)

∇ϕπϕ(si). (3.20)

The objective here is to improve the policy by maximising the expected return. The
gradient of the Q-value, ∇aQθ1(s, a), represents the critic’s assessment of the action a

chosen by the current actor policy πϕ(s) for the state s. This judgement guides the actor’s
learning process [69,70].

Simultaneously, the gradient of the actor’s policy, ∇ϕπϕ(s), is adjusted to improve
the actions it chooses in the future. Since the policy πϕ(s) maps states to actions, this
gradient is used to fine-tune the model actor’s parameters ϕ, ensuring that the actions
chosen by the actor lead to higher Q-values, i.e., better expected future rewards.

By periodically updating the actor, critic networks have enough time to converge to
accurate value estimates before their feedback is used to improve the actor’s policy. This
ensures a more stable learning process, where the actor can rely on well-trained critics to
guide its policy updates effectively [69,70].

TD3 is an ideal algorithm for this application, as the use of dual critic networks directly
addresses the overestimation bias present in DDPG. By taking the minimum of two Q-value
estimates in Equation 3.16, TD3 implements a form of double Q-learning that provides
more conservative value estimates.

To prevent the policy from exploiting Q-function errors in individual states, TD3 uses
target policy smoothing by adding noise to the target actions seen in Equation 3.17. This
smoothing regularisation effectively trains the policy on a mini-distribution of target values,
making it more robust to noise and helping prevent overfitting to specific state-action
pairs [27, 66]. The delayed policy updates allow critics to become more accurate before
they are used to improve the policy, reducing the likelihood of learning from inaccurate
value estimates. The target networks are updated using Polyak averaging

θ′
i ← τθi + (1− τ)θ′

i (3.21)

and,
ϕ′ ← τϕ + (1− τ)ϕ′, (3.22)

where τ ∈ [0, 1] is an update weight influencing the rate at which the targets get updated.
This allows for smooth target updated by gradually updating these parameters rather than
abruptly changing them. The complete TD3 implementation can be seen in Algorithm 3.1
which outlines the sequence in which the processed discuses are executed.

TD3’s architecture makes it particularly well-suited for autonomous racing tasks. The
continuous action space of racing benefits from the deterministic policy approach, while
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Algorithm 3.1: Twin Delayed Deep Deterministic Policy Gradient (TD3) adapted from Dankwa
and Zheng [69]

1: Initialise random critic networks Qθ1 , Qθ2 and actor network πϕ

2: Initialise target networks θ′
1 ← θ1, θ′

2 ← θ2, ϕ′ ← ϕ
3: Define target update frequency F
4: Initialise random replay buffer D
5: for each timestep do
6: Select action with exploration noise a ∼ πϕ(s) + ϵ
7: Observe next state st+1 and reward r
8: Store transition (s, a, r, st+1) in D
9: Sample mini-batch of transitions from D

10: Add noise to target action: at+1 = πϕ′(st+1) + clip(N (0, σ̃),−c, c)
11: Compute target Q-value: Qt = r + γ mini=1,2 Qθ′

i
(st+1, at+1)

12: Update critics: θi ← argminθi

(
2−1∑2

i=1(Qt −Qθi
(st, at))2

)
13: if timestep % F then
14: Update actor:∇ϕJ(ϕ) = 1

N

∑N
i=1∇aQθ1(si, a)

∣∣∣∣
a=πϕ(si)

∇ϕπϕ(si).,

15: Update target networks:
16: θ′

i ← τθi + (1− τ)θ′
i

17: ϕ′ ← τϕ + (1− τ)ϕ′

18: end if
19: end for

dual critics and delayed updates provide the stability needed for learning complex racing
behaviours. The target policy smoothing helps the agent generalise across states, as this
noise encourages the development of a robust policy, which is crucial for handling varying
tracks and racing scenarios. Furthermore, the use of experience replay allows the agent
to learn from various racing situations, preventing overfitting to specific track sections or
racing scenarios. This combination of features enables TD3 to learn robust racing policies
that can be generalised to unseen track configurations while maintaining stable training
dynamics [69, 70].

When using a DRL algorithm like TD3 for a complex task such as racing, considerations
have to be made when discussing the agent state space and action space. Formally, the
agent state space is all possible states in which the agent can exist in the environment.
When operating in a discrete environment such as the grid in Section 3.1 the agent’s state
can easily be described by the index of all possible states s ∈ S. This is not the same
when operating in a complex continuous environment, as there is no way to know all the
possible states. To account for this, the agent’s state s can be described using a state
vector s that contains variables that describe its condition and the environment around
it. This vector is then used as the actionable information that the agent uses to make a
decision. Similarly, the agents’ actions are no longer discrete single choices as in the grid;
therefore, the actions selected by the agents are in the form of an action vector a that
contains specific actions available in the agent action space A.
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Chapter 4

Autonomous racing: Problem
conceptualisation and simulation

Racing is a complex task that requires precise metrics to evaluate and benchmark perfor-
mance. In this chapter, we model the racing problem by examining the scenarios presented
in both seen and unseen track environments. We introduce the performance metrics that
will be used to evaluate the effectiveness of autonomous algorithms in these scenarios,
providing a basis for comparison and analysis. In addition, the vehicle model and its
interaction with the simulated environment are described. Finally, the controller used to
translate the algorithm outputs into the model input is discussed.

4.1 Conceptualising the autonomous racing problem

Racing is traditionally known as a competitive sport that relies on a driver’s ability to make
split-second decisions, navigate the complexities of different track layouts, and optimise
speed while maintaining control of the vehicle. In contrast, autonomous racing involves
the design of algorithms that replace human drivers with software capable of making these
decisions. The task of autonomous racing introduces challenges that differ from traditional
racing; however, the goal is the same. The primary objective is to navigate a vehicle
around the track as quickly and safely as possible.

In single-vehicle autonomous racing, the objective is to move the vehicle from a
standstill to the completion of a lap. This is achieved by providing the vehicle with control
commands that regulate its behaviour. Typically, these commands consist of vehicle speed
v and steering angle δ. These two control inputs are widely used because they capture the
essential aspects of vehicle control [35,40,71,72]. Furthermore, they mirror how human
drivers control a car by adjusting the speed through throttle input and steering through
the steering wheel.

With the goal of autonomous racing defined, the next element in the racing problem is
the track itself. A track provides the environment within which the vehicle operates. In
this context, a track is represented by an image that captures the bird’s eye view of its

33
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outline, along with a 2D matrix of centerline coordinates

C =


x0 y0

x1 y1
... ...

xn yn


In this matrix, each row represents a position along the track’s centerline, beginning at
(x0, y0) and extending for n points before looping back near the starting position.

When racing on a seen track, the outline, centerline, and starting point are known in
advance, meaning that any of this information can be used to help navigate the vehicle
around the track during testing. In contrast, when racing on an unseen track, none of this
information is known at the time of testing. The vehicle is placed at the start point of the
unseen track and does not have any information about the complete layout of the track.

When the vehicle is placed on the track, it can be described by its pose. The pose of
the vehicle consists of state variables that describe position, x, y, speed v, steering angle δ,
and heading Ψ. This information is sufficient to describe its location on the track and its
current motion. Furthermore, the environment around the vehicle is described by sensor
measurements. The sensor chosen for this application is a LiDAR as it is a robust and
accurate vehicle sensor, as well as the main sensor on an F1TENTH vehicle [3]. The LiDAR
describes the environment using a scan vector d that contains distance measurements from
each of the individual LiDAR beams in the scan

d =
[
d0 d1 d2 d3 ... dn

]
, (4.1)

where n represents the number of measurements in the scan.
Figure 4.1 shows how the LiDAR maps the environment by measuring the distance of

each of the beams.

Figure 4.1: The vehicle on the track showing the LiDAR array d indicated by the grey
arrows
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4.2 Racing metrics

Now that the vehicle can be described in the environment with a pose and a LiDAR scan,
metrics to describe racing performance have to be established. An important metric is the
completion status of a lap, which is determined by whether the vehicle crosses the finish
line without colliding with the track boundary. The detection of a collision is modelled by
checking all of the elements of the LiDAR array and ensuring they are not measuring a
distance shorter than the safety distance ds,

di < ds, where, di ∈ d (4.2)

This is illustrated in Figure 4.2, where the safety distance is defined relative to the position
of the LiDAR above the front wheels. In this racing problem, the vehicle is intended
to move forward continuously, making it sufficient to focus collision checks on the front.
Monitoring for potential rear collisions is unnecessary, as our vehicle is not permitted to
reverse during the race. This collision detection model can also be used in a simulated
and a real environment, as it does not rely on any information that is only accessible in
simulation, such as reading states from the track boundary itself.

Figure 4.2: The safety circle with radius ds shows the LiDAR beams (blue) that detect
a collision between the vehicle and the boundary

Another important metric that gives more insight into where a collision occurs is the
progress along the track. Progress is tracked using the vehicle’s current position in relation
to the beginning of the track. This is shown in Figure 4.3 where the vehicle’s current
progress is shown in red. The centerline point nearest to the vehicle is used to calculate
the distance from the beginning of the track to the vehicle’s current point. Progress is the
proportion of the current length travelled lt over the length of the entire track ltotal

pt = lt
ltotal

. (4.3)

https://scholar.sun.ac.za



36 4.3. The F1TENTH simulator 36

As the whole length of the track is required to calculate progress, it is a metric that can
only be used on seen tracks. This metric allows us to track the safety and consistency of
the racing algorithms, but does not give much indication of the racing performance of the
algorithms.

Figure 4.3: The current progress made by the vehicle from the start of the track as
indicated by the red dot. The zoomed portion shows the closest centre point to the vehicle

Lap time LT is a widely accepted metric for evaluating racing performance, integrating
other performance factors such as trajectory, speed profile, steering efficiency, and slip
angles. A faster lap time is generally indicative of better vehicle behaviour and better
performance in these variables. These three metrics, collisions/completion rate, progress,
and lap time, are commonly used to set benchmarks for racing performance [33, 35,71, 72].

Although real-world training is ideal due to its direct applicability, practical constraints
such as increased training time, potential component damage, and track availability
deter researchers from doing this. Instead, simulated environments provide a safer and
more efficient alternative. The simulated environment serves as an effective platform
for developing and testing autonomous racing algorithms, providing a realistic, safe, and
efficient space for researchers to test and experiment with new racing algorithms. The
simulator effectively mimics vehicle motion using a model that accurately represents real
vehicle dynamics, allowing adequate testing of algorithms within an environment closely
resembling their intended use.

4.3 The F1TENTH simulator

The safety and computational advantages of developing algorithms in simulation make
it an ideal environment for testing and refinement. For this purpose, the F1TENTH
simulator (introduced in Chapter 1) is used, which incorporates a vehicle model designed
to mimic real F1TENTH vehicles [3]. This allows algorithms to be safely developed in
simulation and then tested on a real vehicle.
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4.3.1 Simulated vehicle model

The F1TENTH vehicle used is modelled using the standard bicycle model to describe the
dynamics of the vehicle [15]. This simplified model uses only two wheels to represent the
vehicle. This simplification has a limitation in that it does not consider the roll dynamics;
however, the vehicle’s low profile and the speed at which it operates generally negate this
limitation’s effect. Figure 4.4 shows the model and the accompanying parameters used as
state variables.

Reference point

Figure 4.4: The standard bicycle model [15] with the centre of mass as the reference
point. The diagram shows the position x, y, speed v, steering angle δ, slip angle β and
the heading Ψ as well as how they are defined relative to a fixed plane Sx, Sy

The vehicle state-space vector

x =
[
x y δ v Ψ Ψ̇ β

]T
(4.4)

serves as a representation of the vehicle’s current state under the single-track model. The
vehicle model is only accurate when operating within the defined limits of its constraints.
However, the common speeds of F1TENTH vehicles with autonomous racing algorithms
range between 4 and 8 m/s [71] and the steering angles between -0.4 and 0.4 rad [73].
Consequently, the more specific constraint equations applied when the speed and steering
angle are at the extremes of the constraint bounds do not apply in this use case. The
constraints are shown in Table 4.1 which show that the model constraints are much larger
than the ranges expected in this project.

However, some constraints still apply to the input vector. In this model, the primary
control inputs are the steering rate ω and acceleration a, which determine the rate of
change in the steering angle δ and speed v respectively

u =
[
ω a

]⊤
(4.5)
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Table 4.1: Hardware imposed constraints of steering and speed

Constraint Type Parameter Symbol Value

Steering Constraints

Minimum steering angle δ -0.8 [rad]
Maximum steering angle δ 0.8 [rad]
Minimum steering speed ω -0.4 [rad/s]
Maximum steering speed ω 0.4 [rad/s]

Longitudinal Constraints

Minimum speed v -13.6 [m/s]
Maximum speed v 50.8 [m/s]
Switching speed vs 7.319 [m/s]
Maximum acceleration ā 11.5 [m/s2]

Following the notion used by Althoff and Würsching [15], where the maximum limit is
defined by using an overline bar and the lower limit is defined by an underline bar .
The input u is subjected to the constrains

|ω| ∈ [0, ω], |a| ∈ [0, a(v)], (4.6)

where a piecewise function defines ā(v) as

a(v) =

ā · vs

v
for v > vs,

ā otherwise.
(4.7)

In this function, vs denotes the speed above which tyre friction is no longer the limiting
factor, but rather the acceleration is limited by the power of the engine [15].

The state matrix for the model

ẋ =



ẋ

ẏ

δ̇

v̇

Ψ̇
Ψ̈
β̇


=



v cos(Ψ + β)
v sin(Ψ + β)

fω(ω)
fa(a)

Ψ̇
fΨ̈(δ, β, Ψ̇, v)
fβ̇(δ, β, Ψ̇, v)


(4.8)

defines the relationship between the system’s current state and its future state, effectively
capturing the internal dynamics of the system. The rate of change of steering fω(ω) and
acceleration fa(a) are constrained by a sequential piecewise function, which aims to keep
the variables within its operational limits

fω(ω) =

ω̄ if |ω| ≥ ω̄

ω otherwise
(4.9)
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fa(a) =

a(v) if |a| ≥ a(v),

a otherwise
(4.10)

The functions for Ψ̈ and δ̇ are functions of the state variables and use the constants
given in Table 4.2 that model the rate of change of heading and rate of change of slip
angle,

fΨ̈(δ, β, Ψ̇, v) = µm

Iz(lr + lf )

lfCS,f (glr − ahcg)δ

+
(

lrCS,r(glf + ahcg)− lfCS,f (glr − ahcg)
)

β

−
(

l2
rCS,r(glf + ahcg) + l2

fCS,f (glr − ahcg)
)Ψ̇

v

,

(4.11)

fβ̇(δ, β, Ψ̇, v) = µ

v(lr + lf )

CS,f (glr − ahcg)δ

−
(

CS,r(glf + ahcg)− CS,f (glf − ahcg)
)

β

+
(

CS,r(glf + ahcg)lr − CS,f (glf − ahcg)lf
)Ψ̇

v

− Ψ̇.

(4.12)

These vehicle parameters play an important role in defining the vehicle’s behaviour during
simulations, particularly in controlling aspects like cornering stiffness and inertia.

For small velocities, the single-track model becomes ill-defined, as certain terms in the
equations involve division by velocity, leading to singularities as the velocity approaches
zero. Therefore, for these low velocities, we switch to the kinematic single-track model
with the centre of mass being the reference points as in the normal single-track model.
The kinematic single-track model does not consider vehicle slip; therefore, aspects related
to oversteer and understeer are not considered. This is a reasonable assumption as these
effects are not dominant when the vehicle is not driving close to its physical limits. This
assumption causes in the following changes to the state-space model for |v| < 0.5 where
the last two state-space terms are altered to

fΨ̈(v, a, β, δ, Ψ̇, ω) = 1
lwb

[
fa(v, a) cos(β) tan(δ)− v sin(β) tan(δ)Ψ̇ + v cos(β)

cos2(δ) fω(δ, ω)
]

(4.13)
fβ̇(δ, ω) = 1

1 +
(
tan(δ) lr

lwb

)2
lr

lwb cos2(δ)fω(δ, ω) (4.14)
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Table 4.2: Vehicle parameters for the single-track model obtained from the F1TENTH
simulator

Name Symbol Unit Value

Vehicle length l [m] 4.508
Vehicle width w [m] 1.610
Total vehicle mass m 103 [kg] 1.093
Moment of inertia about z-axis Iz 103 [kg m2] 1.791
Distance from CG to front axle lf [m] 1.156
Distance from CG to rear axle lr [m] 1.422
CG height of total mass hcg [m] 0.574
Cornering stiffness coefficient (front) CS,f [1/rad] 20.89
Cornering stiffness coefficient (rear) CS,r [1/rad] 20.89
Friction coefficient µ [-] 1.048
Gravity g [m/s2] 9.81

4.3.2 Simulated input controllers

The racing problem requires the use of speed v and steering angle δ as primary control
inputs. These control actions are translated into the corresponding vehicle state inputs u
via a controller. A proportional controller is used to determine these inputs, specifically
adjusting the vehicle’s acceleration a and the steering rate δ̇ according to the desired
speed vd and steering angle δd. The proportional controller for the motors calculates the
acceleration as

u2 = a = kp · (vd − v), (4.15)

where,
kp = 10 · a

v
, (4.16)

which defines the difference between desired speed vd and the current speed v. The rate of
change in steering, which is the u1 input to the state space equations, is defined by the
maximum allowable steering rate ω, and the change in the direction of the steering angle,

u1 = ω = ∆δ

|∆δ|
· ω, (4.17)

where,
∆δ = δd − δ. (4.18)
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These can then be used as inputs for the state space equations. This produces a rate of
change for each of the state variables. Then Euler integration is performed to update the
state variable.

x = x + ∆t · ẋ. (4.19)

The flow diagram in Figure 4.5 illustrates the process of action selection, where the
autonomous racing algorithm selects an action, and the vehicle’s state is updated through
the control and state-space equations.

1. 
from autonomous
racing algorithm
based on state in

environment

2. 
 

3. Apply to
vehicle

dynamics
equations

4. Integrate
to find

new vehicle state
variables and

environmental state

Figure 4.5: A flow diagram showing the processes from action selection to that action
being applied to the vehicle model (processes 1-4). (1) It begins at the top block with an
action selected by the autonomous racing algorithm. (2) Then the derivatives of these
actions are found using the controllers (Equation 4.15, Equation 4.17) as they are inputs
to the state equations. (3) The inputs are then applied to the state space equations. (4)
Lastly, integration is done to update the vehicle state variables and environmental state.
That completes the cycle as the agent then uses this state to select a new set of actions
(1)

Understanding the racing problem and the goals associated with it are crucial to the
development of an algorithm to achieve these goals. Having concrete metrics, such as
collision status, progress, and lap time, to describe and compare the performance of
these autonomous racing algorithms, is essential to track the success of these algorithms
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and benchmark performance. A simulated environment, such as the one provided by
F1TENTH, is a useful tool for collecting metrics to ensure that performance meets a
certain standard before deploying these algorithms on real vehicles. Using a platform that
allows for a direct comparison between a simulated and real environment further facilitates
the progress of the development of these algorithms, as the algorithm’s ability to perform
in the real work is a key component to its success.

https://scholar.sun.ac.za



Chapter 5

Reinforcement learning formulation
and optimisation for autonomous
racing

In this chapter, the specific details of the twin delayed deep deterministic policy gradient
(TD3) algorithm for racing are discussed. This includes aspects such as the composition of
the agent’s state vector, action vector, and reward function. These are the key components
that determine the functionality of racing agents. The reward function weights and network
hyperparameters are then tuned to find the best configuration for the agents.

5.1 Agent action vector

The agent is required to select commands to control the motion of the vehicle. It does
this using the actor network πϕ to select actions from the action space, which consists
of a set of all possible actions available to the agent. In the racing problem, the agent
selects a steering angle δ and a speed v to allow it to navigate the track. The agent selects
a value in the range of -1 and 1 for both the steering angle δnorm and the speed vnorm.
These specific choices form the action vector at. In reinforcement learning, normalising the
action and state vectors is a common practice [7]. It helps stabilise the training procedure,
as inputs and outputs are within a consistent range. Additionally, having large values in
either of these spaces can cause gradient updates to become unstable and biased. Lastly,
having a normalised action vector allows the agent to better explore its action space and
negates the possibility of the agent favouring actions with very large or small values [74].
The action vector is represented as follows:

at =
[
vt,norm δt,norm

]⊤
(5.1)

These actions are then scaled based on their maximum values,

δt = δt,norm · δ (5.2)

43
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vt = |vt,norm| · v (5.3)

These are the values the agent uses to control the vehicle. In order to optimise the actions
to have the best racing performance, the agent has to have a good understanding of the
current environment and vehicle state. To achieve this, information is presented to the
agent in order to aid in the action selection process.

5.2 Agent state vector

The agent’s state space consists of a collection of all possible states in which the agent
could be in the environment. It uses the specific state in which it is in to select actions.
Therefore, the information present in the agent’s state space is directly linked to its ability
to successfully race around tracks. As discussed in Section 3.3, there are clear distinctions
between terms such as agent state space St, the agents current state st, and agent state
vector st recalling that the state vector consists of variables used to describe the agent’s
current state. These variables can be in the form of an observation vector ot, or come
from the vehicle state xt. The vehicle’s state is described using the variables in its state
equation Equation 4.4. These are used to describe the vehicle pose in the environment.
An observation is a measurement of these vehicle states or the state of the environment.
In practice, these observations are sensor measurements of these variables. The agent’s
state vector st contains information about the vehicle or environment that the agent uses
to make decisions. If all of the vehicle state variables and all observations are included in
the agents state vector,

st =
[
xt ot

]⊤
(5.4)

then it can be considered as Markov decision processes (MDP), where the states satisfy
the Markov property (Section 3.1). However, if only a subset of the vehicle states or
observations are included in the agent’s state vector, then it is considered a partially
observed Markov decision process (POMDP).

As the goal is to deploy this algorithm on the real vehicle, where the access to all of the
vehicle state variables is limited, we will use a POMDP where a processed observation of the
sensor measurement describing the vehicle’s state and an observation of the environment
is used.

st =
[
ot

]⊤
(5.5)

As stated above, the agent’s state vector must provide the agent with sufficient detail
of the environment to make informed decisions. When assessing the information required
for racing, it is clear that the position of the vehicle on the track is a crucial piece of
information. In classic methods, this is often provided through a set of x, y coordinates
along with an optimal trajectory composed of waypoints in the same format. As the goal
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is for the agent to race on unseen tracks, where this information will not be accessible to
the agent, alternative methods are required to attempt to recreate this information.

As identified in Section 4.1, the main sensor for gathering environmental information
is a LiDAR sensor. Using the LiDAR sensor, we are able to gather data about the
environments in the form of a LiDAR scan. This can be used to determine the current
position of the vehicle; however, since the agent does not have other information about
the global reference frame in which it and the track exist, this provides no value to the
agent. Alternatively, given a complete LiDAR scan, the agent can infer information about
its location based on its proximity to the track boundary, obstacles, and upcoming turns.
Thus, enabling the agent to determine its position based on a local frame generated by
the surroundings detected by the LiDAR. This local frame-of-reference eliminates the
need for global position data, enhancing the agent’s ability to generalise across diverse,
unseen tracks. The spatial data from the LiDAR allow the agent to navigate safely while
optimising for fast lap times, providing an essential input for both decision making and
position control.

The LiDAR scan d is normalised dnorm (with respect to a maximum distance of 10 m)
to ensure that the values in the state are between 0 and 1. The number of beams used in
the scan is based on Ivanov et al. [35] findings which we used to establish that a scan of
28 beams

dnorm =
[
d0 d1 d2 ... d27

]⊤
(5.6)

with a 180◦ field of view (FOV) resulted in the best performance. This resolution is able
to sufficiently describe some of the more complex track geometries causing more consistent
behaviour.

Although the LiDAR provides valuable information about the vehicle’s relative position,
additional state variables would further aid the agent in making better action selections.
Ideally, all relevant vehicle state variables would be included in the agent’s state vector, as
they are accessible in the simulator and provide a comprehensive overview of the vehicle’s
current motion. However, practical considerations must be made regarding the variables
that can be measured on the real vehicle. Variables such as heading Ψ, rate of change in
heading Ψ̇, and slip angle β are not measurable with the sensors available on the vehicle
and, therefore, cannot be included. On the other hand, speed v and steering angle δ can
be estimated, as they are directly related to the hardware components of the vehicle.

These two state variables are also the most important when it comes to action selection,
as they represent the actions selected by the agent. These variables offer the agent a
more comprehensive understanding of the vehicle state than the LiDAR alone, potentially
allowing the agent to make more accurate decisions and improve overall race performance.
It is clear why it could be a very influential factor. The vehicle’s current speed and steering
angle should always be accounted for as it impacts the effect of the next selected action.
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Large and rapid changes in speed and steering angle are undesirable as they are more
likely to result in the agent operating at the limits of its physical constraints such as its
tyre friction limit. When the agent has access to its current speed and steering angle,
the effect of rapid and large changes in actions can be observed, and consequently, the
agent can better learn to optimise its action selection. These values, vm,raw and δm,raw,
are measured with the sensors and are normalised before being concatenated to the state
vector,

vm = vm,raw

v
(5.7)

and,
δm = δm,raw

δ
. (5.8)

A common pitfall of end-end racing algorithms is a slaloming and jerking motion when
racing which usually results in agents underperforming compared to classical methods [73].
This also decreases safety by increasing the chance of collisions as the margin of error
is reduced because of its proximity to the track boundary. In an attempt to mitigate
this problem, a centre term is added to the agent’s state vector to be used as a reference
when positioning the vehicle along the track. This method is derived from other methods
that employ similar feature engineering, such as Evans et al. [36] using trajectory-aided
learning (TAL), where a trajectory is given to the agent to encourage it to learn better
positioning on the track, or Fuchs et al. [72] giving the agent upcoming track curvatures.
This proposed centring method does not rely on having access to the track before the
time and generating an optimal trajectory like TAL, but rather it calculates this centring
term in real time. This ensures that this can be used on unseen tracks with diverse track
geometries. This term is obtained using the LiDAR scan. This centring term c is acquired
by averaging the first three and last three distances in the LiDAR array dnorm with n

number of beams,

c = 1
3

 3∑
i=1

di −
n∑

j=n−2
dj

 . (5.9)

Figure 5.1 identifies the red beams that are used to calculate c with different track
geometries. Using the average of the three beams limits the effect of the track’s boundary
geometry and noise in the LiDAR scan. The addition of this centring term to the state
vector creates what we refer to as centre-orientated TD3 (CO-TD3) agents.

Figure 5.1: Red LiDAR beams used for centring calculations
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This inclusion of the speed, steering angle, and reference term produces the agent’s
state vector,

st =
[
dt,0 dt,1 . . . dt,n ct vt,m δt,m

]⊤
, (5.10)

which is the input to the actor πϕ(st) seen in Figure 5.2, which produces the next action.

Hidden layers
Input layer

Output layer

Figure 5.2: The agent structure shows the state vector terms in the input layer, the
hidden network layers that map the inputs to the outputs, and the output layer shows
the agent’s action vector terms.

The combination of the actor’s input and output forms the input for the critic networks
Qθ1(st, at), Qθ2(st, at). This is used to produce an estimate of the expected return (Equa-
tion 3.16) based on the state and the action selected by the actor. The critic network,
shown in Figure 5.3, is responsible for making the actor network better by using this
predicted Q-value to update the parameters of the actor (Equation 3.20).

Hidden layers

Input layer

Output layer

Q-value

Figure 5.3: The structure of the critic network that produces a value to judge the
performance of the actor network
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Now that the inputs and outputs of the model and critic networks have been defined,
they still required guidance to learn which actions produce the most expected cumulative
reward.

5.3 Reward architecture

The reward function encourages the agent to perform in a certain way and is an integral
part of the learning process. A well-structured reward function is necessary for the agent
to achieve its main objective. The objective of our agent is to complete laps as fast as
possible without crashing. Therefore, the reward function must encourage behaviours that
enable it to achieve this goal by maximising its total cumulative reward.

The reward function used for our agents is comprised of different elements, each used
to encourage certain racing behaviours.

r = rp − rc − |c|+ rf . (5.11)

In this reward function, rp represents the reward given based on progress p made per
time step t. This progress is tracked using the vehicle’s current position from the beginning
of the track and the closest centerline point to the vehicle as in Equation 4.3. Therefore
the reward term

rp = (pt − pt−1) · 10 (5.12)

encourages the agent to make progress along the track.
To discourage the agent from crashing, a negative reward of weight w1 is given if the

vehicle crashes. A crash is modelled using the same methods as in Equation 4.2 which
produces the reward function,

rc = I(di < ds) · w1, where, di ∈ d. (5.13)

The crash safety distance ds is the smallest possible distance that encompasses vehicle
which, for the position of the LiDAR on the F1TENTH vehicle, is 0.1 m.

To encourage safer progression and discourage slaloming, the agent is penalised for
straying away from the centre of the track. The same methodology is used to quantify this
penalty as Equation 5.9. Incorporating c in the reward function encourages the agent to
drive more smoothly and eliminates slaloming; however, it decreases the agent’s average
speed. This smooth trajectory is beneficial, as it will result in a safer trajectory on unseen
tracks by teaching the agent if is ever uncertain about how to navigate an unseen feature,
simply staying in the centre of the track is safe behaviour. However, this is not the most
ideal racing behaviour, as this hinders the lap time as the agent prioritises driving in the
middle of the track rather than racing. Therefore, we need to adjust the impact of this
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penalty to keep the positive effects of the smoother trajectory but encourage it to find a
more optimal race line.

In an attempt to find this racing line and counteract this slow progression, a large
reward is given to the agent upon completion of a lap. Reward is added based on lap time
to encourage fast lap completion. This results in a completion reward that is a function of
the lap time LT , the vehicle’s maximum speed, v̄ and track length, ltotal. The lap time
bonus rf is a ratio of the agent’s lap time and the fastest possible lap time with the
maximum speed

rf = I(p ≥ 1)
(

ltotal

LT · v̄

)
. (5.14)

The fraction in the equation approaches 1 as the vehicle lap time approaches the minimum
lap time, therefore, the agent gets a larger bonus for completing a lap in the fastest possible
time. Using this arrangement always ensures that at least some positive reward is given
on the completion of a lap as none of the terms in the fraction are negative.

These individual rewards are combined with weights w2 and w3 to form the final reward
function r at each step;

r = (pt − pt−1) · 10− I(di < ds) · w1 − |c| · w2 + I(p ≥ 1)
(

ltotal

LT · v̄

)
· w3. (5.15)

An interesting outcome of the reward function is the agent’s ability to perceive the
reward from the progress term, despite it not being present in the state vector. Typically,
including reward-related terms in the state vector, as with the centring term, helps the
agent link rewards to state changes. However, including progress is not feasible for real
unseen tracks, as it cannot be recreated. However, the agent seems to infer progress
through changes in the LiDAR scans over time, demonstrating the powerful nonlinear
mapping ability of DRL networks to extract such nuanced details from raw sensor data.

5.3.1 Reward function weight tuning

The reward function in Equation 5.15 aims to balance the skills required to race in unseen
environments while encouraging competitive racing behaviour. The weighting of terms
w1, w2, and w3 is aimed at teaching the agent that it should find an optimal trajectory to
minimise lap times; however, if the agent is ever uncertain about upcoming features, it
can learn that racing in the centre of the track, although not optimal for lap time, will
always be the safest trajectory.

As this is the goal, we know that if too much importance is placed on the agent staying
centred, it will result in slow and cautious driving behaviour. Conversely, the agent’s
behaviour could become sporadic and dangerous if too much importance is placed on
having a low lap time. This optimal balance between safety and speed must be found
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in order to extract the positive driving behaviour that each reward term encourages and
minimise unwanted driving behaviour.

To encourage this behaviour, an ideal combination of these weights must be identified.
An investigation is conducted to attempt to do this. For this investigation, a range is
identified for each weight (1 to 10 for the completion bonus and 0.05 to 0.4 for the centring
penalty). An agent is then trained with all possible combinations of these weights, which
is repeated to have 10 agents with each combination. Besides the changes in the weights,
the agents undergo the same training procedure. Each agent is tested and, based on this
performance, a reward is given according to Equation 5.15. The total return received by
the agents is normalised based on the total possible reward available given the weight
combination.

Figure 5.4 shows a heat map of the average normalised reward for each weight pair. It
shows the average return on seen and unseen tracks.
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Figure 5.4: The average normalised return and standard deviation (in brackets) of
agents with various pairs of reward function weights. The higher values indicate that
these agents are able to get more of the overall available reward. This means that these
weights helped develop the most optimal policy for this racing problem.
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If the average return is closer to 1, it indicates that these agents are maximising the total
reward possible and, therefore, have more optimal performance. The heat map shows no
strong discernible trend, although some better performing combinations can be identified.
The completion bonuses in the upper middle range with lower centring penalties tend
to increase performance as the reward is sufficient to encourage faster lap time but not
too excessive that it still receives a large reward if the lap time is not optimal. The low
centring penalty gives the agent more flexibility to choose a fast race line while encouraging
a smooth trajectory. The best performing weights are when the centring penalty is 0.05
and the completion bonus is 5 or 6 indicating that these are the best combination for this
reward function.

Notably, it was found that if the centre penalty weight is lower than 0.05, the completion
rate of the agent begins to decrease with none of the combinations reliably achieving 100%
completion. Consequently, the agent misses out on the completion bonus. Therefore, this
is the minimum centring penalty weight considered.

Up to this point only 2 of the 3 weights have been tested; therefore, an investigation
should be carried out to examine the effect the crash penalty w1 has on the performance.
The same experiment is repeated, but now only for a subset of the best performing weights,
and the crash penalty is altered. Figure 5.5 shows the effect of altering the crash penalty.
The previous investigation is carried out with a crash penalty of 1, and it can be seen that
increasing this value decreases the agent’s performance. Increasing this penalty causes the
agent to avoid crashing so much that it prioritises that over the goal of finishing fast and
adopts overly cautious driving behaviour. Therefore, a low crash penalty is better as it
still incentivises the agent to avoid crashing; however, the other components of the reward
function are then more responsible for the racing behaviour of the agent.
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Figure 5.5: Heat maps showing average return for different crash penalty of (a) 2 and
(b) 4

The resultant weights used in the reward function are reported in Table 5.1
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Parameter Symbol Value

Crash penalty w1 1
Centring penalty w2 0.05
Completion bonus w3 5

Table 5.1: Final reward function parameters

5.4 CO-TD3 hyperparameter tuning

TD3 incorporates many techniques that make it a fairly stable and robust algorithm. It
is less sensitive to hyperparameter tuning than other reinforcement learning algorithms.
However, hyperparameters should still be considered as the environment in which the agent
operates and the complexity of the task can require an adjustment in these hyperparameters.
The initial hyperparameters proposed by Dankwa and Zheng [69] are used to base the
initial hyperparameters on. The actual starting values are shown in Table 5.2 and will
be used as the initial values for the network. These are also the values that have been
used in the network up to this point. The network is then tuned by altering each of these
values while keeping the other values the same as in the table. To obtain a representative
average of the results, 10 iterations are trained for 65 000 training steps for each proposed
hyperparameter combination.

Parameter Value

Action noise 0.2
Batch size 100
Discount factor 0.99
Learning rate 1e-3
Policy update frequency 4

Table 5.2: Initial hyperparameters

When the hyperparameters are tuned, the effect they had on the training is examined
using the learning curves of each combination. The learning curves are a good representation
of the quality and efficiency of training, as they report the return achieved by the agent over
the number of training steps. This shows learning progress as the agent undergoes more
training. Good training is usually indicated by fastest and more consistent convergence
of the return to a maximum value. Figure 5.6 show the learning curve when altering the
value for the action noise in the network.

It is clear that the higher noise allowed the agent to learn faster, but it struggled to
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converge. The other values showed slower convergence but more stability. A noise value
of 0.2 showed a good balance between the training speed and convergence with a small
standard deviation toward the end of training.
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Figure 5.6: The training curve of agents with varying action noise values showing the
average return and the standard deviation (shaded)

This process is repeated for the policy update frequency (which describes the number
of critic network updates before an actor update), the discount factor (which is the trade
off between prioritising short-term versus long term rewards), learning rate (the weight
of the parameter updates) and batch size (the number of samples from the buffer). A
comprehensive overview of all the hyperparameter tuning is presented in Appendix A.
The hyperparameters that have a significant effect on training are the learning rate and
action noise, while other hyperparameters, such as batch size, did not have a noticeable
effect on the training curve but did increase the training time significantly. The final
hyperparameters based on the outcome of the tuning are presented in table Table 5.3

Parameter Value

Action noise 0.2
Batch size 64
Discount factor 0.99
Learning rate 1e-4
Policy update frequency 8

Table 5.3: Final hyperparameters

In addition to the hyperparameter tuning. Appendix A also describes an analysis of
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the hyperparameters after tuning. An investigation is conducted that examined the effect
of altering just one of the hyperparameters in Table 5.3. The investigation showed that
altering any of these hyperparameters adversely affected training, suggesting that the
chosen values are suitable to achieve reliable and efficient learning. Furthermore, a similar
investigation is conducted on reward function weights. This investigation concluded that
even after the hyperparameter tuning, Table 5.1 is still the most effective combination of
weights.

5.5 Assessment of state vector variables

The composition of the agent’s state vector is carefully designed based on insights from
prior literature, theoretical understanding, and practical experience with RL racing agents.
Each element, from the number of LiDAR beams to additional vehicle state variables,
plays a crucial role in shaping the agent’s performance and overall racing behaviour. The
effect of these elements can be shown by examining how they contribute to the agents’
performance.

Figure 5.7 shows the effect only by varying the number of beams in the LiDAR scan
and not any of the terms. Ivanov et al. [35] reported good performance using 21 LiDAR
beams, so this is a good indicator of a starting range. The beams are sampled equidistantly
from the full 1080-beam LiDAR scan, with an even number of beams chosen to maintain
symmetry when calculating the centring term. The results indicate that insufficient scan
resolution leads to inconsistent action selection, increasing the likelihood of collisions. The
best number of beams was found to be 28, as this provided stable performance. Adding
more beams beyond this did not improve performance, but only increased the input size,
prolonging training time without additional benefit.
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Figure 5.7: The average completion rate of agents with a varying number of beams
used in the agents state vector

The impact of including the current speed and steering angle along with the LiDAR
scan in the state vector is evident when comparing agents trained with and without these
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terms. Removing them leads to a significant drop in performance. Figure 5.8 shows that,
without the current steering angle, speed, and centring term in the state vector, agents
disproportionately select extreme steering angles, resulting in large and inefficient steering
adjustments.
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Figure 5.8: A histogram showing an agent’s steering angle selection with the current
speed and steering angle added to the agent’s state vector (left) and when it is removed
from the agents state vector (right)

This behaviour not only leads to dangerous driving, but also slows the vehicle down,
as excessive steering results in a poor trajectory and reduces speed. In contrast, when
the current speed and steering angle are included, the histogram reveals a more balanced
distribution. In racing, avoiding unnecessary steering is crucial to maintaining momentum
and minimising time loss.

Furthermore, Figure 5.9 shows the trajectory and speed heat map for the same agents
as the previous plots. The effect of the poor steering angle can be seen in these trajectories,
as the vehicle is constantly slaloming around the whole track compared to the other agent
where the trajectory is more consistent. The absence of current speed in the state vector
also results in a speed profile with more variations in the speed along the trajectories, as
is seen in the vehicle speed heat map.
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Figure 5.9: The trajectory heat map showing the path the vehicle travelled the track
and the speed a each point. The trajectory of the agent that has the current speed and
steering angle in its state vector is shown in (a) and the agent that does not have these
terms is shown in (b)

Figure 5.9 shows that although the agent has better performance when the speed and
steering angle are included in the state vector, it still has some of the undesired slaloming
motion. This is the problem that the centring term directly addresses. Figure 5.10 shows
the vehicle’s trajectory when this centre reference term is added to the agent’s state
vector. This improved the agent’s action selection by encouraging it to take a smoother
trajectory around the track by relying on this centre term for reference and not on one of
the boundaries, as it previously did. The smoother trajectory also allowed the agent to
maintain higher speeds more consistently as seen in the heat map of the trajectory plot.

0

2

4

S
p

ee
d

[m
/s

]

Figure 5.10: The trajectory heat map of an agent with the current speed, steering angle,
and centre reference in the agent’s state vector

In summary, the design of the agent’s state vector and reward function is critical to
achieving competitive racing performance. These elements directly influence the agent’s
ability to select actions that result in effective racing behaviour. When constructing the
state vector, it is essential to include relevant data that provide the agent with the necessary
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information for decision-making to ensure that the agent can focus on learning meaningful
patterns. Additionally, these design choices must consider real-world deployment, meaning
that the observations used in training must be realistic and not exploit the simulator’s
ability to provide all-encompassing state values. In addition, the tuning of both reward
function weights and the network hyperparameters are an essential aspect of ensuring the
agent can produce the best possible racing performance.
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Chapter 6

Training the CO-TD3 racing agent

Now that the specific aspects of the agent’s state vector, action vector, and reward function
have been defined and optimised, the next step is to establish a training strategy aimed at
maximising agent performance. This section outlines the training procedure developed
for the agent, with a focus on enabling effective racing on both seen and unseen tracks.
Additionally, the chapter evaluates the highest feasible vehicle speed for agent training,
identifying the speed at which the agent can still maintain effective control of the vehicle.

6.1 Training strategy formulation

The training strategy describes how agents are exposed to their training environments and
what is done to achieve better training efficiency. Initialising the agent at a predefined
start point and not changing this throughout the training phase is a common strategy.
However, this results in the agent being exposed to certain track features much more
frequently, thus decreasing its overall generalisation ability as it develops a bias toward
these features.

One of the key challenges we aim to avoid is memorisation. Memorisation refers to the
agent’s reliance on specific track geometries or sequences of features to select actions, rather
than adapting based on its current state [75]. This prevents agents from understanding the
actual problem and the dynamics of the environment. We want to avoid the agent’s reliance
on specific track geometries or feature sequences for action selection, as this undermines its
generalisation ability. When the agent overfits the training track, it struggles to generalise
to new environments, limiting its performance on unseen tracks. To avoid these pitfalls,
the training environment and procedure must be optimised to encourage the development
of a robust policy.

To increase the effectiveness of the training on the track, the agent’s starting point and
racing direction are randomly altered during training. This is done to avoid memorisation
of feature sequences and allow for sufficient exploration of the track. The number of
episodes per random start point can be adjusted. The optimal attempts before changing
the initial position and orientation can be determined by adjusting the number of episodes
and examining the effect that it has on the performance. This is shown in Figure 6.1,

58
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where it can be seen that the number of episodes per random start has a minimal effect
on the average lap time with only about a 0.4 second range in lap time between agents
trained with different number of restarts.
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Figure 6.1: Average lap times with standard deviation bars of agents that underwent
training with a different number of episodes per random start

It can be seen that the number of episodes that resulted in the lowest average lap time
is 11. When examining the training curves for agents, there is no discernible difference
between their training efficiency. Therefore, the training procedure is quite robust to this
parameter, but 11 will be used as it has the lowest average lap time.

Another factor to consider is whether training on multiple tracks increases the agent’s
generalisation ability. The effects of this can be determined by selecting a set of tracks to
train and test on. A commonly used set of tracks is chosen and the details of the tracks
are provided in Table 6.1.

Track Name Abbr. Length (m) Min Curv. Max Curv. Avg Curv.

Austria AUT 94.08 -2.04 0.73 0.187
Great Britain GBR 200.54 -1.56 1.03 0.147
Spain ESP 235.08 -1.31 1.20 0.121
Monaco MCO 176.60 -1.65 1.84 0.176

Table 6.1: Track details including length, minimum, maximum, and average curvature.
Negative curvature is convex relative to the track center, while positive curvature is
concave.

Additionally, the outlines of each track are shown in Figure 6.2. One group of 10
agents will only be trained on one of these tracks and tested on all the tracks, while the
other group of 10 agents will be trained on all four tracks by randomly swapping between
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them. The track chosen as the singular track to train on is Monaco. It is selected as it is a
challenging track with high average curvature, average length, and various track features.

(a) Austria (b) Great Britain (c) Spain (d) Monaco

Figure 6.2: Track outlines

The training curves in Figure 6.3 show that the agent trains better when the track
is not changed as it converges faster and converges with a higher average return. To
further investigate whether training on multiple tracks increases its generalisation ability,
its racing performance is tested on the four maps. This is compared to the agents solely
trained on Monaco and, therefore, the other tracks are unseen.
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Figure 6.3: The average training curves with standard deviation of multitrack and
single track agents

Figure 6.4 indicated that training on a single track produces faster lap times with a
smaller standard deviation. This shows that keeping the track constant allows the agent
to converge to a more precise policy that has more consistent and superior action selection,
which is somewhat counter intuitive. An explanation is that the agent can better learn
the effects of its action when the environment remains constant, as it can compare it to
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previous tuples from that same environment. This could lead to better Q-value prediction
from the critics, which would in turn lead to a more optimal actor network.
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Figure 6.4: The average lap time and standard deviation of multitrack versus single
track agents

Notably, the time taken to train an agent capable of this performance given this training
strategy is only 672 s. This is quite impressive, as an agent can go from having no racing
knowledge to consistently completing laps in just over 11 minutes. 1

Algorithm 6.1 provides a high level overview of how TD3 is used for the racing problem.
Initially, the environment E(M) is set up with a specific training map M, and the TD3
agent’s networks are initialised with the networks described in Section 3.3. For each
training step, an action at is selected based on the current policy πϕ(st) and exploration
noise ϵ, modelled as a Gaussian N (0, σ) to encourage exploration. This action is applied
in the environment, giving a reward rt from the reward function created in Section 5.3
and the next state st+1, which are stored in a replay buffer D for stable training.

The TD3 algorithm updates the critic networks Qθ1 and Qθ2 using a mini-batch sampled
from the replay buffer to minimise the Temporal Difference (TD) error (Equation 3.19),
which progressively refines the value function. The actor network πϕ is updated with

1The training time was recorded when training on an Intel NUC with a 13th Generation i5-1340P
Turbo up to 4.60GHz Processor
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deterministic policy gradients to improve the agent’s performance in the environment.
Random resets, every 11 episodes, introduce random initial states to enhance the agent’s
robustness across diverse scenarios. This training loop is repeated for Tsteps steps, allowing
the agent to learn an optimal policy through incremental improvements based on both
state-action transitions and cumulative rewards.

Algorithm 6.1: Training with TD3
1: function TrainTD3
2: Input:Training map M, Total training steps Tsteps

3: Initialize environment E(M) and TD3 agent (πϕ, Qθ1 , Qθ′
2
, πϕ′ , Qθ′

1
, Qθ′

2
)

4: Reset(E) ← sample initial state s0

5: for steps = 0 to Tstep do
6: Episode + +
7: Select action at = πϕ(st) + ϵ, where ϵ ∼ N (0, σ)
8: Apply at to environment, observe reward rt, new state st+1

9: Store transition (st, at, rt, st+1) in replay buffer D
10: Sample mini-batch from D and update Qθ1 , Qθ2 , and target networks
11: Update policy network πϕ using deterministic policy gradient
12: if st+1 is terminal then
13: if Episode%11 == 0 then
14: Reset(E) ← sample random initial state s0

15: else
16: Reset(E) ← sample initial state s0

17: end if
18: end if
19: end for
20: end function

6.2 Algorithm’s maximum vehicle speed

With the algorithm parameters and training finalised, evaluating the maximum speed at
which the algorithm can operate effectively becomes an important factor. This evaluation
helps determine the speed threshold beyond which the agent’s performance may begin
to degrade, ensuring reliable and stable control under racing conditions. This affects the
algorithm training steps, as more precise control is required at higher speeds. Previous
tests were carried out with a maximum speed of 4 m/s and 65,000 training steps, which
provided enough steps to show convergence. As the problem becomes more challenging
with increasing speed, the number of training steps has been extended to 100,000. It was
observed that beyond this point, further training does not yield performance improvements
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at any maximum speed. Figure 6.5 illustrates the effect of increasing the maximum speed
on the agent training curve. Once again, 10 agents are trained with each maximum speed
to obtain the average performance of the agents.

A noticeable observation is a slight decrease in average return as the maximum speed
increases. This is an expected consequence of Equation 5.14, as achieving the minimum
possible lap time becomes increasingly difficult at higher speeds. As the vehicle approaches
its physical limits, the margin for optimal control narrows, making it more challenging for
the agent to maintain the same level of performance achieved at lower speeds. Therefore,
this trend reflects the inherent challenge of the task rather than a reduction in training
efficiency.
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Figure 6.5: The training curve showing the average return and standard deviation
(shaded) of agents with different maximum allowable speeds

The curves show a steady increase in return at all speeds as training progresses;
therefore, the agent’s overall learning is not impacted by the increased speed. However,
there is increased variability in the training as the speed increases. Once again, this
is expected at higher speeds, as small changes in steering angle have a more profound
effect on the overall trajectory. Furthermore, the non-linear response of tyre friction at
high speeds now plays a larger role, introducing additional unpredictability and making
repeatability more difficult.

To further assess the impact of increasing maximum speed on the agent’s racing
behaviour, we examine the average lap times achieved across various speed settings. This
analysis provides a more direct measure of the effectiveness with which the agent translates
its learnt policies into competitive performance. As shown in Figure 6.6, the average lap
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times of the agents decrease steadily as the maximum allowable speed increases, following
the expected trend. However, beyond a maximum speed of 8 m/s, no advantage in lap
time is seen, indicating that this is the maximum speed that the agent learns. In particular,
at maximum speeds above 8 m/s, the completion rate suffers, with a higher proportion of
agents failing to complete laps.
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Figure 6.6: The effect of maximum allowable speed on average lap time

This behaviour demonstrates the limitations of the agent’s ability to handle the
increased speed and maintain control. The observed trends suggest that the agent can
perform consistently well up to a maximum speed of 8 m/s, after which the physical
constraints of the vehicle and the increased difficulty of the task begin to overwhelm the
agent. Consequently, 8 m/s is established as the maximum algorithm speed for reliable
performance. The maximum values of the final algorithm are provided in Table 6.2.
Notably, with the increase in training steps required for the higher speed, this also results
in a longer training time.

Parameter Value

δ 0.4 rad
v 8 m/s
Training steps 100,000
Episodes per random start 11
Training time 1080 s

Table 6.2: Summary of final vehicle and training parameters
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In summary, the optimised training approach ensures that the agent can adapt and
generalise, directly supporting its ability to navigate both seen and unseen tracks with
consistent results. By defining the maximum operational speed, the study also assesses the
agent’s ability to compete with classic methods as they operate with a similar maximum
speed. The ability of our CO-TD3 agent to maintain precise control at these speeds shows
its potential to compete with these algorithms.
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Chapter 7

Generalisation and random track
generator

This section examines the relationship between tracks and the generalisation performance
of the agent. The probability of a track being a good track for generalisation is examined.
To expand the variety of tracks, a random track generator is implemented, enabling the
creation of numerous diverse tracks. This allows for a statistical analysis of the probability
that a randomly generated track is good and enables an agent to learn general behaviour.

7.1 Generalisation ability and trained track

The track on which an agent is trained influences the development of the agents’ policy
depending on what geometric features are present in the track. Intuitively, one might expect
that certain tracks, due to their layout, would produce agents with better generalisation
capabilities than others. This expectation arises from the idea that training on more
diverse or challenging geometric features could better prepare agents for unseen tracks, as
it has experienced many different track features. However, the sensitivity to the track on
which the agents are trained must be analysed to determine if and to what extent this is
true.

To investigate the influence of training tracks on agent generalisation, we use a dataset
of 21 F1TENTH tracks modelled after real tracks around the world. The agents are
trained on each of these tracks and then tested on the remaining 20 tracks in the data
set. The goal is to assess whether agents trained on particular tracks exhibited better
generalisation ability across the rest of the tracks. Figure 7.1 illustrates the results of this
experiment. It illustrates the frequency of the average completion rate on unseen tracks.
The number of successful laps without a collision is recorded and reported as a completion
rate across the track set. The completion rates are heavily skewed left, with the highest
frequency occurring at the extreme upper bounds. This distribution indicates that, while
the training track does influence an agent’s ability to generalise, the agents demonstrate a
notable degree of robustness. The majority of agents perform reasonably well on different
test tracks, suggesting that the influence of the training track, although present, does not
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dominate generalisation performance.
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Figure 7.1: The frequency of completion rate of agents tested on unseen tracks

To better understand what makes a track more optimal for training, the specific
geometric properties of the tracks were analysed. In particular, a feature that provides
insight into the curves and feature diversity of the track is the average absolute curvature
of the tracks, the standard deviation of curvature which represents curvature variation,
and tortuosity, which is a factor that represents the twistiness of the track. These
geometric properties were analysed in order to determine if there is a relationship between
these properties and the ability of the tracks to produce agents with good generalisation
performance. Since measuring the complexity of a track is quite an abstract concept and
no standard exists to do this, this analysis did not result in any conclusive relationship
between measurable track geometries and completion rate of agent trained on those tracks.
Since classifying tracks by some metric is unrealistic, a statistical approach can be taken
to determine the probability that a track will be good at producing agents with the ability
to generalise. For this a larger track set is needed; with a larger track set we can determine
how many tracks to train on to be confident that at least one of the tracks produce an
agent with good generalisation ability.

7.2 Random track generator

To expand the set of tracks, a large and diverse collection of tracks must be generated.
This enables a more thorough evaluation of which tracks yield good agent performance
and provides information on the probability of achieving such outcomes. A random track
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generator is available through F1TENTH [3], however, the tracks that are produced have
obscure track geometries that are not realistic. Additionally, this track generator can only
produce a few tracks at a time. To address the problems with the previous track generator,
a new random track generator is developed. It can quickly and effectively produce tracks
with a variety of random shapes and features. This will be useful in expanding the current
set of tracks for both training and testing purposes. In addition, the user can choose to
produce tracks of random or specific length. This is necessary when training an agent
to race in the real world, as the current tracks available in simulation are for large-scale
testing with lengths usually exceeding 100 m. This is not a good representation of tracks
that the agent would encounter in the real world as F1TENTH tracks are normally much
shorter due to practical limitations, such as space availability and the cost of setting up
real tracks. Therefore, the track generator can produce tracks in order to prepare the
agent for these real tracks. This section outlines the process of how the random tracks are
generated.

7.2.1 Basic outline

The first stage generates the basic outline of the track. To achieve a wide range of base
shapes, the outline is constructed by generating two shapes. The shapes are randomly
selected between an oval, a quadrilateral, and a pentagon. The size of these shapes is
randomly chosen within predefined bounds. The size of the oval is dictated by the lengths
of the major and minor axes, whereas the length of the sides dictates the size of the
rectangle and pentagon. These shapes are then randomly rotated and placed with a
random offset from each other’s centres, as seen in Figure 7.2.

Figure 7.2: The two randomly selected shapes, quadrilateral (blue) and oval (red), are
plotted

Once this has been completed, the points of intersection between the shapes are found.
The first and second shapes can be defined as the set A and B, respectively. Having the
shapes in this form allows the intersecting set to be found by

I = A ∩ B. (7.1)
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The Intersecting set can be filtered out thus, creating the outline set

O = (A+ B)− I. (7.2)

After this process, the resulting shape is the outline between the two shapes as shown
in Figure 7.3. This outline is used as the base centreline.

Figure 7.3: The green line shows the outline of the intersecting shapes

7.2.2 Deformation

The next step in the process is to deform this centreline in order to create diverse and
challenging track shapes. To achieve this, a random number of points are chosen from
the centre line. These points will be used as the starting and end points for the current
deformation. The type of deformation is randomly selected based on the probability of
each deformation feature. The available features are straight lines, polynomials with a
random degree, curved features, sharp features, and, lastly, no deformation which will
leave the current centreline unchanged. The probabilities of the next feature changes based
on the previous one in order to minimise the chances of the track consisting of just one
feature.

The straight line deformation is created by simply joining the beginning and end points
of the deformation with a straight line. When creating the polynomial deformation, the
start and end points are used with the polyfit function to create a polynomial of a random
degree. This works by fitting polynomials to data points by minimising the error between
the data and the polynomial’s predictions. By specifying the degree of the polynomial,
polyfit finds coefficients that best approximate the relationship between the input variables.
This enables a wide diversity of shapes in the track. The random polynomial function is
then used to plot the deformed point in place of the previous points.

The curved feature is used to create unique features on the track that are typical of
man-made racetracks. It begins at the start of the deformation section, where a straight
line is created that protrudes from the track at a randomly chosen angle that centres
around 90 degrees. The length of this protrusion is randomly selected. Once this is created,
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a semi-circle is generated that has a random radius. The end of the semicircle is then
connected with either a straight or angled line to the endpoint in the deformation section.

The sharp feature is similar to the curved feature; however, instead of the circular
section at the end, a sharp feature is created at an angle to form a corner towards the
end point of that deformation section. This process ensures that the track has a variety
of features and high variability between different tracks. The deformation can be seen in
Figure 7.4.

(a) Feature deformation (b) Keeps original centreline (c) Polynomial deformation

(d) Straight line deformation (e) Polynomial deformation (f) Polynomial deformation

(g) Keep original centreline

Figure 7.4: The sub-figures show the step-wise deformation (red) of the track by
deforming it with different deformation methods that result in a completed track

Once the shape has fully deformed, any problems that could have occurred during the
deformation stage are checked. These problems are typically self-intersecting lines on the
track. If any of these are present, they will be isolated and removed to ensure that the
track remains smooth as seen in Figure 7.5. If they cannot be removed, the track will
not be created. The new centre line is saved with all the added features. This process is
shown in Algorithm 7.1.
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(a) (b)

Figure 7.5: An exaggerated example of (a) a track that has multiple self-intercepting
points and (b) the resultant shape of the track after the points in between the intersection
are removed and the track is smoothed to show the final track

Algorithm 7.1: Deform centre line
1: Input: centre line
2: first deformation = TRUE
3: end point = 0
4: while end point < Length(centre line) do
5: deformation length = SelectRandomInt(0, Length(centre line)

6 )
6: if first deformation then
7: start point = 0
8: end point = deformation length
9: first deformation = FALSE

10: else
11: start point = end point
12: end point = end point + deformation length
13: if end point > Length(centre line) then
14: end point = Length(centre line)
15: end if
16: end if
17: deformation type = SelectDeformationType(previous deformation)
18: new segment = CreateDeformation(deformation type, start point, end point)
19: centre line = ReplaceSegment(centre line, new segment)
20: end while
21: return centre line

7.2.3 Pre-processing the centre line

At this stage the track has all the features of the final track, however, the centre line must
be processed to prepare it to be converted to the track. If the user decides to make the
track a specific length, it should be scaled to the correct length before any other processing
step so as not to have any unfavourable effects on the track’s features and width. The
current centre line will be scaled up or down by multiplying the centre line by a scaling
factor sf based on the desired track length ld and the current track length lc where

https://scholar.sun.ac.za



72 7.2. Random track generator 72

sf = ld
lc

(7.3)

In order to do this, the current length has to be calculated. This is done by stepping
through each coordinate pair in the centre line and calculating the distance between the
current point and the next point. Each distance is then added to the cumulative length of
the track until every point has been used and the total length of the track is found. This
can be expressed as follows

lc =
n∑

i=1

√
(xi − xi−1)2 + (yi − yi−1)2. (7.4)

As the centreline points used in this calculation are in close proximity to each other, it is
a viable assumption to simply calculate the straight-line distance between them, and it is
not necessary to account for any curvature.

The next step is to ensure that the centre line falls on the origin (0,0), as this will allow
the track to be orientated more accurately in an xy plane. To do this, the point closest to
the origin is identified. The whole track is then shifted so that the identified point will
now fall on the origin. A spline function is then fitted to the centreline to ensure that it is
continuous. This spline function also allows the centerline to be slightly smoothed, as seen
in Figure 7.6. This will result in a race track that has smooth transitions between the
various deformed sections, which will produce a more cohesive track that has natural flow.

Figure 7.6: The original centreline (blue) the deformed centreline (red) and the smoothed
centreline (black) are shown. The rounded corners and smooth transitions between
deformation segments show the effects of the spline fitting and smoothing

7.2.4 Generating the track

The centre line can now be used to create the actual track. In order to do this, a buffer of
coordinates has to be created at a specified distance on either side of the centre line, which
will create the track width. This is done by specifying a track width and generating inner
and outer boundaries according to this width. This provides all the information required
to create the complete track. The track can now be saved to be used in the F1TENTH
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environment. The F1TENTH environment requires the centre line in a CSV file along with
a track outline PNG and a YAML file with the name of the PNG, the specific resolution,
and the origin of the track.

Figure 7.7: The completed track showing the outer bounds (orange) and inner bounds
(green)

Figure 7.8 shows a flow diagram illustrating an overview of the entire generation process,
from finding the interaction of the random shapes to the final track. Figure 7.9 shows
some more examples of the track generated using this random track generator. Figure 7.9
shows that tracks of various lengths, curvatures, and complexities can be created using
our random track generator. This is able to provide a divers track set to test the agents
generalisation ability by being able to train and test them on more diverse tracks.1

Generate
centreline using

base shapes

Deform
centerline 

Smooth centreline
& check self-
intersection

Generate track
boundary

Example
1

Example
2

Figure 7.8: The flow diagram indicates 2 examples of the main events when generating
a track. It first shows the outline found by finding the intersection of two random shapes.
Next this outline is deformed using the deformation methods available. Next the track is
smoothed, and lastly the inner and outer boundary is created to form the complete track

1https://github.com/D-Jefferies/F1TENTH-Racetrack-Generator.git
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(a) (b) (c) (d)

Figure 7.9: Outlines of tracks created with the random track generator

7.3 Generalisation on randomly generated tracks

This section investigates the generalisation ability of agents trained on randomly generated
tracks, which is critical to their performance in unseen environments. To evaluate how
tracks effect generalisation ability, a set of 100 randomly generated tracks is created. To
ensure an accurate representation of the agents ability, 10 agents are individually trained
on each of these tracks and subsequently tested on the remaining tracks in the data set.
The completion rate is determined in the same way as with the smaller set of tracks
in Section 7.1. Figure 7.10 illustrates the results of this experiment, revealing that the
highest frequency of completion rates occurs at the extreme upper bounds. This suggests
that many agents were able to navigate unseen tracks effectively after training on the
randomly generated tracks. However, the concentration of results at the upper limits also
indicates that there are still variations in performance among agents, highlighting the need
to further investigate how different track features impact generalisation.
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Figure 7.10: The frequency of completion rate of agents tested on randomly generated
unseen tracks
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The data in Figure 7.10 shows 42 of the 100 tracks where able to produce an agent
that can achieve 100% completion. that there is a 42% chance that a randomly generated
track will be suitable for generalisation; therefore, there is clearly a distinction between
the generalisation of an agent based on the track on which it was trained. So instead of
trying to identify one individual track based on some geometric property, we can determine
the number of tracks that we need to train on to ensure at least one agent with perfect
generalisation ability. This negates the need to have a metric to determine one singular
track fit for generalisation. Therefore, we can define the probability of the event (a track
that produces a good generalisation agent) as

P (good track) = a = 0.42 (7.5)

Based on this, we can determine the probability of generating at least one good generalisa-
tion track m in a sample of n tracks to be,

P (m ≥ 1) = 1− P (m = 0)
= 1− (1− a)n

= 1− (1− 0.42)n

= 1− (0.58)n

(7.6)

If a certain confidence level Px is required, the number of tracks required for this can
be read off the graph in Figure 7.11 or calculated as

n = ln(1− Px)
ln(1− a) (7.7)

n = ln(1− Px)
ln(0.58) (7.8)
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Figure 7.11: The number of tracks required to be produced to ensure a certain probability
that one good track will be in this set

In summary, his chapter explores the relationship between tracks and the generalisation
ability of agents trained in a simulated racing environment on these tracks. As there are
no discernible track properties that are able to predict a tracks ability to produce a good
agent, the only method of ensuring that a good generalisation agent is produced is to train
on a number of tracks that corresponds to the required confidence level. Therefore, a
random track generator is required, which allowed for this analysis and serves as a good
tool for testing generalisation and also generating representative track sets for the intended
use such as real world F1TENTH tracks.
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Chapter 8

Simulation-to-reality transfer
problem

The simulation-to-reality (sim-to-real) problem describes unexpected or decreased per-
formance when transferring an algorithm from the simulated environment, in which it
was developed, into the real world, where it is intended to be deployed. This section
discusses the considerations necessary when developing an algorithm in simulation in order
to increase its ability to bridge the sim-to-real gap. The process of transferring a RL agent
trained in simulation to the real vehicle is then discussed.

8.1 Transfer process

While the simulator is a valuable tool for developing and comparing autonomous racing
frameworks, it does have limitations. Accurately modelling noise in physical systems, such
as motors, controllers, and sensors, is challenging. In the F1TENTH simulator, these
components behave almost ideally, with controllers showing unrealistically fast response
times and no steady-state error or noise. Additionally, this simulator provides information
that might not be available or accurately measurable in real hardware, potentially limiting
the algorithm’s applicability to simulation only if this information is used as an integral
part of the design. These challenges highlight the simulation-to-real transfer problem.
Considering these limitations is crucial when developing frameworks intended for real-world
deployment [76].

The F1TENTH platform uses the robot operating system (ROS) as a communication
platform. It works with nodes that are responsible for controlling individual parts of the
system. The nodes communicate information to each other via a topic. A topic uses a
subscriber and publisher model where one node is subscribed and therefore receives infor-
mation from the publisher node that sends the information. The user-defined architecture
specifies the information and communication between nodes.

The predefined F1TENTH ROS framework uses a mux node that listens to all topics
and handles all the communication between the vehicle systems. It communicates with
the current framework created by the user and conveys the information from the user node

77
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to the vehicle to drive it as intended by the algorithm. Our implementation to transfer
a CO-TD3 agent onto the vehicle uses a two-node system of an agent and a drive node.
Figure 8.1 illustrates the nodes and shows the communication between the agent node,
the drive node, and the predefined vehicle system that interacts with the environment.

Vehicle system

Drive nodeAgent node

Ackermann
drive

command 

Observation

Actions

Sensor
measurments

Environment

Figure 8.1: ROS nodes with arrows showing the flow of information between the nodes

The drive node communicates with the vehicle sensor topics to get the current LiDAR
scan. This scan is then processed in the same way as in simulation by normalising the scan.
The drive node then has to recreate the observation as it is in simulation. This is more
difficult when using the vehicle, as vehicle states have to be accessed through hardware
sensor measurements, which are not always present on the hardware, and if it is present,
it is generally more inaccurate than it would be in simulation. This is true when trying to
obtain information about the current steering angle and speed. The motor responsible for
the speed of the vehicle has feedback; however, it is noisy and does not always mimic the
actioned speed due to the hardware delay. This causes the measured speed value to be an
inaccurate representation of the actual speed that the agent experienced in training. As
for the steering angle, the servos responsible for this do not have feedback; therefore, no
measurements can be obtained describing the steering angle.

To overcome these problems, the previous action of the agent can be used as a substitute
for the actual speed and steering angle sensor measurement. These mimic the simulated
measurements more than the actual measurements, due to the fact that the simulator is
such an idealised environment; where there is only a small delay between when an action
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is selected and when it is executed. Furthermore, the error between the command actions
and the actual actions is normally zero as there is no noise present in the simulated sensor
measurements. These measurements are shown in Figure 8.2, where a command is sent
for a speed of 3 m/s is shown along the measured speed value in both simulation and the
real vehicle.
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Figure 8.2: The measured speed compared to constant command speed in simulation
(left) and in the real vehicle (right) over a time interval of 3 seconds

It can be seen that the real sensor measurement has a lot of error and noise, where the
simulated measurement matches the command perfectly without steady-state error after
the rise time. This result shows that the previous action is more representative of what
the agent receives in training than if it were to be recreated with the sensor measurement.
Therefore, the agent state vector is no longer just an observation of sensor measurements
but a combination of the processed LiDAR observation, centre term, and the previous
action.

st =
[
dt,0 dt,1 . . . dt,n ct at−1

]⊤
, (8.1)

This state vector is then used to describe the vehicle in the environment in order for
the actor network to select actions. Before the agent node starts receiving observations,
it first defines the structure of the neural network. This includes the number of layers
and the size of each layer. The network weights are saved after the agent is trained in
simulation and loaded in by the agent node from the local file storage on the vehicle.
These weights are then initialised into the network structure, thus creating the CO-TD3
agent. The LiDAR observation is then received from the drive node. The previous action
as well as the centring term is then added to the agent’s state vector. The agent then
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selects actions as normal by passing the state to the model actor network,

at = πϕ(st)

where this action is then scaled based on their maximum values (as in Equation 5.2 and
Equation 5.3) before the values are ready to be used as inputs.

These actions are then passed to the drive node, where they are converted to be sent as
a drive message to the vehicle system. The vehicle system implements its own controller
to convert these inputs into motor inputs.

In order to protect the vehicle, an additional safety feature is designed in the drive
node. The drive node continuously checks the measurements in the full LiDAR scan
received from the vehicle system nodes and implements an emergency brake if the vehicle
gets too close to the boundary or any obstacles. The same collision detection is used as in
Equation 4.2, the only difference is that the safety distance ds is increased to 0.3 m to
minimise the chance of a collision that will damage any components.

With this implementation, an RL agent can be trained in the simulated environment
and simply be copied over to the vehicle’s computer to be deployed on a real race track.
The overview of the typical action selection process that takes place in the vehicle is
depicted in Figure 8.3, where the colour of the blocks indicates in which node the process
occurs, green representing our agent node, blue our drive node, and grey the vehicle system
node.

Drive node receives
raw LiDAR scan

from vehicle

Process LiDAR scan
in drive node

Select new actionConvert agent action
into steering angle

and speed

Convert action to
drive message and

send to vehicle
system node

Recreate agent state
vector with LiDAR,

centre term and
previous action

Pass processed
LiDAR scan to

agent node

Pass     and   
 to drive node

Initialise agent

Adjust speed and
steering angle to

match new command
and read new raw

LiDAR scan

New raw
LiDAR scan

Ackermann
drive

command

Figure 8.3: The action selection process on the real vehicle

https://scholar.sun.ac.za



81 8.2. Mapping and localisation 81

8.2 Mapping and localisation

In order to determine if any performance decrease occurs when deploying the agent on
the real vehicle, the physical track should be available in the simulator to train agents
as a baseline performance in simulation. Additionally, if the use case calls for the agent
to operate on a seen track in the real world, it would still have to undergo training on a
simulated version of this track. For this, a map of the track has to be created. This can
be done with the LiDAR on the vehicle. The process is performed using a simultaneous
localisation and mapping (SLAM) package [77]. This maps out the environment in real
time using the LiDAR measurement and can be used with a visualisation tool like RViz to
see the progress and map in real time. The map can then be saved and cleaned to be used
in the simulator. Figure 8.4 shows a raw map created using SLAM and a cleaned version
of that map that removes any noise and makes the boundaries more defined.

(a) (b)

Figure 8.4: A comparison between a raw SLAM map (a) with no post-processing and
the cleaned version of that same map (b) with the background filled in and the borders
thickened in the outwards direction keeping the track footprint constant

In addition to using the map to create a track in the simulated environment, this
track will aid in data collection during testing with the real vehicle. Using this track
as a reference, the position of the vehicle within the track bounds can be determined
using localisation. A particle filter (PF) will be used for localisation. The PF works by
estimating a set of poses called particles. After this initial set is determined, the orientation
and location of these particles are updated based on data obtained from odometry readings.
These readings are then applied to a movement model. The LiDAR sensor readings are
then compared with the current environment, and this is used to update the belief of each
particle, that is, where the particle is on the track. The particles are then resampled based
on the updated belief, and the weighted average of all the particles is used to determine
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the position and orientation [78]. The particular particle filter that we used makes use
of a compressed directional distance transform (CDDT) to decrease localisation time
and computational cost. The CDDT stores the distance from the nearest obstacle at a
particular angle θ. The scene geometry is then rotated by θ so that the ray casting is
always done at θ = 0. This differs from normal approaches which are not rotated, meaning
that the ray casting is done at θ; therefore, it is always done in a different direction. The
rotation of the CDDT method allows easier extraction of obstacle points, improving its
speed and computational efficiency [78].

The particle filter is used to store the trajectory of the vehicle as it races along the
track. The action and current odometry readings are also stored at each step. Using
this, similar racing metrics can be obtained from the real vehicle which can be compared
directly to those in simulation. To manage data collection, a new ROS node is added to
the system. It is triggered by the command sent by the vehicle’s ROS node to power the
motors. This is because the agent and the drive node begin sending actions as soon as it
is initialised; however, these actions are not realised until the user switches the vehicle
into autonomous racing mode. Therefore, only once this happens does the data capturing
begin. This minimises the post-processing of the data. Additionally, this allows the use
of the internal clock to accurately and consistently record lap time. The clock is called
when the data capture node begins collecting data, and consequently the time from when
this occurs until when the vehicle crosses the finish line is the stored lap time. Figure 8.5
shows how the particle filter and data capture node integrate with the existing system.

Environment

Vehicle system

Drive nodeAgent node

Sensor
information 

Ackermann
drive

command 

Observation

Actions

Data capture node

Particle filter
node

Sensor
information 

Particle filter
information

Figure 8.5: ROS nodes structure showing the transfer of information between the nodes
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8.3 LiDAR noise model

The simulator attempts to mimic real-world conditions by adding random noise to the
LiDAR scans. The noise is added to the scan array before the simulated scan is returned to
the agent. The noise is modelled as a Gaussian or normal distribution. For a given LiDAR
reading, the noise can be modelled as a random vector Z added to the true distance d,
such that the observed distance dobs is

dobs = d + Z. (8.2)

Here, Z is a Gaussian random variable with mean µ = 0 and standard deviation σn, i.e.,
Z ∼ N (0, σ2

n).
The value for σn is rather insignificant when only in simulation (assuming that it is

still in a realistic range), as the same LiDAR will be used in both training and testing.
The impact of the extent of the noise becomes pertinent when transferring the agent to
the real vehicle. The value used for the noise standard deviation should best match the
noise present in the LiDAR intended to be used for practical tests. This value is altered in
the training phase and tested on the real vehicle to determine the best standard deviation
value. The standard deviation ranged between 0 and 0.04, Figure 8.6 shows the effect that
noise has on the scans.
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Figure 8.6: A scan reading a constant distance of 1 m with varying values of standard
deviation for the Gaussian noise.

Each agent trained on these standard deviations is tested on the real vehicle to assess

https://scholar.sun.ac.za



84 8.3. LiDAR noise model 84

the impact on performance. Instead of choosing a noise model based on real scans, which
can fluctuate with varying environmental conditions, this approach allows us to account for
the variability in dynamic scenarios. Measurement of an accurate noise profile from static
tests can be challenging when the intended tests are dynamic. Therefore, we systematically
tested a range of values to identify the one that yields the best performance. Figure 8.7
shows the trajectory and lap times for these tests. It can be seen that a σn value of 0.02
matches the noise present in the real LiDAR, as it performs much better than the agents
with other σn values; therefore, this will be the noise used when training the agents in
simulation.
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Figure 8.7: The trajectories (a) and lap times (b) for agents trained with different σ
values. The plots indicate each value’s effect on the performance of the vehicle.

The successful transfer of the CO-TD3 racing agent from the simulation to the real world
is crucial to its design. By integrating the agent into a ROS network, we demonstrate its
practical applicability in real-world racing scenarios. This transfer enables us to test the
performance of the agent beyond simulated environments, providing valuable insight into
its effectiveness in dynamic real-world conditions.
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Chapter 9

Racing performance: Experiments
and results

This section discussed the results achieved by our CO-TD3 agents both in simulation
and on physical hardware. The results achieved in simulation are presented and a
comprehensive comparison between our methods and other existing benchmarks is drawn.
The performance of the agent on seen and unseen tracks is reported, and a conclusion
about the agent’s generalisation ability is made. The performance of the agent on the real
vehicle is shown, and a direct comparison between this and the simulated results for the
real track is discussed. The agent’s ability to generalise on the real vehicle is also reported.

9.1 Simulation

The results obtained in simulation can be used to compare with existing benchmarks and
evaluated to identify how our algorithm compares. Furthermore, the degree to which
our algorithm can perform in a simulated environment can be tested by assessing its
generalisation ability on unseen tracks and with obstacles.

9.1.1 Seen tracks

The performance of our centre-orientated TD3 (CO-TD3) algorithm is evaluated based on
commonly reported racing metrics such as lap time and completion rate. Austria (AUT),
Spain (ESP), Britain (GBR), and Monaco (MCO) are the four baseline tracks used for
this evaluation.

To obtain results for this experiment, 10 agents per test track are trained in simulation.
Each of the agents is trained for 100,000 training steps with a maximum allowable speed
of 8 m/s. Once training is complete, each agent completes one lap on the track on which
it is trained in simulation. The lap time of the fastest agent is reported in Table 9.1 along
with the standard deviation for all 10 agents.

These results are compared to the benchmark results, reported by Evans et al. [71], of
other algorithms using the F1TENTH platform. These authors compared three classic
control algorithms and one RL algorithm. The classic algorithms are a trajectory optimisa-
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tion and tracking algorithm, a model predictive contouring control (MPCC) algorithm, a
follow-the-gap algorithm, and a trajectory-aided learning (TAL) end-to-end RL algorithm.
Furthermore, we compare the results achieved by Bosello et al. [33] DQN algorithm and
Brunnbauer et al. [34] Dreamer + Occupancy (DO) RL algorithm. Table 9.1 shows that our
CO-TD3 method performed better than the follow-the-gap, TAL, DO, and DQN methods
on all tracks. Furthermore, it outperformed MPCC on AUT, GBR, and MCO. Finally, the
agent trained on AUT performed the best beating all other benchmark algorithms on this
track. The CO-TD3 algorithm is able to achieve results comparable to state-of-the-art
classic control methods, as it is able to maintain precise control over the vehicle at high
speeds. This is a significant result as our CO-TD3 is the only end-to-end method to
outperform a classic algorithms. The results obtained from our CO-TD3 agents are much
closer in performance to classic methods than the other end-to-end methods, which proves
that it is a viable option for competitive racing vehicle control.

Planner Map

AUT ESP GBR MCO

Opti. & tracking 16.79 35.92 31.24 28.08
MPCC 16.87 39.13 35.40 31.53
Follow-the-gap 19.10 45.78 39.34 34.99
TAL end-to-end 19.94 46.37 40.22 34.93
DQN ∼23 ∼56 ∼48 ∼42
DO RL ∼31 ∼72 - -

CO-TD3 15.51 ± 0.84 39.38± 1.13 32.24± 3.21 28.45± 1.71

Table 9.1: Mean lap times [s] for optimising and tracking, MPCC, follow-the-gap,
end-to-end methods, DQN, DO, and CO-TD3. ∼ indicated that results are obtained
from a graph, therefore the best estimate for these values is reported

The trajectory and speed heat map of the agents’ laps around each track are shown in
Figure 9.1. The smooth trajectories illustrate the agent’s capability to maintain consistent
control, as evidenced by the lack of any unexpected slaloming or jerking motions. This
smoothness in the trajectory and competitive lap times indicates that the agents have
an effective racing policy, where there is a balance between speed and stability while
navigating the track. Additionally, the speed heat map highlights how the agent adjusts
its speed in response to different track segments, such as slowing down for sharp turns or
accelerating on straights. The trajectories highlight these aspects of the agents racing that
allows it to compete with classic methods such as trajectory optimisation and MPCC.
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Figure 9.1: The trajectories with speed heat map show the path the agents took around
each of the test tracks to achieve the lap times reported in Table 9.1

9.1.2 Unseen tracks

The key factor that distinguishes RL racing algorithms from classic methods is their
generalisation ability. We present results that show that our CO-TD3 agents can generalise
to navigate unseen tracks safely and that the agent’s racing policy can transfer to unseen
tracks.

The generalisation ability of our CO-TD3 agent is evaluated by recording its ability
to complete laps on unseen tracks. To generate these results, agents are trained on the
MCO track, using the same method as the seen tests, and tested on a randomly generated
set of tracks. MCO is chosen as the track to train these agents as it is a complex track
with a variety of challenging features and an average track length. Our random track
generation is used to create the set of unseen tracks. The generalisation ability of the
CO-TD3 agent is compared to the generalisation ability of a standard TD3 agent. The
standard TD3 agent underwent the same training strategy. However, the agent’s state
vector consisted of just an observation containing the full LiDAR scan. The centre penalty
and the completion bonus was also removed from the reward function.
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Algorithm
Number of unseen tracks

tested on
Completion rate Max speed [m/s]

TD3 50 46.67% 4
CO-TD3 50 100% 8

Table 9.2: Generalisation performance of agents trained on MCO

The CO-TD3 agent performed much better, with a perfect completion rate. The
regular TD3 agent could not achieve constant performance even at lower speeds as the
speed had to be limited to prevent a 0% completion rate. This shows the benefits of
having additional features in the agent’s state space and the effects of the improved reward
function.

Table 9.3 shows the lap times for agents trained and tested on different combinations
of the 4 baseline tracks. The results show the performance on both the seen and unseen
tracks. It shows that the agent is able to generalise its racing policy to unseen tracks as it
is still able to achieve competitive lap times on the unseen tracks. This shows that agent’s
are still racing on unseen tracks and not just cautiously navigating them.

Test
Train

AUT ESP GBR MCO

AUT 15.51± 0.84 18.31± 0.83 18.39± 1.29 17.77± 1.19
ESP 38.90± 1.92 39.38± 1.13 42.57± 3.92 40.92± 2.29
GBR 34.30± 1.98 38.22± 1.58 32.24± 3.21 36.02± 2.10
MCO 29.42± 1.57 32.97± 1.16 32.31± 2.32 28.45± 1.71

Table 9.3: Lap times [s] and standard deviation of agents trained on and tested on
different tracks

To further assess the agent’s generalisation ability, they are tested on their ability to
avoid random obstacles introduced onto the track that it is trained on. The agent has
never been exposed to any inconsistencies in the track boundary in the training phase,
so these features would be new to the agent. Each agent is trained on a tests tracks for
100,000 training steps with a maximum speed of 8 m/s. Next, they are tested on the
modified version of the track on which they are trained.

Figure 9.2 shows the trajectories of the agents on the modified tracks. The agents are
able to successfully identify obstacles and change the path to avoid them. This further
shows the robustness and generalisation ability of our CO-TD3 agent.
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(a) Austria (b) Great Britain

(c) Spain (d) Monaco

Figure 9.2: The red trajectories show the path the agents took around each of the test
tracks when randomly placed obstacles are introduced along the track boundary

In summary, the results of this section highlight the advances we have made in reinforcement
learning for autonomous racing, particularly in improving agents’ overall performance and
making them a viable alternative to classic methods. Furthermore, the generalisation
ability of CO-TD3 agents enables them to operate effectively on unseen tracks, a capability
that classic control approaches lack.

9.2 Physical vehicle

These test outline the performance of the algorithm when trained in simulation and then
tested on the real vehicle. It tests how well the agent performs on a real track and compares
this to the performance obtained in simulation. Furthermore, the extent to which the
agent can generalise on the real track is also tested.
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9.2.1 Seen tracks

Our CO-TD3 agent’s ability to transfer to a real vehicle is a crucial aspect of its performance.
This test shows that our agent can consistently and reliably complete laps on the actual
F1TENTH vehicle on a real track. The test set-up in Figure 9.3 shows the two track
variations (real track 1 and 2) where the real tests are carried out.

An agent is trained on the simulated version of real track 1 for 100,000 training steps.
The performance is first tested by having it complete test laps on the simulated track
before transferring it to the real vehicle. The same process is followed for a different agent
for real track 2.

Our agent is able to achieve a 100% completion rate while racing for more than 130
seconds and completing more than 20 laps. The maximum speed while testing on the
vehicle is limited to 3 m/s, as speeds greater than this would exceed the friction limits
of the track. The track surface is made of slick concrete with very little traction. This
caused lateral and longitudinal slip which prevented any higher speeds.

(a) (b)

Figure 9.3: Images of the test set-up with the real vehicle for both (a) real track 1 and
(b) real track 2

A test is performed from standstill until one lap is completed. The lap times for these
tests are reported in Table 9.4. Figure 9.4 shows the track model as well as the trajectory
and speed profile of both real and simulated tests on the two different physical tracks. For
a direct comparison, the speed for the simulated test will also be limited to 3 m/s.

Track name Real lap time [s] Simulated lap time [s]

Real Track 1 6.45 6.44
Real Track 2 6.75 6.60

Table 9.4: Real and simulated lap times for the real tracks

The actual and simulated agents’ performance is very similar for both of the tracks.
The simulated vehicle achieved only slightly faster lap times than the real vehicle. The
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difference in lap time can be the result of the wider trajectory taken by the agents on the
real vehicle.

CO-TD3 real trajectory

Simulated trajectory

(a)

CO-TD3 real trajectory

Simulated trajectory

(b)

Figure 9.4: The trajectories of the agent tested in simulation (green line) and on the
real vehicle (red line) for both (a) real track 1 and (b) real track 2

Figure 9.5 and Figure 9.6 shows the speed profiles of the agents on the real track and
in simulation. The real vehicle has a higher average speed, which allowed it to still achieve
a competitive lap time with a less optimal trajectory. Figure 9.6 shows that the delayed
response of the physical motor helped to achieve a higher average speed because it is
unable to change speed at the same rate as the simulated vehicle. The major limitation of
the physical system is the friction limits. The track surface limited its speed to 3 m/s,
while the simulated vehicle can complete laps much faster, as the maximum speed is set
to 8 m/s.
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Figure 9.5: The speed profile of the real and simulated vehicle when tested on real track
1
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Figure 9.6: The speed profile of the real and simulated vehicle when tested on real track
2

9.2.2 Unseen tracks

The CO-TD3 agent’s generalisation ability is able transfer over to the real vehicle, as it is
able to perform on the real track when trained on a different track in simulation. This is
tested by conducting an experiment where an agent is trained on each of the alternate
tracks shown Figure 9.7, as well as the simulated version of real track 2. The agents are
then transferred to the real vehicle to complete test laps on real track 1 ( (a) in Figure 9.3).

(a) Alternate track 1 (b) Alternate track 2 (c) Alternate track 3 (d) Alternate track 4

Figure 9.7: Track outlines

Table 9.5 shows the performance of these agents compared to an agent trained on the
simulated version of the real track 1 to act as a seen track baseline. This experiment shows
that the agents are able to race without crashing and can achieve lap times very similar
to the seen track agent when performing on unseen tracks on the physical vehicle. This
shows that the agent’s generalisation ability is able to transfer over to the real vehicle.
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Track Trained on Lap Time [s]

Real track 1 6.45
Real track 2 6.45
Alternate 1 6.27
Alternate 2 6.47
Alternate 3 6.60
Alternate 4 7.10

Table 9.5: Mean lap times [s] for agents trained on various tracks and tested on real
track 1

Much like with the simulated tests, the generalisation ability is further tested by
introducing random obstacles onto the track. Once again, the agent that is tested on the
simulated version of real track 1 has never been exposed to any kind of obstacle during
training, so these are unknown to the agent. Figure 9.8 shows that the agent is able to
successfully adapt to obstacles on the track. This shows how well the agent can generalise
to a set of new features that are different from anything seen in training.

Figure 9.8: The trajectory of an agent on real track 1 with added obstacles

In summary, physical vehicle experiments demonstrate the effectiveness of the CO-TD3
agent in transitioning from simulated to real world environments. The agent’s ability to
achieve a 100% completion rate on real seen tracks showcases its reliable performance
when tested on actual F1TENTH vehicles. Additionally, the successful completion of laps
on unseen tracks highlights the agent’s robust generalisation capabilities, reinforcing the
potential of reinforcement learning techniques in autonomous racing. Achieving these
hardware results is particularly significant as much of the existing end-to-end work is
performed in simulated environments and gaming contexts. These results indicate that the
CO-TD3 agent not only bridges the gap between simulation and reality, but also shows
the viability of DRL methods in autonomous racing.
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Chapter 10

Conclusion

Autonomous racing on unseen tracks is a challenging task requiring algorithms to have the
ability to generalise while still maintaining competitive racing performance. We evaluate
the use of a twin delayed deep deterministic policy gradient (TD3) algorithm for the
task of racing on unseen tracks in both a simulated and a real environment according to
the objectives outlined in Chapter 1. We also highlight the capabilities of this approach
and how it differs from current high-performing autonomous racing techniques. Finally,
potential future work building on this research is discussed.

10.1 Evaluation of autonomous racing with CO-TD3

The objectives of this research were to demonstrate that deep reinforcement learning (DRL)
is a viable approach for autonomous racing. This involves enhancing the performance of
end-to-end autonomous racing methods to have performance comparable to classic control
algorithms. To do this, many limitations pertaining to current end-to-end methods needed
to be addressed. The most detrimental limitation of current end-to-end methods was
inconstant action selection, which often resulted in inefficient racing trajectories and slower
lap time compared to classic algorithms. Furthermore, the reliance of these algorithms on
simulated environments limited the amount of real-world data obtained to validate their
use on physical vehicles. Addressing these limitations would not only enable competitive
racing on seen tracks, but also extend their use to unseen tracks in both simulation and
reality, which is an ability classic control methods do not possess.

To address these limitations, we created a centre-orientated TD3 agent (CO-TD3)
that uses a real-time centring term to better position itself on the track. This, coupled
with an agent state vector consisting of a LiDAR scan and a measurement of its current
actions, allowed our agent to achieve more consistence action selection. We then developed
a comprehensive reward function that encourages the agent to maximise its reward by
completing safe and fast laps. In Chapter 9, we evaluated the performance of our CO-TD3
agents by setting up experiments to compare the performance to a benchmark of other
racing algorithms on the F1TENTH platform. This showed that our CO-TD3 agents were
able to compete with classical control algorithms and outperform previous end-to-end
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methods. Furthermore, our agents’ ability to generalise is shown by using the random
track generator developed in Chapter 7, to create a set of unseen tracks. This showed
that our agent can achieve consistent performance on these tracks, which is the main
differentiable feature between our method and pre-existing autonomous racing algorithms.

Using the ROS framework designed in Chapter 8, we were able to transfer our CO-TD3
agent to a real vehicle and perform tests on a real track. This shows the robustness of our
algorithm, as it was able to perform seamlessly in the real world without any additional
training adjustments.

The results achieved show that our CO-TD3 approach achieves the objectives outlined
in Section 1.2. However, this method does have limitations, as uncertainty of what makes
a track ideal for generalisation means that agents trained on a certain track will not always
perform as intended. Agents have to be trained on multiple tracks and thoroughly tested
to ensure that a track produces agents with the required general performance.

The agent’s ability to reach this level of performance using only learnt behaviour
from sensor measurements demonstrates the remarkable potential of DRL methods. The
capacity to extract relationships between inputs and outputs, and to generalise this
understanding to unseen tracks in both simulated and real-world environments is a true
testament of this algorithms capabilities.

10.2 Future work

In this thesis, we demonstrated that a TD3 racing agent can effectively navigate unseen
obstacles and adapt to unseen racetracks, showcasing the superior generalisation capabilities
of DRL-based agents over classical methods. This adaptability opens avenues for expanding
autonomous racing into more dynamic scenarios, such as competitive head-to-head racing,
where agents must make complex decisions based on the constantly evolving positions and
actions of other vehicles.

The intricacy of competitive racing, where the actions of each vehicle directly influence
the other’s trajectory, restricts the feasibility of traditional control algorithms. Instead, a
DRL-based solution, which leverages the generalisation abilities demonstrated in unseen
environments, presents a promising approach for head-to-head racing. Further development
of this technology could enable agents to dynamically optimise their racing strategies,
thereby addressing the complex and interactive decision-making required in competitive
autonomous racing.

Moreover, the success of DRL in autonomous racing serves as a step toward deploying
algorithms like these in real-world driving scenarios. As DRL agents continue to advance
in handling complex and unpredictable environments, their application could be extended
beyond racing to broader autonomous driving challenges, such as navigating mixed traffic
urban settings. These settings will expose autonomous vehicles to diverse dynamic
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situations in which DRL agents would have to interact with and predict other drivers’
motion and react accordingly while obeying traffic rules. This is a challenging task that
relies on autonomous algorithms to react according to real-time data and not rely on
predefined plans. The generalisation ability of DRL agents can hopefully enhance this
ability and increase the safety of passenger vehicles.

https://scholar.sun.ac.za



Bibliography

[1] “Abu Dhabi Autonomous Racing League in UAE — A2RL — a2rl.io,” https://a2rl.io/,
[Accessed 02-11-2024].

[2] “Indy Autonomous Challenge — indyautonomouschallenge.com,” https://www.
indyautonomouschallenge.com/, [Accessed 02-11-2024].

[3] “F1TENTH — f1tenth.org,” https://f1tenth.org/build.html, [Accessed 23-05-2024].

[4] M. Brown and J. C. Gerdes, “Coordinating tire forces to avoid obstacles using
nonlinear model predictive control,” IEEE Transactions on Intelligent Vehicles, vol. 5,
pp. 21–31, 3 2020.

[5] V. Sukhil and M. Behl, “Adaptive lookahead pure-pursuit for autonomous racing,” 11
2021. [Online]. Available: http://arxiv.org/abs/2111.08873

[6] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, and R. Mang-
haram, “Autonomous vehicles on the edge: A survey on autonomous vehicle racing,”
IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp. 458–488, 2022.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning : An introduction.

[8] M. Laskin, D. Yarats, H. Liu, K. Lee, A. Zhan, K. Lu, C. Cang, L. Pinto, and
P. Abbeel, “URLB: Unsupervised Reinforcement Learning Benchmark,” CoRR, vol.
abs/2110.15191, 2021. [Online]. Available: https://arxiv.org/abs/2110.15191

[9] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying
generalization in reinforcement learning,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp.
1282–1289. [Online]. Available: https://proceedings.mlr.press/v97/cobbe19a.html

[10] S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng,
D. Rus, and M. H. Ang, “Perception, planning, control, and coordination
for autonomous vehicles,” Machines, vol. 5, no. 1, 2017. [Online]. Available:
https://www.mdpi.com/2075-1702/5/1/6

[11] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A Survey of Autonomous
Driving: Common Practices and Emerging Technologies,” IEEE Access, vol. 8, pp.
58 443–58 469, 2020.

97

https://scholar.sun.ac.za

https://a2rl.io/
https://www.indyautonomouschallenge.com/
https://www.indyautonomouschallenge.com/
https://f1tenth.org/build.html
http://arxiv.org/abs/2111.08873
https://arxiv.org/abs/2110.15191
https://proceedings.mlr.press/v97/cobbe19a.html
https://www.mdpi.com/2075-1702/5/1/6


98 Bibliography 98

[12] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion
planning and control techniques for self-driving urban vehicles,” 2016.

[13] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control:
An engineering perspective,” The International Journal of Advanced Manufacturing
Technology, vol. 117, pp. 1–23, 11 2021.
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Appendix A

Hyperparameter tuning

A.1 TD3 hyperparameters

The hyperparameter tuning for the TD3 algorithm is investigated here. The starting
values are shown in Table A.1, and when altering the specific hyperparameters, the other
hyperparameters are kept to these original values.

Parameter Value Description

Action noise 0.2 Noise added to actions
Batch size 100 Size of the batch
Discount factor 0.99 Discount factor gamma
Learning rate 1e-3 Learning rate of the agent
Policy update frequency 4 Number of iterations to wait before up-

dating the policy network

Table A.1: Initial parameter settings for the model

A.1.1 Action noise

The action noise is added to the action after the actor target network generates an action
based on the current state (Equation 3.15). Increasing action noise can help increase
exploration and improve robustness and generalisation, however, if it is too large, the agent
will struggle to find an optimal policy, leading to instability in learning outcomes [70,79].

Figure A.1 shows the effect of varying the action noise. It is clear that the higher noise
allowed the agent to learn faster, but it struggled to converge. The other values showed
slower convergence but more stability. A noise value of 0.2 showed a good balance between
the training speed and convergence with a small standard deviation toward the end of
training.
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Figure A.1: The average return and standard deviation (shaded) of agents with varying
action noise values

A.1.2 Policy update frequency

Delaying the policy update is done to stabilise the agent’s training by updating the
critics Qθ more frequently than the actor πϕ (line 13 in Algorithm 3.1). Since the actor
relies on critic, more accurate Q-values lead to a better actor. If the actor is updated
more infrequently, the critic has more time to learn the rewards and transitions of the
environment, resulting in more reliable policy updates. However, lowering the frequency
too much causes a decrease in the learning rate as the actor is not being updated enough
to learn optimally [70].

Figure A.2 shows that TD3 is quite robust to changes in the frequency of the policy
update. A frequency of 2 shows more instability than the other values; therefore, updating
the policy less at a frequency of 8 would be more beneficial to training stability. This
means that for every 8 critic updates, the actor is updated once.
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Figure A.2: The average return and standard deviation (shaded) of agents with varying
policy update frequencies

A.1.3 Discount factor

The discount factor controls how much emphasis is placed on short-term versus long-term
reward. A low discount factor prioritises immediate rewards, causing the agent to focus on
short-term gains while paying less attention to future outcomes. This can result in greedy
behaviour, where the agent makes decisions that have immediate benefits to the detriment
of overall performance. Conversely, a high discount factor encourages the agent to plan for
the long term by valuing future rewards more heavily. This can lead to strategic actions
that optimise cumulative rewards over time, but it can slow the learning process, especially
in environments like ours with delayed rewards [80]. The discount factor is used when
computing the target Q-value form the critic networks (Equation 3.16)

Figure A.3 shows that higher discount values led to a higher overall average reward as
the agent learnt to be more strategic to ensure the highest completion reward. Therefore,
0.99 will be used.
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Figure A.3: The average return and standard deviation (shaded) of agents with varying
discount factors

A.1.4 Learning rate

The learning rate refers to the speed with which the agent learns, since it is the size of
the steps that the agent takes to update the parameters during training (Equation 3.10,
Equation 3.13). The agent will take longer to find an optimal policy if it is too small,
resulting in longer training times and increased computational costs. Additionally, this can
cause the agent to get stuck in sub-optimal local minima, slowing progress. Conversely,
suppose that the learning rate is too large. In that case, the agent can overshoot the
optimal parameter values of the policy, leading to an oscillation in training and a failure
to learn consistently [81].

The learning rate had a large impact on the agent’s ability to learn. Figure A.4 shows
that large learning rates struggle to learn consistently and produce unstable behaviour.
At very large values, the agent is incapable of learning at all, as the update steps are too
big. The ideal learning rate here is 1e− 4, which is an order of magnitude smaller than
the initial value. This value showed smooth and stable learning without increasing the
learning time.
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Figure A.4: The average training curve of agents with varying learning rates

A.1.5 Batch size

The batch size is the number of samples drawn from the replay buffer in each training
step. Small batch sizes may lead to noisier updates and less stability, as the samples are
coming from a smaller batch with less variance in the samples. Large batch sizes increase
the diversity of samples, resulting in more stable training. Although large batches stabilise
learning, they can hinder the agent’s ability to quickly adapt to new environments, which
can be important in dynamic tasks such as racing.

Varying the batch size had quite a small effect on overall training as seen in Figure A.5.
However, there was a noticeable increase in training time as the batch size grew. As the
smallest batch size results in good training performance, a batch size of 64 will be used.
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Figure A.5: The average return and standard deviation (shaded) of agents with varying
batch sizes

The final hyperparameters used are shown with all the other network parameters in
Table A.2.

Parameter Value

Action noise 0.2
Batch size 64
Discount factor 0.99
Learning rate 1e-4
Policy update frequency 8
Hidden layers 2
Hidden layer size 200
Input layer size 31
Output layer size 2
Noise clip 0.5
Polyak update weight 0.005

Table A.2: Final parameter settings for the model

A.2 Optimality assessment

To ensure that we can produce the most optimal agents, an assessment of current hyper-
parameters and the composition of the state vector was performed. This shows that any
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deviation from the current state of the algorithm resulted in poorer performance.

A.2.1 Hyperparameter optimality

To ensure that the chosen hyperparameters are indeed the optimal combination, an
evaluation was performed to identify the effect that altering one of the hyperparameters
has on training. Table A.3 shows the results of this assessment. The top row shows
the optimal combination identified in Section 5.4. Each row shows a combination of
hyperparameters, with one hyperparameter varied from the optimal baseline (highlighted
in bold). The normalised average return from training is reported, with values normalised
relative to the optimal combination. The table shows that any deviation from any of
the optimal hyperparameters causes a decrease in the average return, indicating that the
hyperparameters used are the most optimal.

Learning Frequency Discount Batch Action Normalised
rate update factor size noise mean return
1e−4 8 0.99 64 0.2 1.000
5e−4 8 0.99 64 0.2 0.914
1e−3 8 0.99 64 0.2 0.872
1e−4 6 0.99 64 0.2 0.879
1e−4 10 0.99 64 0.2 0.873
1e−4 8 0.98 64 0.2 0.763
1e−4 8 0.99 32 0.2 0.972
1e−4 8 0.99 128 0.2 0.884
1e−4 8 0.99 64 0.1 0.590
1e−4 8 0.99 64 0.3 0.791

Table A.3: Normalised mean return for various hyperparameter

A.2.2 Reward weights assessment

To ensure that the weight parameters for the reward function are still optimal after tuning
the network hyperparameter, a subset of different weights were tested to record the same
information as in Figure 5.5. It shows that the initial combination of reward function
weights, highlighted by the lines, still produces the highest average normalised return
when testing. Therefore, they will be used as the final value.
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Centring penalty w2 Completion bonus w3 Normalised return
4 0.05 0.905189
4 0.10 0.932676
4 0.15 0.847668
5 0.05 0.954225
5 0.10 0.899812
5 0.15 0.859362
6 0.05 0.934431
6 0.10 0.894573
6 0.15 0.858301

Table A.4: Normalised return for different reward function weights
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