
Grid-Based Coverage Path Planning for
Multiple UAVs in Search and Rescue

Applications

by

Welri Botes

Thesis presented in partial fulfilment of the requirements for
the degree of Master of Engineering (Electrical and

Electronic) in the Faculty of Engineering at Stellenbosch
University

Supervisor: Dr JAA Engelbrecht

Co-supervisor: Dr JC Schoeman

March 2023

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

Date:March 2023

Copyright © 2023 Stellenbosch University
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

This thesis investigates the problem of automated search and rescue (SAR)
using multiple unmanned aerial vehicles (UAVs). The problem is formulated
as a distributed and offline multi-robot coverage path planning (MCPP) prob-
lem. Using multiple robots generally reduces the time to detect survivors, who
are assumed to remain stationary for the duration of the automated search.
The survivor detection is assumed to be performed using downward-facing on-
board cameras. The UAVs are assumed to fly at a constant altitude during
the search, which reduces the problem to two dimensions. The environment is
assumed to be known and is discretised to a grid based on the required ground
sampling distance (GSD) to guarantee survivor detection. The static obsta-
cles in the environment are represented by occupied cells. The free cells in the
search area is divided into equal-sized, contiguous sub-regions to be searched
by individual UAVs. This eliminates the need for explicit collision avoidance
between the UAVs. A closed-loop coverage path is then generated for each sub-
region using a spanning tree coverage (STC) technique. The coverage paths
are modified to account for the dynamic constraints of the UAVs. A central
deployment strategy was developed so that all the UAVs take off and land at
the same location. Flight schedules and a refuelling protocol were also devel-
oped to account for the limited endurance of the UAVs. The automated search
approach using multiple UAVs was tested and evaluated in simulation using
topographic maps of real-world locations representative of ground, mountain-
ous, and marine environments. The simulation results show that the UAVs
would be able to cover the search area in a reasonable amount of time, with
favourable survivor detection times. The system should therefore be feasible
for practical implementation.

ii

Stellenbosch University https://scholar.sun.ac.za

Opsomming

Hierdie tesis ondersoek die probleem van geoutomatiseerde soek-en-redding
(SAR) met behulp van veelvuldige onbemande lugvoertuie (UAV’s). Die prob-
leem is geformuleer as ’n verspreide en aanlyn multi-robot dekkingspadbe-
planning (MCPP) probleem. Die gebruik van veelvuldige UAVs verminder
oor die algemeen die tyd wat dit neem om oorlewendes op te spoor, met die
aanvaarding dat hulle op een plek bly vir die duur van die outomatiese soek-
tog. Die opsporing van oorlewendes word tipies uitgevoer met kameras wat
afwaarts wys. Daar word aanvaar dat die UAV’s tydens die soektog op ’n
konstante hoogte vlieg, wat die probleem tot twee dimensies vereenvoudig.
Dit word aangeneem dat die omgewing bekend is en gediskretiseer word na ’n
rooster gebaseer op die vereiste grondmonstersafstand (GSD) wat nodig is om
oorlewende opsporing te waarborg. Die statiese hindernisse in die omgewing
word verteenwoordig deur besette selle. Die vrye selle in die soekgebied word
verdeel in gelyke, aangrensende substreke om deur individuele UAV’s deursoek
te word. Dit elimineer die behoefte aan eksplisiete botsingvermyding tussen
die UAV’s. ’n Geslote-lus dekkingspad word dan vir elke substreek gegenereer
deur ’n spannende boom dekking (STC) tegniek te gebruik. Die dekkingspaaie
word aangepas om voorsiening te maak vir die dinamiese beperkings van die
UAV’s. ’n Sentrale ontplooiingstrategie is ontwikkel sodat al die UAV’s op die-
selfde plek opstyg en land. Vlugskedules en ’n brandstofhervullingsprotokol is
ook ontwikkel om die beperkte brandstofvermoÃ« van die UAV’s in ag te neem.
Die outomatiese soekbenadering met behulp van veelvuldige UAV’s is getoets
en geÃ«valueer in simulasie met behulp van topografiese kaarte van werklike
liggings wat verteenwoordigend is van grond-, berg- en mariene omgewings.
Die simulasie resultate toon dat die UAV’s die soekgebied binne ’n redelike
tyd sal kan dek, met gunstige oorlewende opsporingstye. Die stelsel behoort
dus uitvoerbaar te wees vir praktiese implementering.

iii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to both my supervisors, Dr JAA
Engelbrecht and Dr JC Schoeman. Without their guidance and expertise, this
project would not have been possible.

In particular I would like to thank Pieter Goos and Robert Waller from
the Electronic Systems Laboratory for their continued advice and support. A
special thanks as well to my husband and fellow engineer, Daniel Lourens.

iv

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Opsomming iii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables xiv

Nomenclature xv

Acronyms xix

1 Introduction 1
1.1 Background . 1
1.2 Research Goal . 2
1.3 Research Objectives . 2
1.4 Proposed Solution and Contributions 3
1.5 Scope of Project . 6
1.6 Limitations . 7
1.7 Thesis Outline . 8

2 Literature Review 10
2.1 Search and Rescue . 10
2.2 Robotics in Search and Rescue 14
2.3 Motion Planning . 19
2.4 Coverage Path Planning . 21
2.5 Single Robot Coverage Path Planning 23
2.6 Multiple Robot Coverage Path Planning 26
2.7 Key Findings and Design Decisions 35

v

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vi

3 Conceptualization and Modelling 37
3.1 The SAR Problem . 37
3.2 Search Environment . 39
3.3 Environment Obstacles . 41
3.4 UAV Model . 42
3.5 Collisions Model . 45
3.6 Target Model . 46
3.7 Target Detection Model . 47

4 System Overview 49
4.1 System Summary and Scope . 49
4.2 Environment Representation . 51
4.3 Divide Areas Algorithm . 52
4.4 Sub-Region Coverage Technique 53
4.5 Central Deployment and Scheduling 54

5 Environment Representation 56
5.1 Background . 56
5.2 Discretisation Methodology . 57
5.3 UAV and Camera Payload . 67
5.4 Discretisation Examples . 69

6 Divide Areas Algorithm 84
6.1 DARP Algorithm . 84
6.2 DARP Advantages and Disadvantages 90
6.3 Algorithm Modifications . 92
6.4 Illustrative Examples with Different Environments 93

7 Sub-Region Coverage Technique 103
7.1 Sub-Region Coverage Overview 103
7.2 Spanning Tree Generation . 106
7.3 Path Generation . 110
7.4 Spanning Tree Coverage for SAR 118
7.5 Illustrative Examples with Different Environments 125

8 Central Deployment and Flight Scheduling 133
8.1 Central Deployment Concept 133
8.2 Time Calculations for UAV Manoeuvres 137
8.3 Endurance Estimation . 143
8.4 Flight Schedule and Survivor Detection 146
8.5 Illustrative Examples with Different Environments 151

9 Monte Carlo Simulations 161
9.1 Experimental Setup, Procedure, and Results 161
9.2 Algorithm Execution Time . 164

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vii

9.3 Survivor Detection Performance 179
9.4 Key Findings . 188

10 Conclusions and Recommendations 190
10.1 Summary of Work Done . 190
10.2 Recommendations for Future Work 194

Appendices 196

A Discretisation Tables 197

List of References 202

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 DroneSAR Mobile Application Showing Coverage Plan. [1] 2
1.2 Environment map showing the area division by the DARP algo-

rithm in an example environment where there are two UAVs that
refuel three times. 5

1.3 Environment map showing the coverage paths of two UAVs in an
example environment up until survivor detection occurs after the
final refuel. 5

2.1 Flow diagram showing a breakdown of the different kinds of path
planning as part of motion planning. 21

2.2 Simulation showing coverage of hexagonal partitions with back-
and-forth motions using three robots. [2] 27

2.3 Illustrations showing results for the Voronoi partitioning scheme for
two different distance measures. [3] 28

2.4 Illustration of the resulting area partition using the negotiation
protocol. This example is for two robots and includes a no fly zone.
[4] . 29

2.5 MSTC algorithm showing the paths for three robots on an environ-
ment grid. [5] . 31

2.6 Illustration of the area division achieved on a grid with static ob-
stacles, using DARP. [6] . 32

3.1 Diagram showing the components of an automated Search and Res-
cue problem with multiple UAVs. 38

4.1 Diagram showing an overview of the multi-robot SAR system. . . . 50

5.1 Diagram showing relevant variables concerned with calculating the
field of view for a camera. 58

5.2 Diagram showing the rectangular approximation for a human viewed
from above for calculation of the GSD 60

5.3 Diagrams showing cross track overlap for camera Field of View for
different discretisation techniques. 62

5.4 Diagrams showing coverage achieved when FOV is calculated using
a height (Hf) with respect to different points in topography. 63

viii

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES ix

5.5 Diagram showing required FOV to ensure no corner cutting on a
square. discretisation . 63

5.6 Diagram showing the dimensions necessary to calculate FOV on a
square discretisation. 64

5.7 Diagram showing the range of flying heights that can be calculated. 64
5.8 Satellite image of Spitskop example environment. [7] 71
5.9 Contour map of Spitskop example environment. [8] 71
5.10 Diagram showing the range of flying heights that can be calculated. 72
5.11 Contour map of Spitskop with excluded regions for the search shown

in black. 73
5.12 Graph showing the map of Spitskop with the discretisations over-

laid, including the over-estimated discrete obstacles. 74
5.13 Satellite image of Champagne Castle in the Drakensberg. [9] 76
5.14 Contour map of Champagne Castle in the Drakensberg [8]. 76
5.15 Contour map of Champagne Castle with excluded regions for the

search shown in black. 77
5.16 Graph showing a contour map of Champagne Castle with the dis-

cretisation overlaid, including the discrete obstacle approximations. 78
5.17 Satellite map of Aberdeen and the surrounding area. [7] 78
5.18 Contour map of Aberdeen and the surrounding area. [8] 79
5.19 Contour map of Aberdeen where excluded regions for the search

are shown in black, with the grey portion representing physical
obstructions. 79

5.20 Graph showing a contour map of Aberdeen with the discretisation
overlaid, including the discrete obstacle approximations. 80

5.21 Satellite image of Jeffreys Bay Main Beach. [7] 81
5.22 Contour map of Jeffreys Bay Main Beach. [8] 81
5.23 Contour map of Jeffreys Bay with excluded coastal region shown

in black. 82
5.24 Graph showing a contour map of Jeffreys Bay with the discretisa-

tion overlaid, including the under-estimated discrete obstacles. . . . 83

6.1 Example environment grid showing the resulting area division after
applying the DARP algorithm to it. 85

6.2 Flow diagram representing the logic for the DARP algorithm. . . . 89
6.3 Results of applying the DARP algorithm to the Spitskop example

environment with five UAVs . 94
6.4 Champagne Castle example environment with its enclosed spaces. . 95
6.5 Representation of the two ways to handle enclosed spaces on the

Champagne Castle example. 96
6.6 Results of applying the DARP algorithm to the Chapaigne Castle

example environment with three UAVs 98
6.7 Results of applying the DARP algorithm to the Aberdeen example

environment with four UAVs . 99

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES x

6.8 Results of applying the DARP algorithm to the Jeffreys Bay exam-
ple environment with two UAVs . 101

7.1 Example environment where the divide areas algorithm has been
applied, with small cells depicted inside larger cells. 104

7.2 Illustration showing how a spanning tree is used for coverage on
one sub-region. 105

7.3 Diagram showing an example of a graph with four nodes and five
edges. 107

7.4 Diagram showing possible spanning trees of the example graph. . . 107
7.5 Diagrams showing an example of a a graph with weights and the

resulting Minimum Spanning Tree of that graph 108
7.6 Illustration showing how a discrete environment is used to create a

connected, undirected graph. 108
7.7 Diagram showing a possible spanning tree for the environment graph.109
7.8 Example environment with a spanning tree generated within each

sub-region. 110
7.9 Diagram showing how the reference frame representing motions

would move with a right turn. 112
7.10 Illustration showing how arrows are generated for the first phase of

spanning tree circumnavigation. 112
7.11 Diagram showing the four possible motions of an arrow within a

particular reference frame. 113
7.12 Illustration of how waypoints are generated from arrows along with

the resulting circumnavigation path around the spanning tree. . . . 114
7.13 Example environment with the spanning tree circumnavigation shown.114
7.14 Diagrams showing how the original waypoints are shifted to form

a set of circular and straight line waypoints. 115
7.15 Diagrams showing how the waypoints look when the turning radius

is equal to or smaller than half the discretisation size. 116
7.16 Example environment with waypoint half-shifts shown. 117
7.17 Example environment with dynamic constraints shown. 118
7.18 Example environment showing the DARP division and target loca-

tion. 119
7.19 Snapshot of example environment at time of target detection. . . . 120
7.20 Example environment where the y-dimension is favoured during

path generation. 121
7.21 Example environment where the x-dimension is favoured during

path generation. 121
7.22 Dispersed Spitskop example environment with the coverage paths

and survivor detection. 126
7.23 Table generated by the program for the dispersed Spitskop example

environment. 126

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xi

7.24 Clustered Spitskop example environment with the coverage paths
and survivor detection. 128

7.25 Table generated by the program for the clustered Spitskop example
environment. 128

7.26 Clustered Aberdeen example environment with the coverage paths
and survivor detection. 129

7.27 Table generated by the program for the clustered Aberdeen example
environment. 130

7.28 Clustered Aberdeen example environment with the coverage paths
and survivor detection when using a left-to-right sweep. 131

7.29 Table generated by the program for the clustered Aberdeen example
environment with a left-to-right sweep. 131

8.1 Diagram showing a central ground station with UAV configuration
examples. 134

8.2 Example environment with coverage paths from a central ground
station. 135

8.3 Example environment with coverage paths for two UAVs that refuel.136
8.4 Flight schedule for the example environment. 137
8.5 Diagram showing the four possible departure paths for the UAV

and the selected shortest path. 140
8.6 Diagrams showing the four possible aaproach paths for the UAV

and the selected shortest path. 140
8.7 Diagram showing relationship between heading and half shifts. . . . 141
8.8 Departure paths for UAVs in the example environment. 142
8.9 Approach paths for UAVs in the example environment. 142
8.10 Flow diagram showing the logical progression for calculating the

number of refuels. 143
8.11 Diaram showing the approximation used for a departure or ap-

proach path length. 144
8.12 Flight schedule for the example environment with survivor detec-

tion indicated. 148
8.13 Snapshot of example environment at the point of target detection. . 149
8.14 Flight schedule for the second example environment with survivor

detection indicated. 149
8.15 Second example environment with coverage paths depicted. 150
8.16 Snapshot of second example environment at point of target detection.150
8.17 Tables showing algorithm outputs for example environment 151
8.18 Spitskop example environment with two UAVs that refuel. 153
8.19 Flight schedule for the Spitskop example environment with two

UAVs that refuel. 154
8.20 Data tables generated for the Spitskop example environment with

two UAVs that refuel. 155
8.21 Aberdeen example environment with three UAVs that refuel. 157

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xii

8.22 Flight schedule for the Aberdeen example environment with three
UAVs that refuel. 158

8.23 Data tables generated for the Aberdeen example environment with
three UAVs that refuel. 158

8.24 Data tables generated for the Jeffreys Bay example environment
with one UAV that refuels. 159

8.25 Jeffreys Bay example environment with one UAV that refuels. . . . 160
8.26 Flight schedule for the Jeffreys Bay example environment with one

UAV that refuels. 160

9.1 Box-and-whisker plots of DARP iterations for simulations in no
obstacle environments containing UAVs with random initial positions.166

9.2 Box-and-whisker plots of DARP execution time for simulations in
no obstacle environments containing UAVs with random initial po-
sitions. 166

9.3 Mean values of DARP algorithm for simulations in no obstacle en-
vironments containing UAVs with random initial positions. 167

9.4 Box-and-whisker plots of DARP Iterations for simulations in envi-
ronments containing 10% obstacles and UAVs with random initial
positions. 167

9.5 Box-and-whisker plots of DARP Execution Time for simulations
in environments containing 10% obstacles and UAVs with random
initial positions. 168

9.6 Mean values of DARP algorithm for simulations in environments
containing 10% obstacles and UAVs with random initial positions. . 168

9.7 Box-and-whisker plots of DARP Iterations for simulations in no
obstacle environments comparing central deployment and random
initial positions. 170

9.8 Box-and-whisker plots of DARP Execution Time for simulations in
no obstacle environments comparing central deployment and ran-
dom initial positions. 170

9.9 Mean values of DARP algorithm for simulations in no obstacle envi-
ronments comparing central deployment and random initial positions.170

9.10 Graphs showing the average discrepancy achieved by the DARP
algorithm in the simulations of the first data set. 172

9.11 Graph showing the number of failures for increasing obstacle densities.174
9.12 Graph showing the time to generate coverage paths for no obstacle

environments and random robot initial positions. 175
9.13 Graph showing the execution time of the sub-region coverage tech-

nique for four UAVs in environments of varying obstacle densities. . 177
9.14 Graph showing the execution time of the sub-region coverage tech-

nique for two UAVs that refuel. 177
9.15 Graph showing the execution time of the sub-region coverage tech-

nique in no-obstacle environments as the number of robots increase. 178

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xiii

9.16 Graph showing the execution time of the sub-region coverage tech-
nique in environments with 10% obstacles as the number of robots
increase. 179

9.17 Graphs showing the maximum time and energy consumed to com-
pletely cover environments of varying size with no obstacles. 181

9.18 Graph showing the the maximum time to completely cover environ-
ments of varying size with no obstacles for an increasing number of
UAVs. 182

9.19 Graphs showing the maximum time and energy consumed to com-
pletely cover environments of varying size and obstacle density. . . . 183

9.20 Graphs showing the maximum time and energy consumed to com-
pletely cover environments of varying size with no obstacles and
UAVs that refuel. 185

9.21 Zoomed in view of the maximum time to completely cover envi-
ronments of varying size with two UAVs that are deployed from a
central ground station. 186

9.22 Box-and-whisker plots of survivor detection time for 25 scenarios
in the Aberdeen environment with a changing number of available
robots. 187

Stellenbosch University https://scholar.sun.ac.za

List of Tables

5.1 List of possible UAVs with their associated capabilities and limita-
tions. 68

5.2 List of possible camera payloads with their associated parameters
and limitations. 69

5.3 Summary of the parameters for the Spitskop environment. 75
5.4 Summary of the parameters for the Champagne Castle environment. 77
5.5 Summary of the parameters for the Aberdeen environment. 80
5.6 Summary of the parameters for the Jeffreys Bay environment. . . . 83

A.1 Table summarising the calculations and values necessary to discre-
tise the Spitskop environment. 198

A.2 Table summarising the calculations and values necessary to discre-
tise the Champagne Castle environment. 199

A.3 Table summarising the calculations and values necessary to discre-
tise the Aberdeen environment. 200

A.4 Table summarising the calculations and values necessary to discre-
tise the Jeffreys Bay environment. 201

xiv

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Constants
g = 9.81 m/s2

Sets
E Search environment set
O Set of obstacles in the environment
S Search environment set excluding obstacles

Variables
x Position in environment relative to x-axis [m]
y Position in environment relative to y-axis [m]
ψ Aircraft yaw angle . [deg]
φ Aircraft roll angle . [deg]
θ Aircraft pitch angle . [deg]
XI Initial state of a UAV
XP Planned path of a UAV
Xi(t) Position of UAV at a specific instance in time
Xg Position of the target in the environment
Pi Path length of the ith UAV [m]
m The number of manoeuvres that make up a path
Vf Constant UAV flying speed [m/s]
rmin Minimum turning radius of UAV at constant velocity . . [m/s]
φmax Maximum roll angle of aircraft [deg]
` UAV Manoeuvre length . [m]
R Largest dimension of UAV from its centre of mass
Re Exclusion zone radius from UAV centre of mass
α Camera sensor to lens angle [deg]
H Height from camera lens to ground [m]
FOVx Field of view (on ground) corresponding with wlen . . . [m]

xv

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xvi

FOVy Field of view (on ground) corresponding with hlen . . . [m]
AOV Camera angle of view . [deg]
f Camera focal length . [mm]
hlen Camera sensor height . [mm]
wlen Camera sensor width . [mm]
GSD Ground sampling distance of camera [cm/px]
pxw Number of pixels along width of image for a camera . . [pixels]
pxh Number of pixels along height of image for a camera . . [pixels]
Hmax Maximum flying height to guarantee target detection . [m]
GSDmax Maximum GSD to guarantee target detection [cm/px]
L Dimension associated with complete coverage calculation [m]
Hmin Minimum flying height to guarantee complete coverage . [m]
∆hg Topographic variation in environment [m]
hgmax Altitude of highest point in topography [m]
hgmin

Altitude of lowest point in topography [m]
Hf Constant UAV Flying altitude [m]
Hfmax Maximum UAV Flying altitude [m]
Hfmin

Minimum UAV Flying altitude [m]
Vmax Suggested maximum UAV flying speed [m/s]
V stall Stall speed of the UAV [m/s]
l Dimension of square small cell [m]
%Overlap Cross-track overlap [%]
ts Time to execute straight line manoeuvre [s]
tc Time to execute 90 degree turn [s]
ns Number of straight line manoeuvres in coverage path
nc Number of 90 degree turns in coverage path
kt Safety factor to adjust time for energy consumption
cellsfree Number of free cells
cellsmax Maximum number of cells allowed per sub-region
(nr)eq Equivalent number of UAVs
(nr)avail Number of physically available UAVs
Tp Predicted flight time on one refuel [s]
Tm Time to complete manoeuvres outside of coverage path . [s]
Tf Time to complete coverage path [s]
(Tf)e Energy consumed to complete coverage path [s]
TT Time to complete take-off manoeuvre [s]

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xvii

TL Time to complete landing manoeuvre [s]
TD Time to complete departure manoeuvre [s]
TA Time to complete approach manoeuvre [s]
TW Time to complete airborne wait cycles [s]
HT Take-off height . [m]
Vc UAV climb rate . [m/s]
Vs UAV sink rate . [m/s]
PD Departure path length . [m]
PA Approach path length . [m]
S Square root of the number of cells in perimeter configuration
Nt Total number of cells in the environment
No Number of occupied cells in the environment (obstacles)
Ttot Time to complete total flight plan [s]
(Ttot)e Energy consumed to complete total flight plan [s]

DARP Matrices and Variables
A Assignment matrix
Ei Evaluation matrix for ith robot
mi Correction multiplier for ith robot
c Positive constant multiplier
ki Number of cells assigned to ith robot
f Desired number of cells per sub-region
Ri Matrix of spatially connected cells to ith robot
r Index for cells in Ri

Qi Matrix of cells not spatially connected to ith robot
q Index for cells in Qi

Ci Connectivity matrix multiplier
Zi Randomized matrix multiplier
∆max Maximum allowed discrepancy overall
∆th Maximum allowed discrepancy in current iteration
iter Current iteration
itermax Maximum allowable iterations

Common Subscripts
x The x dimension of the environment
y The y dimension of the environment
k Waypoint index

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xviii

i Robot index
j Robot index

Stellenbosch University https://scholar.sun.ac.za

Acronyms

ACO ant colony optimization

AI artificial intelligence

ANFIS adaptive-network-based fuzzy interference system

CPP coverage path planning

DARP divide areas algorithm for optimal multi-robot coverage path planning

DEM digital elevation model

DGPS differential GPS

DJI Da-Jiang Innovations

DSM digital surface model

DTM digital terrain model

EMILY emergency integrated lifesaving lanyard

FOV field of view

GA genetic algorithm

GIS geographic information system

GM-VPC geodesic-manhattan voronoi-partition-based coverage

GPS global positioning system

GSD ground sampling distance

IAMSAR International Aeronautical and Maritime Search and Rescue

ICAO International Civil Aviation Organization

IMO International Maritime Organization

inSAR synthetic aperture radar interferometry

xix

Stellenbosch University https://scholar.sun.ac.za

ACRONYMS xx

LiDAR light detection and ranging

MCPP multi-robot coverage path planning

MFC multi-robot forest coverage

MOPP multi-objective path planning

MST minimum spanning tree

MSTC multi-robot spanning tree coverage

NASA National Aeronautics and Space Administration

PO-MDP partially observable markov decision process

PRM probabilistic roadmaps

PSO particle swarm optimization

QoS quality of service

RCC rescue coordination centre

RRT rapidly exploring random trees

RSC rescue sub-centre

SAR search and rescue

SIC Simultaneous Inform and Connect

SLAM simultaneous localization and mapping

SRR search and rescue region

SRU search and rescue unit

STC spanning tree coverage

UAV unmanned aerial vehicle

UGV unmanned ground vehicle

US United States

VTOL vertical take off and landing

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Background
Unmanned aerial vehicles (UAVs) have gained popularity in various applica-
tions. Initially, UAVs were just remotely operated by a ground pilot, but in
recent years they have become increasingly automated. Examples of applica-
tions where UAV automation has been used include, but are not limited to,
structure inspections [10], smart farming [11], disaster management [12], power
line inspections [13], surveillance [14] and wildfire tracking [15]. Most of these
applications used multi-rotor UAVs, particularly quad-rotors. However, the
term UAV also encompasses other aircraft types, such as fixed-wing (aircraft)
and rotary-wing (helicopter) UAVs. Hybrid UAVs also exist that contain both
rotary-wing and fixed-wing components.

UAVs could potentially be used to support search and rescue (SAR) op-
erations by performing aerial searches. Their ability to fly over landscapes and
around three-dimensional structures gives them a considerable advantage over
unmanned ground vehicles (UGVs). Their relatively high altitudes also make
them well suited for automated search applications.

Perhaps the most notable example of using UAVs to perform automated
search and rescue is a project by DroneSAR that uses DJI drones [1]. Drone-
SAR uses one drone per SAR operation. Their implementation includes a mo-
bile application that allows a user to designate a search area manually. Figure
1.1 shows a screenshot of their mobile application. Once the search area has
been designated, the drone performs a back-and-forth manoeuvre across the
area to achieve coverage. The search operation can be halted if the imaging
system detects a possible target in the area. The drone can be switched to
manual flight mode for closer inspection and the coordinates of the target,
for example a person in distress, can be sent to the SAR team. According to
DroneSAR, it takes a five-person rescue team two hours on average to locate a
person in one square kilometre on land, while their drone was able to perform
the same task in under 20 minutes.

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

Building on the DroneSAR example, the next logical step would be to use
multiple UAVs to cooperatively search a designated search area. This would
reduce the time taken to search a given search area, or would allow a larger
search area to be covered in the same time. The development of such a system
would therefore be a valuable contribution to supporting search and rescue
operations.

Figure 1.1: DroneSAR Mobile Application Showing Coverage Plan. [1]

1.2 Research Goal
To develop an automated search and rescue (SAR) approach with multiple
UAVs using a distributed, offline coverage path planning (CPP) method.

1.3 Research Objectives
The goal of this research is to develop an automated path planning algorithm
for multiple UAVs. These UAVs are required to cooperatively search an en-
vironment for survivors in a search and rescue operation. The UAV paths
need to be developed to completely cover the environment in question, while
avoiding collisions between UAVs as well as with the static environment.

Dynamic constraints of the UAVs need to be accounted for, as well as
operational constraints. Dynamic constraints include the forward speed and
associated minimum UAV turning radius. Operational constraints include the
endurance limitations of the UAVs, the need to refuel to cover an environment,
and the constraint of taking off and landing from a central base of operations

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

or landing strip. The limitations of an onboard camera in terms of cover-
age capacity and resolution for survivor detection should also be taken into
account.

Based on the research goal, a set of research objectives are formulated:

1. Review existing literature regarding search and rescue, as well as existing
solutions where UAVs are used to support search and rescue operations.

2. Conceptualise and model the search and rescue problem. Address the
full search and rescue scenario and its components, namely the search
area, the terrain, the UAVs and the survivor(s) within the environment.

3. Develop an automated search and rescue algorithm that plans coverage
paths for multiple UAVs. The UAVs must search the designated area
while adhering to their dynamic constraints, which is dependant on the
forward speed of the UAV. General operational constraints should be
considered, including the endurance constraints of the vehicle as well as
the central deployment constraint. Lastly, the limitations of the onboard
cameras for survivor detection should be accounted for.

4. Develop a UAV take-off and landing procedure as well as flight schedules
for the UAVs with the assumption of a central landing strip or base of
operations.

5. Build a platform to simulate possible search and rescue scenarios. These
simulations should be used to test the algorithm as a means for automat-
ing search and rescue with multiple UAVs.

6. Evaluate the performance of the algorithm in simulated, randomly gen-
erated environments as well as mapped, real-world environments. Assess
the feasibility of using the algorithm in real-world search and rescue op-
erations.

1.4 Proposed Solution and Contributions
The automated SAR problem is formulated as a coverage motion planning
problem. It is solved using an offline, grid-based and distributed coverage
path planning (CPP) approach for multiple UAVs.

The demarcated search area is discretised into a grid with static obstacles
which are represented as occupied cells. The free cells in the grid represen-
tation are divided into equal-sized, contiguous sub-regions to be searched by
individual UAVs. The algorithm used for this is called the divide areas algo-
rithm for optimal multi-robot coverage path planning (DARP).

The resulting sub-regions are roughly equal in size. This means that the
time to cover each sub-region is similar as well. Covering the individual sub-
regions can also be done independently. Collision avoidance is not necessary,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

since each UAV can search its assigned region without traversing the region of
another UAV.

The initial positions of the UAVs, where they begin their search, are
chosen to be along the perimeter of a central base of operations. The sub-
regions are formulated so that one UAV begins its search within each region.

A closed-loop coverage path is generated for each sub-region using a span-
ning tree coverage (STC) technique. Each sub-region can then be completely
covered by one UAV. Dynamic constraints of the UAV are then taken into
account by introducing a minimum UAV turning radius based on the constant
forward speed of the UAV. The original paths are modified to incorporate this
turning radius.

The sub-region size is limited by the physical UAV endurance, so there
may be more sub-regions than UAVs. When this is true, multiple regions
are assigned to one actual UAV for searching, but the UAV refuels in between
respective sub-region searches. This is made possible by using a central ground
station for take-off, landing and refuelling. The initial robot positions, of which
multiple may be associated with one actual UAV, are arranged in a perimeter
configuration around the ground station.

The UAVs take off sequentially from the base of operations and fly to
their initial positions around the ground station perimeter. Once they are each
within a respective sub-region, they follow their closed-loop paths, eventually
reaching the initial positions again, from which they land back to the base
of operations. If more sub-regions are assigned to these UAVs, they would
be refuelled or recharged and start the process again for a different set of
unsearched sub-regions.

Figure 1.2 shows the result of using the DARP algorithm for a hypothet-
ical environment. The central ground station is shown as an obstacle with the
robot initial positions on its perimeter. They are shown as black dots with
white at their centre.

There are only two available UAVs and the sub-regions that are allocated
to them are represented in blue and orange respectively. Multiple regions, with
multiple initial positions, are assigned to each UAV. They can be distinguished
by the different shadings in each colour. The target location is shown as an
"X." Note that this is not a known value to the UAVs in a real-world scenario.

The UAV will execute a series of closed loop coverage paths in each of
its regions as shown in Figure 1.3, starting in the most darkly shaded region.
This figure shows a snapshot of the environment at the moment of survivor
detection. In this example, survivor detection occurred in the final orange-
sub-region that was searched. The paths to land and take-off at the ground
station are not shown here, but are implied.

In summary, the the multiple robot, automated SAR problem is formu-
lated as an offline CPP problem. This is solved using a grid-based, two-
dimensional, distributed approach that results in approximately complete cov-
erage of a search area.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Environment map showing the area division by the DARP algo-
rithm in an example environment where there are two UAVs that refuel three
times.

Figure 1.3: Environment map showing the coverage paths of two UAVs in an
example environment up until survivor detection occurs after the final refuel.

Some contributions include:

1. The multi-robot, coverage path planning approach developed by Kapout-
sis et al. [6] was applied to the SAR problem and was expanded to take
the operational constraints and dynamic constraints of the UAVs into

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

account.

2. A procedure was developed for choosing the appropriate grid size when
discretising the search area based on the specifications of the UAVs and
their onboard camera payloads. The relevant design equations for doing
so were also formulated.

3. A procedure was developed to generate paths for the departure and ap-
proach of the UAVs. These entail the travel between the take-off and
landing points at the centre of the base of operations, and the initial
positions of the sub-region coverage paths around the perimeter of the
base of operations.

4. Plausible flight schedules and refuelling protocols were developed for the
deployment of the UAVs from a central base of operations.

5. The automated search and rescue approach was tested and evaluated
in simulation with search areas based on real-world maps. The dynamic
and operational constraints of real-world UAVs and their onboard camera
payloads were accounted for.

1.5 Scope of Project
The multiple UAV automated search approach proposed in this thesis is in-
tended to function as part of a SAR operation. It may be part of a much larger
search plan involving various specialized teams.

In any specific SAR scenario, the search coordination team would need to
decide how a team of UAVs would be the most useful. They may be used to
search a sub-region of a much larger search area. They may also be used as
aerial assistance to a manual search happening in tandem. The focus of this
research project is the development of an algorithm to generate paths for the
UAVs to follow in their automated search.

The automated SAR approach developed in this project was tested and
evaluated in simulation with search areas based on real-world maps, and with
dynamic and operational constraints representative of real-world UAVs and
onboard camera payloads. However, the project did not go as far as imple-
menting the system on real flight computers and performing practical flight
tests with the physical UAVs. This could be the subject of a future research
project.

The development of the onboard imaging systems and the target detection
algorithm are considered to be outside the scope of this project. The target
detection is abstracted by assuming that the target is detected when it is in
range of the UAV. The algorithms are assumed to favour a false positive over
a failed detection.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 7

The development of the flight control systems for the UAVs are also con-
sidered to be outside the scope of this project. It is assumed that the UAVs are
equipped with flight control systems that allow them to follow given reference
trajectories.

The multi-robot coverage path planning (MCPP) approach implicitly pro-
vides obstacle avoidance for static terrain features in the search area and col-
lision avoidance between the UAVs performing the cooperative search.

Collision avoidance for dynamic obstacles is not accounted for. It is as-
sumed that the UAVs are equipped with short-term collision avoidance sys-
tems, similar to the one presented by Meiring et al. [16]. The development
of this short-term collision avoidance system is considered to be outside the
scope of this project.

A flight schedule is developed so that the UAVs can take-off and land
sequentially and wait in holding patterns if necessary. This prevents UAV
collisions within the take-off and landing zones. This zone is also assumed to
be clear of static obstacles. Collision avoidance in the event that there are
static obstacles is beyond the scope of the project.

1.6 Limitations
This proposed solution in this thesis does not accommodate contexts like cave,
urban or combat SAR. An aerial search would likely also be inappropriate for a
region with poor visibility, such as a dense forest or a region with bad weather.
Regions like these are assumed to be excluded from the aerial search by the
search coordination team.

The approach used in this thesis discretises the search area into a grid-
based, two-dimensional environment. This facilitates the area division and the
path generation, but also introduces some limitations.

To generate a two-dimensional grid with a constant grid cell size, a con-
stant altitude search must be assumed. For a search area with a large variation
in terrain altitude, it would be advantageous to be able to perform searches at
different altitudes.

The grid-based approach also makes complete coverage of the actual con-
tinuous environment more challenging. Obstacles must either be over- or un-
derestimated to mark grid cells as free or occupied, which means that the
grid-based environment is only an approximation of the actual continuous
environment. Although complete coverage of the grid environment can be
achieved, complete coverage of the the actual continuous environment can
only be approximately achieved [17].

The proposed coverage path planning approach assumes a static target, or
at least a target that is moving relatively slowly compared to the UAVs. Target
detection can be guaranteed if the target is static, but cannot be guaranteed
for a moving target. The assumption of a static or slow-moving target is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 8

reasonable, since individuals in need of search and rescue are encouraged to
stay in one location, or would likely be on foot.

The proposed approach assumes that the search area is a known environ-
ment and has been mapped prior to the search. This offline coverage path
planning approach only considers static obstacles, and does not consider dy-
namic obstacles such as other aircraft that are operating in the same search
area. The approach assumes that any dynamic obstacles would be handled
online by a short-term collision avoidance system.

The dynamic constraints of the UAV, namely the forward speed and min-
imum turning radius, impose a required minimum flying height to produce
complete coverage. On the other hand, the resolution of the onboard camera
imposes a maximum flying height constraint above which target detection is
not ensured. The UAV and camera combination must therefore be carefully
selected to produce a feasible range of flying heights.

To ensure that a grid is completely covered while the UAV is turning, a
grid cell size that is smaller than the onboard camera’s field of view must be
used. This introduces a general overlap in the coverage. The disadvantage
is that there is some redundant coverage. The advantage is that the overlap
increases the chance of detecting a target that is not stationary, but moving
slowly between grid cells. Furthermore, the overlap could address the approx-
imate coverage, making it tend towards complete coverage.

A set of manoeuvres is needed to get UAVs from the ground station to
their initial positions. These are arranged in a perimeter configuration around
the ground station, which is viewed as an obstacle. Currently the approach
is limited to eight UAVs, but it can be expanded for more robots if required.
This is a limiting configuration though and there may be other configurations
better suited to a scenario.

The proposed solution assumes that all UAVs are deployed from a central
base of operations. However, other deployments strategies are also possible,
for example where the UAVs are deployed from multiple ground stations, and
perhaps do not have to land at the same ground station from which they
took off. The proposed solution would have to be adapted for the specific
deployment strategy. This could be the subject of future research.

1.7 Thesis Outline
A brief overview of the structure of this thesis, beyond the introduction, is
given below:

• Chapter 2 - Literature Review. This chapter establishes some con-
text and background information on search and rescue operations, pro-
vides an overview of how robots and UAVs have been used for search and
rescue in the past, and performs a literature review on motion planning,
single robot CPP, and multiple robot CPP.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 9

• Chapter 3 - Conceptualization and Modelling. This chapter con-
ceptualises and models the search and rescue scenario and its major
elements, namely the search area, the terrain, the UAVs, and the target.
How target detection and collisions are modelled is also addressed.

• Chapter 4 - System Overview. This chapter provides an overview
of the proposed solution as well as a brief description of each of its
components and their relationships.

• Chapter 5 - Environment Representation. This chapter deals with
the first phase of the proposed solution. It details the process of selecting
a type of UAV and camera for an environment, as well as choosing an
appropriate flying speed and height. It goes on to show the process used
to discretise a specific environment into a grid.

• Chapter 6 - Divide Areas Algorithm. This chapter describes the
method for dividing the designated search area into equal sub-regions
using the DARP algorithm.

• Chapter 7 - Sub-region Coverage Technique. This chapter de-
scribes the method used to generate the path for an individual UAV in
its allocated sub-region using a spanning tree coverage (STC) algorithm,
and then modifying the path to account for the dynamic constraints of
the UAV.

• Chapter 8 - Central Deployment and Scheduling. This chapter
considers the practical implications of deploying the UAVs from a central
base of operations. Procedures are developed to generate the take-off and
landing paths between the central ground station and the search path
starting locations at its perimeter. Flight schedules and refuelling pro-
tocols are developed to allow the UAVs to take off and land sequentially.

• Chapter 9 - Monte Carlo Simulations. This chapter describes the
monte carlo simulations that were performed to test and evaluate the
proposed automated search approach. The simulation results are pre-
sented and discussed.

• Chapter 10 - Conclusions and Future Work. Finally, the thesis
concludes with a summary of the work done and how the research objec-
tives were met. Recommendations for future research and improvements
are also provided.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature Review

A literature review was performed to obtain background information on the
search and rescue (SAR) problem, to get an overview of how robots and UAVs
have been used for search and rescue in practice and in previous research, and
to review existing motion planning and coverage path planning (CPP) tech-
niques that could be used to perform automated searches using multiple UAVs.
CPP is divided into single robot coverage path planning and multi-robot cov-
erage path planning (MCPP). MCPP is further divided into three categories:
distributed offline MCPP, non-distributed offline MCPP, and online MCPP.
At the end of the chapter, the key conclusions from the literature review are
summarised, and are used to inform the research decisions for this project.

Section 2.1 provides background information on the SAR problem, in-
cluding SAR organizations, the stages of SAR, and different types of SAR.
Section 2.2 provides an overview of how robots and UAVs have been used for
SAR in practice and in previous research. Sections 2.3 and 2.4 provide some
background theory on general motion planning and CPP. Section 2.5 reviews
techniques for single robot CPP techniques. Section 2.6 reviews techniques for
MCPP. Section 2.7 summarises the key conclusions from the literature and
the research decisions that were made.

2.1 Search and Rescue
This section discusses the principles and conventions surrounding SAR, pro-
viding context for the general SAR problem. Section 2.1.1 discusses SAR
operations in the global sense, with mention of the main governing bodies and
documentation. The different stages of a SAR operation are discussed in Sec-
tion 2.1.2 and the different types of SAR, relating specifically to the type of
environment, are discussed in Section 2.1.3.

10

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 11

2.1.1 Search and Rescue Globally

Search and Rescue operations have historically been performed using teams of
people on the ground doing some type of planned search. As advancements
came in technology, it began being used to assist. Technologies such as manned
boats and aircraft are often used to offer assistance in SAR operations. Other
less common technologies, like thermal cameras, can also be utilised to speed
up a search.

The information in this section is taken from three sources. Volume I
and Volume II of the International Aeronautical and Maritime Search and
Rescue (IAMSAR) manual are used along with a set of slides set up by the
International Civil Aviation Organization (ICAO) regarding the best practices
for search and rescue. [18, 19, 20]

SAR often involves maritime and/or aeronautical components, either as a
vessel in distress or as a search and rescue unit (SRU) in a SAR operation. For
this reason, the International Maritime Organization (IMO) and International
Civil Aviation Organization (ICAO) have become the two main authorities on
SAR worldwide.

Both organizations envision a global SAR network, where the globe is
divided into search and rescue regions (SRRs), each with an associated rescue
coordination centre (RCC) responsible for any SAR operation within that
region. The overarching goal is that regardless of where a person is in distress,
SAR services will be available. Any country or state that has agreed to this
global vision is expected to follow certain procedures and protocols during a
SAR operation. They are also expected to adhere to a certain organizational
structure and should always have specific equipment available.

There is a manual, that outlines all these requirements and protocols,
called the IAMSAR manual. This manual is approved by the ICAO and IMO
and aids in coordinating operations that have both aeronautical and maritime
components. This manual consists of three volumes, each aimed at a different
component of the SAR system. Volume I, the Organization and Management
volume, is aimed at SAR system managers and addresses SAR as a global con-
cept. In particular it addresses the responsibilities of RCCs and cooperation
between neighbouring regions. Volume II, which is the Mission Coordination
volume, gives the guidelines for coordinating multiple organizations and re-
gions for a SAR operation. This is aimed at rescue coordination centre (RCC)
and rescue sub-centre (RSC) personnel. Volume III is a direct guide for SRUs
and the protocols they should follow, as well as what vessels should do if they
themselves are in distress.

In the global SAR system perspective, the globe is divided into several
SRRs. A national or regional agency, an RCC, is assigned in each region and
is responsible for SAR services within this region. This service is expected to
be provided promptly and effectively, and without regard for circumstance or
nationality. States are expected to share resources and facilities in such a way

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 12

that the SAR operation is conducted in a coordinated and efficient manner.
The maritime and aeronautical SRRs can be slightly different, but are

generally quite similar. The benefit of allocating these regions is that distress
signals can be automatically routed to the relevant RCC to allow for a swift
emergency response.

2.1.2 The Stages of Search and Rescue

The stages of a SAR operation are detailed in Volume II of the IAMSAR
manual [19]. Receiving a distress call is generally the first step when it comes
to a SAR operation. Being reachable and having open lines of communication
is one of the most important technological components of a SAR operation.
Distress alerts can be relayed to the relevant RCC via coastal radio stations,
air traffic service units, land earth stations, other RCCs, and numerous other
resources available.

Communication during a SAR response is also key to ensure all parties
involved stay informed. Portable radios, mobile devices and satellite phones
can be vital to an effective SAR operation. SAR aircraft and vessels also
communicate on specific frequencies to ensure no interference.

Depending on the equipment, there may also be homing capabilities.
Many vessels and aircraft have some method of alerting others of their location.
Civil aircraft usually have an emergency locator transmitter, for example.

Homing in on the location of survivors is crucial in an emergency situation.
Extreme conditions or injuries are not unusual in these scenarios and it is
imperative that a person be located as quickly as possible so that medical
services can be provided if necessary and further injury, or possibly death, can
be avoided.

The IAMSAR manual divides a SAR response into five stages. The first
stage is referred to as the awareness stage. This is where a SAR organization
becomes aware of people in distress via its communication channels.

Once a possible SAR situation has been identified, the next stage involves
identifying the appropriate emergency phase. This is called the initial action
stage. The emergency phase can have one of three classifications: uncertain,
alert or distress phase. This classification can change as new information
about a situation becomes available. The type and extent of the SAR response
necessary can then be ascertained by evaluating the urgency of the situation.

Proper planning and coordination of a SAR response is crucial towards
its success. Therefore the next stage, after initial action, is the planning stage.
A number of critical decisions need to be made at this stage, like which area
needs to be searched and what resources, equipment and facilities need to be
utilised.

Generally the planning stage begins with determining the probable sur-
vivor locations and using this information to demarcate an area that needs to
be searched. Information that is often used in this estimation is: the results

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 13

of previous searches in the area, environmental conditions like ocean currents
or wind patterns, the last known location of survivors, the location of the
distress incident, the original travel route of the survivors, the state of the
survivors and whatever craft they may have been travelling in, and possible
environmental hazards in the area.

The distribution of facilities and SRUs in the area is then used to generate
a search plan. Generally, search parties do not opt for a systematic search,
particularly when there is a large area to cover. Instead they have a prob-
abilistic approach, searching areas where the survivors are more likely to be
first.

This method is favoured in partial because it has been found that after
three days, the likelihood of survival of a person in distress rapidly decreases.
If a person is injured, likelihood of survival decreases by 80% in the first 24
hours. Finding survivors swiftly is therefore crucial in SAR.

Once a plan has been formulated, it can be put into action in the opera-
tions stage. Here the practical search operation is executed. In this stage it is
intended that the survivors are found, provided with any immediate assistance
they may require, and returned to safety. This is followed by the final stage,
called the conclusion stage. This is when survivors are no longer in distress.

The conclusion stage may be reached prematurely if it is found that there
is no distress situation, or that the search is no longer necessary because the
likelihood of survival of those in distress is practically zero. A search may
also be abandoned if it is found to be too dangerous for the search crew.
Regardless of the reason, a search operation is always eventually terminated,
and the entire search process then needs to be documented, in detail, by the
RCC.

2.1.3 The Types of Search and Rescue

The nature of a search and rescue operation has a big impact on the procedures
followed and facilities used during a search. The terrain is a big part of this.
Volume II of the IAMSAR manual discusses the effects of the terrain on a
search operation [19].

A mountainous region, for example, tends to have thin air and turbulence
for aircraft. Therefore a helicopter search is generally unsuitable. Fixed wing
aircraft at higher altitudes are most likely better suited in this situation, but
then a target cannot be hoisted to safety and would have to be extracted
with some other skilled team. Similar problems may occur in extreme weather
conditions.

The more complicated the terrain, the more experienced and skilled a
search team needs to be. Many types of services may need to be utilised, some
of which include volunteers, forest services, mountain rescue teams, para-rescue
teams, law-enforcement, firefighters and even skiing clubs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 14

In general, there is always some danger to the people in aircraft or on
other search vessels, as well as to a search team on the ground. Evaluating the
dangers in the area are crucial to providing effective aid to those in distress,
whilst avoiding putting a search team in unnecessary danger.

It is possible to divide SAR operations into certain categories according to
the type of environment in which the search needs to take place. According to
an article on a Search and Recovery Engineering website [21], a common prac-
tice is to divide SAR into the following categories: ground rescue, mountain
rescue, maritime rescue, urban rescue and combat rescue.

Ground rescue, which is typically carried out by volunteers or local law
enforcement, concerns people in distress on land. This kind of search could
involve people who have run away from home, people who are lost, people who
are in distress due to weather conditions or for any other number of reasons.
It can also occur in both rural and built-up areas.

Mountain rescue often involves people in distress in caves or mountain-
ous terrain. This may be as a result of a caving or rock climbing accident.
Specialised teams with mountain climbing equipment may be required to as-
sist those in distress. This is often dangerous work, since the terrain can be
treacherous and cave networks are often not mapped in detail.

Maritime rescue most often involves marine vessels in distress. The search
is generally conducted by institutions like the navy or coast guard. Marine
vessels and aircraft, for example helicopters, are used to locate and retrieve
those in distress.

Urban rescue, which should not be confused with ground search and res-
cue, involves locating people in distress in urban regions where a disaster has
occurred. This often involves building collapses due to natural disasters or
other disturbances. People get trapped in rubble and extraction can often be
incredibly challenging. Firefighters, medical personnel, local law enforcement
and various other teams may be involved in urban rescue.

Combat rescue involves rescue in or near active war zones. This is a very
specialized type of rescue operation and often involves injured combatants.

Regardless of the type of rescue operation, planning and coordination is
crucial to the success of a search operation. Identifying the type of terrain, the
hazards and the rescue services required is important to ensure the response
is fast and those in distress are helped as soon as possible.

2.2 Robotics in Search and Rescue
Robotics for SAR is discussed in two main categories. Section 2.2.1 briefly
looks at remotely operated robots and UAVs that have been used for SAR. The
various roles robotics can play in SAR operations are discussed in particular.
Section 2.2.2 in contrast looks at automated UAVs that help search operation
with the use of path planning and optimization algorithms.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 15

2.2.1 Remotely Operated Robots and UAVs for Search
and Rescue

According to the Springer Handbook of Robotics [22], robots can be applied
for SAR in a number of ways. Unless specified otherwise, the examples in this
section are sourced from this handbook.

Robots can be applied in the actual search task or for mapping an area
that needs to be searched. Robots can be used to remove rubble or inspect
structures to determine if they are safe to traverse. They can be used for
medical assistance as well, such as delivering medical supplies or helping med-
ical officers communicate with survivors. Furthermore, they can also be used
to provide logistical support such as aiding in transport of equipment and
supplies.

Whatever their role, SAR robots are intended to speed up a SAR oper-
ation and assist survivors as swiftly as possible. One of the first prominent
examples of where robots were used in SAR was during the World Trade Cen-
tre disaster in 2001. Unmanned ground vehicles (UGVs) were used to search
for survivors in the rubble. They successfully uncovered several sets of remains
and inspected the damage to the foundations.

During several large hurricanes in the United States, unmanned aerial
and ground robots were used to assist in search and rescue. During Hurricane
Katrina, a battery-powered fixed-wing UAV was used, as well as a battery-
powered helicopter that was adapted for operating in high winds. They were
used to explore difficult to reach regions, such as those cut off by debris and
flooding. To identify areas that still require assistance, a Silver Fox was also
used. This is an internal combustion engine, fixed wing UAV often used by the
United States Navy. All the UAVs flew below regulated airspace and provided
information directly to SAR responders as they surveyed various areas.

In Hurricane Rita and Hurricane Wilma, fixed-wing, internal combustion
engine UAVs were also used to survey the disaster region, but they were flown
in regulated airspace. These were military grade Predator UAVs that are built
for endurance, but require more people to operate. They are also much larger
and generally require larger landing and take-off zones.

With maritime SAR, remotely operated surface or underwater vehicles
can be used to assist. One example of this is called the emergency integrated
lifesaving lanyard (EMILY) [23]. This is a remotely operated robot that moves
on the surface of water and acts as a buoy. It has been used successfully to
help refugees in the Mediterranean and is being deployed all over the world.
Researchers seek to add more autonomous capability to this robot in future.

Unmanned ground, aerial, surface-water and underwater vehicles are
clearly sought after to access difficult to reach areas in SAR operations. They
reduce the risk to search personnel by acting in their stead or gathering valu-
able information to ensure their safety and the safety of survivors.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 16

2.2.2 Automated UAVs for Search and Rescue

This section discusses the application of UAVs for SAR. The automation com-
ponent is generally in the form of path planning for the UAVs or target de-
tection using thermal and/or visual cameras onboard the UAVs. A general
discussion of the algorithms used, and the level of success achieved, is given in
each case. Section 2.2.2.1 describes a technique that is being used in practice
for ground and maritime SAR. The subsequent sections are application that
have been tested in simulation or in practice, but are not actively being used
for SAR operations.

2.2.2.1 Complete Implementation by DroneSAR

DroneSAR is an Irish company that developed a system to assist search and
rescue with a DJI quad-rotor UAV [1]. They created a user-friendly applica-
tion, where one can demarcate an area to be searched and it will plan its own
coverage path of the area. The algorithm uses simple back-and-forth manoeu-
vres or a manual user input of way-points to plot a course for the quad-rotor.
On-board video footage (visual or thermal) is sent to the ground station in
real time. This allows the team on the ground to react quickly when a target
is found.

The goal was to find survivors faster, and reduce risk to SAR teams for
ground-based and maritime SAR. Based on tests with search and rescue teams,
it was found that the time taken to find a victim in one square kilometre, with
five people searching, is roughly two hours. Their system was then found to
locate the target in under 20 minutes.

According to an informative video released by the company [24], it is
currently the task of the the pilot to review footage, as the UAV is flying, and
locate a target. The UAV then sends GPS coordinates to the SAR team so
they can assist and retrieve the survivor(s). In future, they do intend to add
automatic human detection algorithms using artificial intelligence (AI).

2.2.2.2 Artificial Intelligence Based Approaches with Multiple
UAVs

San Juan et al. [25] proposed several methods to perform intelligent UAV
map generation and discrete path planning for search and rescue operations.
A map of the search area to be covered is divided into a grid of cells and each
cell is assigned a risk/occupancy value that represents the probability for the
cell to be occupied, and the potential hazard to the life of the occupant. The
risk/occupancy grid indicates which cells should be visited sooner and is used
to for the discrete path planning.

Four discrete path planning approaches were used to generate the way-
points for an individual UAV to follow: a potential field approach, a fuzzy
logic approach, an adaptive-network-based fuzzy interference system (ANFIS)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 17

approach, and a particle swarm approach. The approach was extended to
use multiple UAVs by performing the discrete path planning for two different
swarm formations: free and distributed. For the free swarm formation, the dis-
crete path planning algorithm is executed for two or more UAVs at the same
time in parallel. Each UAV follows an independent path along the coverage
area. When calculating the waypoints, the information about the cells that
have already been visited by UAVs are shared, so that the UAVs do not plan
to visit cells that have already been visited. For the distributed swarm forma-
tion, the map is divided into a number of sub-regions equal to the number of
UAVs, and each UAV is assigned an area which it must cover.

The methods were tested in simulation and the results showed that the
adaptive-network-based fuzzy interference system (ANFIS) approach performed
the best in general, and that the distributed formation worked better than the
free formation.

2.2.2.3 Online Approach with Multiple UAVs and Changing
Altitudes

Sawarte et al. published several works regarding the use of UAVs for SAR
in the years 2009 and 2010. Their first work concerned coordinated search
operations with a swarm of UAVs [26]. They presented an online approach that
uses quad-rotors to search for a single stationary target in a two-dimensional
search area. The UAVs use downward facing cameras for target detection and
onboard GPS for localisation. The search area is divided into a grid and each
cell is assigned a value that represents the probability of the target being within
the cell, creating a probabilistic occupancy grid. Each UAV maintains its own
copy of the occupancy grid and updates its cell values as it explores the area.
The UAVs communicate their occupancy grids with one another when they
are within communication range. The UAVs search the area in a decoupled
manner and apply the steepest gradient method to their occupancy grid to
decide on the next cell to visit. The approach was tested in simulation and the
results show that using multiple UAVs, that share information, significantly
decreases the time to find the target.

In a second paper [27], the authors built on their work by including the
ability to fuse multiple observations for the same cell, and by accounting for
the UAVs changing altitudes.

In a third paper [28], they presented the target detection algorithm that
detects the target using the video feed from the UAV’s downward-facing cam-
era. They found that the sampling rate should be chosen based on the require-
ments of the application. For search and rescue, the sampling rate should be
chosen to minimise missed detections.

In their fourth paper [29], they investigated three different strategies for
application in SAR: namely greedy heuristics, potential-based algorithms and
the partially observable markov decision process (PO-MDP). These online ap-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 18

proaches were designed to deal with information sharing limitations, collision
avoidance and uncertainties in the sensor data. The approaches were tested in
simulation and the results showed that PO-MDP achieved the fastest target
detection.

2.2.2.4 Online Approach with One UAV and Human Detection
Algorithm

Rudol and Doherty [30] presented a human body detection and geolocalisa-
tion technique for UAV search and rescue missions using color and thermal
imagery. Their techniques used a single, unmanned helicopter equipped with
onboard visual and thermal cameras. The unmanned helicopter executes back-
and-forth motions over a search area and collects video footage. The footage
is then analysed using an algorithm for human body detection. The lower-
resolution thermal images are used to find the potential locations of humans,
and then the higher-resolution visual images are analysed to confirm. The
path planner, to formulate the UAV’s back-and-forth motions, uses a motion
planning framework previously developed by Wzorek et al. [31].

Wrozek et al. developed a motion planning framework for a single rotary-
wing UAV which integrates two sample-based motion planning techniques,
probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT) to-
gether with a path following controller that is used during path execution.
They incorporated an online planning method to change the UAV’s flight path
on the fly in response to certain dynamic changes in the environment. The
dynamic changes were handled by using no-fly zones or pop-up zones which
could be added or removed by a ground operator. Their system was verified
through simulation and in actual flight. Their algorithm was found to detect
humans at a rate of 25 Hz, and was designed to favour a false positive detection
over a failed detection.

It should be noted that the motion planning framework developed by
Wrozek et al. is a point-to-point path planner. Rudol and Doherty extended
it to CPP by using the point-to-point path planner to perform back-and-forth
motions to cover a search area.

2.2.2.5 Multiple UAV Approach with Quality of Service
Requirements

Hayat et al. [32] presented a work where multiple UAVs are used for auto-
mated SAR. The problem was formulated as an MCPP problem, but with
communication as an additional mission goal. A previously developed multi-
objective path planning (MOPP) algorithm, called the Simultaneous Inform
and Connect (SIC) algorithm [33], was used since it can be tuned to favour
connectivity, coverage or both in varying degrees.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 19

The SAR problem is broken down into three tasks: namely search, inform
and monitor tasks. The search task concerns the path planner used to achieve
coverage and detect a stationary target. Once the target is detected, its loca-
tion needs to be transmitted to a ground station as part of the inform task.
Lastly, a good quality of service (QoS) connection link needs to be set up for
the monitor task so that the target location can be monitored in real time. A
genetic algorithm (GA) was used to optimize the time to complete all three
tasks. Replanning is used to reconfigure the UAVs once the target is detected
and establish a stable link to the ground station.

Two different SIC strategies were tested in simulation. One optimizes all
three tasks simultaneously, while the other optimizes the search and inform
tasks first, followed by the monitor task. Using simulations, it was found that
the joint optimization technique yields better results. Results also showed
that favouring connectivity gives better results for a small group of UAVs and
favouring coverage gives better results for a larger group. Overall, the algo-
rithms were also shown to have faster mission completion times than similar
algorithms that use connectivity as a constraint instead of a goal.

2.3 Motion Planning
This section provides an overview of general motion planning concepts and
techniques found in the literature, in particular from a book on motion plan-
ning by Steven Lavalle [34].

In robotics, motion planning is the problem of converting high-level speci-
fications of robot tasks into low-level descriptions of how the robot must move.
Lavalle distinguishes between motion planning and trajectory planning. Mo-
tion planning focuses on the series of translations and rotations required to
move a robot from one configuration to another within some environment,
and usually ignores the dynamics and other differential constraints. Trajec-
tory planning usually refers to the problem of taking the solution from a motion
planning algorithm and determining how to execute it in a way that obeys the
dynamics and differential constraints.

A motion planning problem typically consists of an robot, an environment,
and a plan. A planning algorithm is used to plan the path for the robot to
execute in the environment, and the robot then executes the plan. The plan
can be executed in simulation or in the real world.

Motion planning problems can be classified as either continuous or dis-
crete. Continuous planning models the robot as having continuous inputs
which are used to move it through a continuous state space, and a solution is
constructed by determining the appropriate input signals versus time. Discrete
planning models the robot as having a finite set of actions that can be applied
to a discrete set of states, and a solution is constructed by determining the
appropriate sequence of actions.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 20

Discrete planning techniques typically use search methods, such as Di-
jkstra’s algorithm and A*, to find the optimal sequence of states and ac-
tions. Continuous planning techniques are classified into two major categories,
namely combinatorial methods and sampling-based methods.

Combinatorial methods formulate continuous paths by building a discrete
representation of the environment, including the robot and the obstacles within
the environment. These methods are also referred to as exact since they ex-
actly represent the original continuous problem. Combinatorial methods are
complete, which means that they are guaranteed to find a solution when it
exists, or correctly report failure if one does not exist. Combinatorial methods
use methods like trapezoidal decomposition and Voronoi diagrams to gener-
ate discrete roadmaps, and then traverse the roadmaps using discrete search
methods such as A*.

Sampling-based methods use collision detection methods to sample the
continuous state space and then perform discrete searches. Sampling-based
methods are resolution complete or probabilistically complete, which are weaker
forms of completeness. Resolution completeness means that if a solution exists,
the algorithm will find it in finite time; however, if a solution does not exist,
the algorithm may run forever. Probabilistic completeness means that as the
number of sampled points tends to infinity, and the probability of finding the
solution tends to one. Examples of sampling-based methods include rapidly
exploring random treess (RRTs) and probabilistic roadmapss (PRMs), which
are single-query and multi-query methods, respectively.

Motion planning problems are also classified according to the nature of
the high-level task they perform. The task could involve a single robot or
multiple robots. (In the field of artificial intelligence, robots are also called
agents or decision makers.) Planning with multiple robots can be quite chal-
lenging because the robots must not only avoid collisions with obstacles in the
environment, but also with one another.

Figure 2.1 provides an overview of the different types of path planning
according to the high-level task.

General motion planning is divided into point-to-point path planning and
coverage path planning (CPP). In point-to-point path planning, the task is to
move from one point to another and/or to change orientation. With CPP, the
task is to cover every point in an environment. Point-to-point path planning
involving multiple robots is divided into the rendezvous task and the allocation
task. If the goal location is the same for all robots, then it is called a rendezvous
task. If the robots have different goal locations, then it is called an allocation
task.

Finally, motion planning algorithms can be classified as either offline or
online. With offline planning, the path planning is performed and completed
before the path execution begins. With online planning, the path planning
and path execution are performed in tandem. For offline planning, complete
knowledge of the environment is assumed. For online planning, the environ-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 21

Motion Planning
(Piano Mover’s Problem)

Coverage Path Planning
(Coverage Task)

Point-to-Point Path
Planning

Single Agent Multiple Agents Single Agent Multiple Agents

Rendezvous Task Allocation Task

Figure 2.1: Flow diagram showing a breakdown of the different kinds of path
planning as part of motion planning.

ment is sensed as the robot moves, and the plan is generated and updated
while it is being executed by the robot. [35]

2.4 Coverage Path Planning
Coverage path planning (CPP) is a subset of the general motion planning
problem. The coverage task refers to visiting all points within an environment
as opposed to the usual start-goal type task [36]. CPP can fall into the same
categories as motion planning. It can be classified as discrete or continuous,
online or offline, and as a single or multiple agent problem.

CPP can be used for a number of different applications. Some past exam-
ples include its use with vacuum cleaning robots, spray painting robots [37],
window cleaning robots [38], and automated lawn mowers [39]. For underwa-
ter vehicles, it can be used for the inspection of difficult-to-reach underwater
structures [40] and with ground vehicles it can been used to automate field
machines for smart farming [41].

A number of surveys have been done to give an overview of the literature
available and progress made in the field of CPP. In 2001, Choset [17] performed
a survey wherein they divide CPP into four categories: heuristic, approximate,
semi-approximate and exact cellular decompositions. In later papers this is
known as Choset’s taxonomy, and it is widely used to categorize different
types of CPP algorithms. The cellular decomposition approaches all rely on
simplifying the environment to achieve provably complete coverage. Choset
also briefly covers multi-robot coverage path planning (MCPP) algorithms.

Heuristics approaches use a set of rules to produce simple behaviours,
such as following a wall, to cover a search area. The heuristics may work well,
but do not provide any provable guarantees that ensure successful coverage.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 22

Approximate cellular decomposition approaches use a fine grid to represent
the free space to be searched. Semi-approximate cellular decomposition ap-
proaches rely on a partial discretisation of the search space where cells are
fixed in width but the top and bottom (or ceiling and floor) may have any
shape. Exact cellular decomposition approaches use a set of non-intersecting
regions, each called a cell, whose union fills the target environment. The robot
then covers each cell using simple back-and-forth motions.

In 2013, Galceran and Carreras [42] presented an updated survey of cov-
erage path planning for robotics that reflected on the advances since Choset’s
survey. The survey reviewed the most successful coverage path planning meth-
ods and discussed their reported field applications. The survey also covered
CPP in three-dimensional scenarios, and briefly looked at CPP where simul-
taneous localization and mapping (SLAM) is applied to handle localization
uncertainties.

In 2019, Cabreira et al. [43] published a survey on coverage path planning
with UAVs. They considered simple geometric flight patterns and more com-
plex grid-based solutions which consider full and partial information about the
search area. They also classified the surveyed coverage approaches according
to Choset’s taxonomy, including no decomposition, exact cellular decomposi-
tion, and approximate cellular decomposition. Their review also considered
different shapes for the search area, such as rectangular, concave, and convex
polygons.

Generally, multiple robot approaches add a layer of complexity to CPP.
The most notable challenge that arises is collision avoidance. Robots need to
cooperate to achieve coverage while not only avoiding collisions with obstacles,
but also with each other. In 2020, Zhang et al. [36] performed a comprehen-
sive survey on cooperative path planning for UAV groups. They proposed a
taxonomy that classified cooperative path planning problems along three axes,
namely the type of task, the planning framework, and the environment. The
type of task is classified as a rendezvous task, an allocation task, or a cover-
age task. The planning framework is classified as centralised, decentralised, or
hybrid. The environment is classified as known or unknown.

The following sections will explore different types of CPP techniques.
Section 2.5 will cover single robot CPP. Single robot path planning will be
divided into exact methods, sampling-based methods, A* and wavefront-based
coverage, spanning tree coverage, and artificial intelligence methods.

Section 2.6 will cover multi-robot coverage path planning (MCPP). MCPP
methods can be classified as distributed or non-distributed, and offline or on-
line. Distributed methods are methods where the paths of individual UAVs
do not cross. The search area is typically divided into a number of separate
sub-regions and each UAV is allocated its own sub-region to search. Non-
distributed methods are methods where the UAVs are free to cross paths. The
search area is not divided and the paths of the UAVs are computed simulta-
neously, with knowledge of which cells have already been visited [25]. Offline

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 23

methods are where the path planning is performed and completed before the
path execution begins, typically in known environments. Online methods are
where the path planning and execution are performed in tandem, typically in
unknown or partially-known environments.

2.5 Single Robot Coverage Path Planning
Single robot coverage is discussed in some detail here because several of the
MCPP problems make use of them. Distributed MCPP, for example, tends to
divide an environment into sub-regions that can then be covered by single robot
coverage methods. Sections 2.5.1 and 2.5.2 discuss exact and sampling-based
coverage techniques, while Sections 2.5.3 to 2.5.5 cover different grid-based
methods.

2.5.1 Exact Methods

Combinatorial methods, as described by Lavalle, are also referred to as exact
methods [34]. Exact methods for CPP make use of the same geometric princi-
ples to divide an area into cells. However, instead of creating a road-map, an
adjacency graph is created and used to move between cells. Each cell is then
individually covered, generally using simple manoeuvres [42].

Each cell in the decomposition is a node in the adjacency graph. An ex-
haustive walk is used to ascertain the sequence in which to visit these nodes
to achieve coverage. Simple manoeuvres, such as back-and-forth motions, are
then used to cover each cell individually, generally providing complete cover-
age. [44]

A popular exact method, that is mentioned in Lavalle’s book, is the
trapezoidal decomposition [34]. This method decomposes an environment into
trapezoids (convex cells) based on the vertices of polygonal obstacles. The
boustrophedon method builds on the trapezoidal method. It reduces the num-
ber of cells by only looking at vertices where a line can extend both upwards
and downward from it [42]. This reduces the final length of the coverage path
and makes it more efficient.

Both these decomposition methods are applicable in two-dimensional cov-
erage problems. They are offline approaches, since the environment must be
known a priori, and only work with polygonal obstacles [42]. This means some
approximations may need to be made to represent the environment using poly-
gons.

A more versatile exact method, that uses Morse functions for the decom-
position, is also available [45]. This no longer requires polygonal environments
and can in theory be expanded to higher dimensional environments.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 24

2.5.2 Sampling-Based Methods

Sampling-based methods have been adapted for coverage path planning. They
are more easily scaled to three-dimensional environments and are better suited
to online or real-time approaches. They also deal with changing environments
containing dynamic obstacles more easily. [34]

Nourani-Voutani et al. [46] used sampling-based CPP to perform auto-
mated lawn mowing. RRT was used as a local planner in combination with
a global planner that uses a spiral motion to cover the points in a map. A
solution is however, not guaranteed. Complete coverage is also not necessarily
achieved because of the random nature of the paths, but it is considered a
real-time approach.

Englot and Hover [47] used probabilistically complete sampling-based
CPP to perform inspection of complex structures. A redundant roadmap al-
gorithm constructs a roadmap and then uses RRT for local point-to-point
planning, which also incorporates collision avoidance.

Danner and Kavraki [48] applies a similar strategy, also intended for the
autonomous inspection of three-dimensional structures. The method used is,
once again, probabilistically complete. A method similar to a probabilistic
roadmap is use in the three-dimensional case to achieve coverage.

Wzorek et al. [31] use a combination of PRM and RRT to develop an
online point-to-point path planner with replanning capabilities. This was later
expanded to a coverage solution, that uses back-and-forth motions, by Rudol
and Doherty [30].

2.5.3 A* and Wavefront Based Coverage

A* is a discrete method of planning that is often used in point-to-point path
planning. In combinatorial motion planning or multiple-query sampling-based
methods such as PRM, road-maps are generally formed to represent the envi-
ronment. These road-maps can then be navigated using A* or another discrete
algorithm. A* was built from Dijkstra’s algorithm, which can be seen as a for-
ward search that takes cost into account for the priority queue. A* simply
goes on to predict the cost to reach the goal using a heuristic. Dijkstra has
also been optimised into what is called a wavefront planner. With this tech-
nique, equal cost points are grouped together into "waves" and the algorithm
essentially propagates out the waves until it reaches the goal. [34]

Barrientos et al. [49] adapted this wavefront type planning for CPP, with
the goal to minimise rotations and the number of revisited cells.

Some authors have taken to extending A* algorithms to CPP as well.
Viet et al. [50] combine the A* method with the boustrophedon method,
which is generally used for exact CPP. It is an online method that constructs
boustrophedon regions incrementally and uses A* to move from one region to
the next.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 25

In point-to-point path planning, the goal is usually to achieve the shortest
path possible and the heuristic function is set up for that purpose. For CPP,
the cost function can be changed to maximize coverage instead. Le et al. [51]
use this technique in a grid-based, offline approach where they try to minimise
the amount of cells that get revisited. They use critical way-points and A*
based zigzag motions.

Dogrue and Marques [52] use a heuristic function with the goal of min-
imising the number of rotations, similar to the wavefront planner mentioned
earlier . This can be useful, because rotations often consume more energy than
straight-line motions.

2.5.4 Spanning Tree Coverage

Spanning trees are applied in discrete environments. When they are used in a
coverage path planning application, it is referred to as spanning tree coverage
(STC), which can be used in an offline or online approach.

Gabriely and Rimon [53] show the various ways in which spanning trees
can be used to achieve coverage. They first show the offline case where the
environment is known in full prior to the planning phase. The environment is
discretised into a grid of large cells which each consist of four smaller cells. The
robots traverse the smaller cells, but the large cell centres are used as the nodes
for a spanning tree formulation. The spanning tree can then be circumnavi-
gated to achieve approximately complete coverage without any backtracking.
A minimum spanning tree (MST) algorithm, called Prim’s algorithm, is used
to create the spanning tree. This minimises the total weight of the tree. The
weights can be used to favour a certain coordinate direction for searching.

An online STC technique is also shown, where the only prior knowledge
of the environment is that the obstacles are static. The algorithm grows the
spanning tree similar to with the offline approach, but does so incrementally
as more knowledge of the environment becomes available.

Because of the circumnavigation method, the coverage paths generated in
the offline case are closed-loop paths. In the online case, the map is generally
growing outwards from the starting location, generally resulting in a coverage
path with one or several spiral shaped sections.

2.5.5 Artificial Intelligence Methods

Juan et al. [25] compared several AI techniques for CPP. Four methods were
compared, including one that employs a GA. The four methods are the La
Palma attraction, La Palma fuzzy logic, adaptive-network-based fuzzy inter-
ference system (ANFIS) and particle swarm optimization (PSO) approaches.

All of the methods were implemented in a discrete, gird-based environ-
ment. A risk/occupancy map is given as an input to each environment. This

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 26

map assigns a priority to the cells that encourages covering of certain areas
first.

The performance of these algorithms was evaluated in the context of SAR,
and it was found that the ANFIS approach gives the best performance for this
application. If there is little variation in priorities between cells, the attraction
method works well. If a big section of the environment has high priority values,
the fuzzy logic approach was found to work well. In general the PSO technique
did not perform well.

2.6 Multiple Robot Coverage Path Planning
This section discusses coverage path planning (CPP) when multiple robots are
used. Offline techniques are discussed for the distributed case in Section 2.6.1
and for the non-distributed case in Section 2.6.2. Online techniques are briefly
discussed in Section 2.6.3.

2.6.1 Distributed, Offline Methods

A well established offline CPP approach involves the divide areas technique.
This partitions an area into regions for individual robots to cover. Each robot
should then be able to cover its area using a single robot coverage path planning
technique.

A number of different area division approaches are discussed in this sec-
tion. The methods used to perform coverage of the sub-regions are mentioned
in each section seen as these are important in generating the final coverage
plan. Figures are shown in these sections, all of them taken from the research
papers discussed in the respective sections. These are to illustrate the different
divisions that are achieved by each algorithm.

2.6.1.1 Hexagonal Segmentation

Azpúrua et al. [2] formulated a distributed MCPP approach use with geo-
physical surveys with UAVs. Their implementation uses regular hexagons to
segment the area of interest. The hexagonal cells are equal in size and are each
assigned to a single robot for searching.

Hexagons are clustered using the K-means algorithm in order to assign
them to robots. This ensures a similar number of cells are assigned to each
robot. The seeds are synonymous with the robots, therefore once the seed
locations are finalized for even cell distribution, the robot initial positions
are established. The resulting sub-regions, each consisting of a number of
hexagonal cells, are contiguous. All the hexagonal cells assigned to one robot
can then be covered using back-and-forth motions in a similar way to exact
single robot coverage methods.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 27

Having similar sized sub-regions means that each robot can execute its
coverage path in a similar amount of time, which is an advantage when opti-
mizing for fuel usage and mission completion time. However, this algorithm
does not allow for random robot initial positions, which can be a disadvantage.

Static obstacles are considered in this implementation, but the smallest
obstacle resolution is the size of a hexagon which may not be very represen-
tative of the environment. Coverage is however resolution complete, with the
hexagon size representing the resolution.

The application was tested in a real-world environment using UAVs with
a limited flight time. The paths were found to be feasible, even with the
presence of sensor noise and environmental factors.

Figure 2.2, taken directly from their paper, illustrates the back-and-forth
manoeuvres used to cover the hexagonal partitions. Black hexagons represent
no fly zones and/or static obstacles. The dark red, green and blue regions
represent the sub-regions as they are assigned to the respective robots for
coverage.

Figure 2.2: Simulation showing coverage of hexagonal partitions with back-
and-forth motions using three robots. [2]

2.6.1.2 Voronoi Partitioning

Nandakumar and Rao [54] show a method of area division to divide a polygon
into a number of equal area polygons. Another relevant method that also
stems from the field of mathematics, is the Voronoi partition. This assigns
regions within an area to seeds based on distance. The idea is that a region
assigned to a seed represents all the points where the distance to that seed is
shorter than to any other seed.

If the Voronoi partition is applied to the MCPP problem, the seeds become
synonymous with robots. This partition works for any number of robots at
any starting positions, but unless they are evenly spaced, the areas will not
have equal sizes. Distances in these scenarios are usually Euclidean and the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 28

boundaries between areas represent the position where the distances from two
seeds are equal.

Nair and Guruprasad published an article in 2020 [3] that implements
MCPP using Voronoi partitions in discrete space with static obstacles. They
use a grid-based representation of the area and compare several different
methods. They investigate geodesic-Manhattan-, Manhattan-, geodesic- and
Euclidean-distance-based Voronoi partitions.

The Euclidean-based technique results in what the authors term "non-
contiguous sub-regions". This means that cells that are part of a sub-region
are not accessible by the robot assigned to them, due to obstacles within that
sub-region. They solve this problem by using geodesic distances. This uses
Euclidean measurements, but instead of a straight line distance between two
cells, it calculates the distance using a collision free path between the two cells.

Another problem arises, due to their use of discrete space. When using
Euclidean distances, some cells were partially in two sub-regions instead of
fully in one or the other. Their solution to this is to use Manhattan distances.
Ultimately they make use of geodesic-Manhattan-based distances to generate
the partition. And thus they coined the term geodesic-manhattan voronoi-
partition-based coverage (GM-VPC)).

(a) Euclidean (b) Geodesic-Manhattan

Figure 2.3: Illustrations showing results for the Voronoi partitioning scheme
for two different distance measures. [3]

Figure 2.3 shows figures from the article that show the result of an area
division using different distance measures with a Voronoi partition. In both
figures, the black blocks represent obstacles, the round dots are the robot start-
ing positions and the black lines over the grid represent the Voronoi partition
boundaries. In Figure 2.3a, the grey blocks are areas that would not be cov-
ered. This is clearly remedied using the GM-VPC technique shown in Figure
2.3b.

They tested these partitions in simulations with exact and an approxi-
mate individual area search techniques. They implemented a boustrophedon

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 29

coverage plan for the exact solution and a spanning tree for the approximate
version. Both performed better when using geodesic-Manhattan distances. [3]

2.6.1.3 Negotiation Protocol

A negotiation or bargaining protocol refers to a process involving task parti-
tioning. In the context of area division for CPP, the task represents the area
to be divided.

Rossi et al. [4] presents a negotiation model using Rubinstein’s alternate-
offers protocol, for the purpose of area division. Barrientos et al. [49] furthered
this implementation by introducing a wavefront planner for the individual
area coverage technique. A series of field tests were also done to evaluate the
system’s performance in the context of precision agriculture.

The focus of this implementation was to develop a distributed algorithm
capable of considering robot capabilities. This means that the robots would
not have to be homogeneous and can have different flight-time capabilities,
manoeuvrability, on-board equipment and so forth.

They implemented their algorithm and found that it can achieve near
optimum results. It tries to maximise the size of each robot’s subdivision of
the area (based on its capabilities), while also minimising sub-area overlap.
The algorithm also works to avoid static obstacles or no fly zones in the area.
Figure 2.4 shows an example of an area division achieved using this method.
The area is divided into a red and a green region for two different robots. The
blue region represents a no-fly zone.

Figure 2.4: Illustration of the resulting area partition using the negotiation
protocol. This example is for two robots and includes a no fly zone. [4]

After area division, the environment is discretised into cells based on the
onboard camera field of view (FOV), so that the wavefront planner can be

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 30

used to cover these cells. In order for the polygons generated by the negotia-
tion protocol to work effectively, they used a method called Bresenham’s line
algorithm to approximate the lines that divide the areas in discrete space, so
that they pass through the cell centres.

The area division achieved sometimes produces non-convex shapes, which
the wavefront planner can handle effectively. Their implementation also min-
imizes energy consumption by minimizing the number of rotations and not
allowing backtracking. In addition, they have the ability to specify the initial
take-off positions of the robots. Distance from the specified take-off point to
the starting point for sub-area coverage are considered in the sub-task negotia-
tions. It is also mentioned that they are able to specify robot landing positions
pre-emptively.

One visible drawback in their implementation is that the coverage appears
incomplete. The boundaries between areas pass through way-points (cell cen-
troids), that effectively get excluded from the coverage algorithm and are not
covered.

2.6.1.4 Multi-Robot Spanning Tree Coverage

Multi-robot spanning tree coverage (MSTC) is a variant of single robot STC.
Hazon and Kaminka [5] published an implementation of MSTC in a 2005 paper.
Two variations of MSTC were given; one that allows for backtracking and one
that does not. Both variations still utilize a single spanning tree, but simply
circumnavigate the tree with multiple robots instead of a single one.

They placed emphasis on robustness and efficiency, in addition to com-
pleteness. They demonstrate an algorithm that segments the path around a
spanning tree to evenly distribute it among robots. Their method becomes in-
efficient, however, when robots are clustered closely together. This is because
a robot simply navigates the path until it reaches the initial position of the
next robot on the path.

Figure 2.5 shows the paths that are generated when the robots are evenly
distributed along the path that circumnavigates the tree. Blue dots represent
the robot initial positions and the spanning tree is shown in red. The second
method they suggest remedies this somewhat. It allows for backtracking and
improves the efficiency.

The ideal situation is that all the robots have near equal path lengths,
provided they are homogeneous robots. This is not guaranteed with this al-
gorithm when the robots have random starting positions, but allowing for
backtracking can improve the results and allow the coverage to be completed
in a shorter amount of time.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 31

Figure 2.5: MSTC algorithm showing the paths for three robots on an envi-
ronment grid. [5]

2.6.1.5 DARP

Kapoutsis et al. [6] formulated a unique distributed technique called the di-
vide areas algorithm for optimal multi-robot coverage path planning (DARP).
This algorithm divides an environment amongst multiple robots based on their
starting locations within a grid-based environment. It makes use of an iterative
approach that causes the sub-regions to tend to an optimal division over time.
The environment includes static obstacles, but obstacles that form enclosed,
unreachable spaces are not permitted.

The algorithm starts by assigning each cell to a UAV based on which UAV
is the closest to it. The algorithm then adjusts cell distance values iteratively
to change cell assignments and formulate a solution. An optimal solution is
achieved if all cells are assigned to only one robot, all the sub-regions are the
same size, the sub-regions are contiguous, and the UAV that is assigned to a
specific region has its initial position in that region.

Equal-sized sub-regions means that the time to cover each sub-region
would be similar, provided the UAVs are homogeneous. If the regions are
contiguous and each contain one UAV initial position, it means the regions
can be covered independently, without the UAVs needing to traverse each
other’s regions. This means that collisions between UAVs are eliminated.

The results of the area subdivision achieved by DARP can be seen in
Figure 2.6, which is a graphic taken directly from their paper.

A spanning tree coverage (STC) method was used to cover the individual
sub-regions, resulting in complete coverage at the grid resolution. The per-
formance of the algorithm was measured against the MSTC and multi-robot
forest coverage (MFC) methods. A comparison is made between the algorithms
to demonstrate which performs best for creating paths of equal length for each

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 32

Figure 2.6: Illustration of the area division achieved on a grid with static
obstacles, using DARP. [6]

robot. DARP was shown to out perform both other algorithms, with at most
a discrepancy of four cells between the longest and shortest robot coverage
paths.

Several other authors have made use of this algorithm to date. Gao et
al. [55] applied ant colony optimization to the DARP and STC combination
to reduce the number of rotations, thereby reducing overall energy consumed
during flight. Baras et al. [56] addressed the unreachable region problem by
allowing for vertical manoeuvres to avoid obstacles. Generally, their algorithm
operates the same as the original DARP algorithm, but adds a second phase
where unconnected regions are handled using three-dimensional manoeuvres.

2.6.2 Non-Distributed, Offline Methods

This section covers three methods that cannot be classified as distributed be-
cause the planned coverage paths may cross. The area is not divided into
sub-regions as part of the planning process. Different techniques are covered
in each subsection. Interesting to note is that these methods generally adapt
existing single robot coverage techniques.

2.6.2.1 MCPP Using MFC

Zeng et al. [57] published the multi-robot forest coverage (MFC) as a multiple
robot coverage technique in 2005. The intent was to improve upon the multi-
robot spanning tree coverage (MSTC) method. Their idea was to construct
a tree with the consideration that it will be divided afterwards, unlike what
MSTC does. It allows for robot path overlap, which means there is redundant
coverage and collision avoidance amongst robots would need to be considered.
However it can handle unique scenarios, where backtracking is unavoidable,
quite well.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 33

Even et al. [58] published an article on the approximation algorithm that
was used for the development of MFC, which uses the rooted tree cover scenario
in particular. For MFC, the roots represent the robot initial positions and then
a tree is generated for each robot. An objective to minimize the weight of the
maximum weight tree is also applied. These trees are each circumnavigated
by their robot (root) to cover the area.

Based on simulations with MSTC and MFC, they found that MFC gen-
erated closer to optimum results and generally achieved coverage in a shorter
amount of time. Because there is path overlap in certain scenarios, MFC is not
a truly distributed method. Results generated by this algorithm can however
resemble a distributed algorithm quite closely, depending on the environment.

2.6.2.2 MCPP Using Artificial Intelligence

Juan et al. [25] used artificial intelligence (AI) methods for the single robot
CPP case, but also extended their application to the multiple robot CPP
case. They investigate the distributed case, however they do not present their
method for dividing the environment into sub-regions. They also investigate
the free formation case for the two and three UAV scenario, which will be the
main discussion of this section.

Free formation CPP means that the paths for multiple UAVs in an en-
vironment are planned simultaneously, with knowledge of which cells have
already been visited by the robots. This means that the robot paths will
potentially cross in the environment, meaning that collision avoidance would
need to be considered for real-world implementation. They do not address
collision avoidance in their article though, and simply allow the paths to cross.

A risk/occupancy grid is applied to the environment once a priori. This
encourages the algorithms to visit certain regions of the map first, by assigning
priorities to the cells. The algorithm is designed to be used in a SAR scenario,
where this would be useful.

Three AI methods were investigated for free formation MCPP in a grid-
based environment with priority assignments. The La Palma attraction method
was found to produce the shortest paths for environments with fairly homo-
geneous priority assignments. The adaptive-network-based fuzzy interference
system (ANFIS) method comes in close second, and the fuzzy logic approach
produces significantly longer paths. The fuzzy logic approach tends to perform
well in regions of the environment with relative high priority values. Overall,
the ANFIS method had the best performance over a range of priority grids.

2.6.2.3 MCPP Using Linear Programming

Linear programming can be used to optimize linear problems with a number of
variables, by trying to minimise or maximise some cost. They are also usually
subject to several constraints.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 34

Avellar et al. [59] adapted this methodology to an application with mul-
tiple UAVs for CPP. They designed their optimization problem with the main
objective of minimising coverage time. Their algorithm does this by minimis-
ing the length of the longest UAV flight path.

One contribution they provide is the consideration of setup time. By
their definition, setup time refers to the time taken by an operator to prepare
a UAV for flight. They specifically consider scenarios where setup times can
accumulate due to there being less operators than UAVs, which leads to an
accumulation of setup time for some UAVs.

Several constraints are applied to the problem. They limit the flight times
of UAVs based on battery power, set a constraint so that every node can be
visited by only one UAV and limit the paths to closed-loop paths.

To ensure complete coverage they develop a constraint that ensures all
nodes in one row are visited by one UAV. They also have two optional con-
straints to avoid diagonal lines that cross the environment. Obstacles are not
considered in their implementation, nor are UAV collisions.

2.6.3 Online Methods

Online path planning generally refers to scenarios where a plan is generated
while information about the environment is still being collected. This is of-
ten applicable in highly dynamic environments, where obstacle positions are
difficult (or costly) to predict a priori. This section discussed Online MCPP
briefly.

Some of the single robot coverage algorithms have online versions. Viet
et al. [50] used boustrophedon-A*, where the boustrophedon regions of an
environment are constructed incrementally and A* is used to move from one
region to the next for coverage. Gabriely and Rimon [53] formulated an on-
line spanning tree coverage (STC) algorithm, by growing the spanning tree
incrementally as the environment becomes known.

Sampling-based methods are well suited to online approaches. Single
query approaches like RRT avoid explicit representation of the environment
and can therefore be used in dynamic environments more easily [34].

Often algorithms also use a hybrid of online and offline, where some infor-
mation about the environment is known a priori, but data is still collected to
update aspects of the environment incrementally. Often, because of the online
element in the algorithm, it is still considered as online overall. [34]

The paths of the UAVs are generally created dynamically for online path
planning, and because all the environment information cannot be known a
priori, it is not generally possible to guarantee complete coverage. [34]

When it comes to online CPP with multiple robots, there are a few ex-
amples. Luo and Yang [60] published an article showing CPP for multiple
cleaning robots . This application implements a neural network to plan paths
for multiple robots in a dynamic environment. No learning procedures were

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 35

executed for this algorithm. The robots treat each other as dynamic obstacles
within an environment and are at all times aware of the other robot positions
relative to themselves. The goal is also to minimise rotations and avoid colli-
sions with other obstacles and robots in the environment, while also covering
the whole area.

They show that the algorithm works effectively in a warehouse environ-
ment with ground vehicles, and gives real-time performance. The robots cover
the entire area while avoiding collisions with each other and obstacles, and
without ever crossing paths or backtracking.

Waharte and Trigoni [29] developed an online application with multiple
UAVs, intended for search and rescue operations. Their algorithm iteratively
updates an occupancy grid of the environment. This represents the likelihood
of the target being in any given grid cell, based on the information collected.
This information is used by each UAV to choose its next action using a steepest
gradient method. This approach can arguable be considered to favour target
finding over achieving coverage, but the result is similar to that of a coverage
algorithm.

Hayat et al. [32] used a GA to optimize coverage and communication
with multiple UAV in a SAR operation. Connectivity to the ground station
can be prioritised to ensure new information about the target can reach the
SAR teams efficiently. This information can be used for dynamic re-planning
of UAV paths. A multi-objective path planning (MOPP) algorithm was used
to favour connectivity and coverage in various degrees. For a smaller group
of UAVs, favouring connectivity was found to be better whereas favouring
coverage gave better results for a larger group.

2.7 Key Findings and Design Decisions
This section summarises the key findings from the literature, as well as the
research decisions that were made based on the knowledge gained.

Based on the literature it was concluded that UAVs can provide valuable
support for SAR operations. An aerial search using UAVs is, however, not well
suited to any type of environment. SAR operations are divided into a number
of categories based on the type of environment. An aerial UAVs search is well
suited to ground, mountain or maritime SAR. It is however not appropriate
for cave SAR and is not well suited to combat and urban SAR.

During the planning stage of a SAR operation, probable survivor locations
are identified and the available resources are allocated to various search areas.
UAVs may be used as part of a larger SAR operation. A search coordination
team may demarcate a sub-area of a larger search region for searching by
UAVs.

If this UAV search is automated, it would mean a search can be conducted
without a significant increase in human resources required. One area can

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 36

also be covered faster by multiple UAVs when compared to a single UAV.
Using multiple UAVs does however mean that consideration must be made for
collisions between UAVs.

When modelling a multiple UAV automated SAR operation as a cover-
age path planning (CPP) problem, one has the option of distributed or non-
distributed solutions. Distributed CPP intrinsically provides collision avoid-
ance because individual UAVs search non-overlapping sub-regions of the en-
vironment independently of one another. Non-distributed solutions allow for
paths to cross which means that collision avoidance would need to be consid-
ered.

Online path planning provides the flexibility of adapting to dynamic envi-
ronments that cannot be known in full prior to a search. Offline path planning
is however suitable for environments that can be known a priori.

The goal of this research is to develop an automated SAR approach that
uses multiple UAVs to cooperatively search a demarcated area. An aerial
search method is considered most appropriate and it will only be employed for
ground, mountainous and maritime environments.

The automated search will be modelled as a CPP problem so that the
UAVs perform a systematic search of their allocated search area. A distributed
method will be used to eliminate collisions between UAVs. The environment
is typically known prior to a SAR operation, so the problem is modelled as an
offline one with static obstacles.

Since SAR operations typically involve large areas, fixed-wing UAVs are
assumed to be more appropriate for conduction the search. They tend to have
longer endurance than rotary-wing alternatives.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Conceptualization and Modelling

The main goal of this chapter is to outline the assumptions made for the
purpose of this project, and what limitations they impose on the application.
A general mathematical model of each component in the system is established
to provide a model of the overall problem. Section 3.1 illustrates the general
SAR problem, followed by Section 3.2 which describes the environment and
how it is modelled. Sections 3.3 through 3.7 describe and model the elements
within the environment, including obstacles, UAVs, and the target that needs
to be found.

3.1 The SAR Problem
Aerial support in a SAR operation can be very useful. Historically, manned
aircraft like helicopters have been used to do so. However, these manned
aircraft have limited flying times and their flight paths are not necessarily
optimal for detecting a target in a SAR situation.

There has been some use of robots, including UAVs, to assist in SAR.
Section 2.2 detailed some of these uses. UAVs bring an exciting opportunity
to have vehicles supporting an operation with autonomous flight paths. Search
paths can be optimized to reduce the time to find survivors.

Moreover, no-one is required to fly the vehicle, not only reducing the
danger to a potential pilot, but also allowing the manpower to be focused
on locating and extracting survivors. Often certain areas may be difficult to
reach and require specialised teams to search these regions for survivors [19].
Unmanned vehicles may be useful to search these areas, without endangering
a search team. A combination of manned an unmanned vehicles may also be
beneficial to find and aid survivors faster in a SAR operation.

DroneSAR, which was discussed in Section 2.2.2.1, proved that the use of
UAVs can significantly speed up a SAR operation and assist in target finding.
They managed to find a target in a one square kilometre area within 20 minutes

37

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 38

when assisting with one autonomous UAV. In contrast, a ground team of five
people took about two hours to achieve the same goal without assistance [1].

One can deduce that using multiple UAVs to assist a SAR operation would
improve the time to find survivors even more. If they search in tandem, larger
areas can be searched in shorter amounts of time. Using a multiple UAV,
systematic search of an area as a starting point, one can formulate the basis
for a SAR problem.

In Figure 3.1 one can see all the basic components of a UAV-assisted SAR
operation illustrated and labelled.

Ground Station UAVs

Environment Boundary

Target

Obstacles

Figure 3.1: Diagram showing the components of an automated Search and
Rescue problem with multiple UAVs.

The first noticeable component is the search region boundary. This repre-
sents the area that is demarcated by a rescue team for searching. Within this
region is the target that needs to be located. This is marked by an "X" on the
diagram, and represents a survivor or group of survivors that need rescuing.

A distinction should be made between the entire area to be searched, and
the area that is to be systematically searched by the UAVs. In Section 2.1.2,
the different stages of SAR are described. The stage in which the entire search
area is specified and a search plan is formulated is the planning phase [19].

It is assumed that this would be the phase wherein it would be decided
whether to use a systematic UAV search as a means to assist a SAR operation.
Systematic searches of the entire search area are uncommon in SAR, because
the areas that need to be searched are often large and this would be impracti-
cal. They often choose a probabilistic approach, starting in regions where the
survivors are more likely to be [19].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 39

If a systematic search is deemed impractical over the entire area, UAVs
may still be useful. Instead of using UAVs to search the whole area, they may
be used to search one or multiple demarcated sub-regions within the area, as
part of a larger search plan. The actual search would then be conducted in
the operations phase [19].

It is important to note is that a search may be abandoned if it is con-
sidered too dangerous for a search team [19]. Using automated UAVs instead
of manned aircraft or search teams means that a search could continue even
when it is too risky for search personnel to conduct.

In most rescue scenarios, the search team can make an educated guess
as to where the target may be. The UAVs therefore do not know the exact
location of the target prior to flight, and are in fact trying to pinpoint their
location. The UAVs are also shown on the diagram as they are leaving the
ground station.

It is intuitive to have a base of operations for UAVs during a SAR oper-
ation, seeing as this would be where they take off and land, as well as where
they refuel if necessary. This base station would also most likely be from where
the search team receives any data collected by the UAVs to assist in the SAR
operation.

Static obstacles within the environment are also shown. These are repre-
sentative of any region wherein the UAVs must not fly. These could be physical
obstructions, such as power lines or cliffs, or no-fly zones such as populated
areas or restricted airspace. The UAVs must fly throughout the unobstructed
air space until the target is found.

3.2 Search Environment
SAR scenarios can be classified according to the type of terrain the search
is conducted in. In general, SAR is divided into ground, urban, mountain,
cave, combat, or maritime rescue [21]. Section 2.1.3 discussed the distinctions
between these different kinds of SAR operations.

The extent of assistance that automated UAVs can provide would depend
on the type of rescue. In wide open plains or oceans with few obstructions,
they would have a clear view of the search area from any visual or thermal
camera. In densely forested areas, visibility may be limited due to vegetation,
and aerial support would be unhelpful.

Unfavourable weather conditions also challenge visibility and flight capa-
bility. UAVs are generally designed to fly in certain wind conditions. High
wind speeds could make it impossible to fly. Snow, rain, fog, lightning or dust
may also impair the flying capabilities of a UAV by damaging components
or making sensor readings inaccurate. High humidity in particular has been
known to impair optical sensors. [61]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 40

Aside from impairing components, these elements also reduce visibility
and make it more challenging for cameras on UAVs to detect targets. At
night UAVs may have to rely fully on thermal images, since the image on a
conventional camera would by mostly dark.

UAVs would also face challenges in extreme temperatures. Areas with
fires would have to be considered no-fly zones for UAVs. Areas where temper-
atures are either too high or too low for the components would also need to
be excluded from the search region.

As mentioned in Section 2.1.3, low density air in mountainous regions can
also be a hazard. In general this means that fixed-wing UAVs would be better
suited for this kind of search. It should be noted that mountain rescue search
teams often work in difficult terrain and need specialised skills and equipment
[21]. Using an aerial search could reduce the risk to these kinds of teams.

Cave searches are also generally grouped with mountain searches. How-
ever, a high-flying, systematic search with UAVs would not be functional in
caves. For this reason, caves are not considered for this research. Combat
rescue is also not addressed in this project, seeing as the circumstances of a
battlefield are volatile and unpredictable compared to the other scenarios, and
would require unique consideration.

Natural obstructions can become obstacles to UAVs depending on the
altitude at which they fly. These could be trees, rocky outcrops, or any other
natural elements tall enough to get in their way. Man-made obstacles like
telephone towers, power lines, towers and bridges could also be obstacles during
flight [19]. Man-made structures and debris can also cause visibility challenges
for an aerial search, if survivors are in or under structures.

Urban search and rescue, where some kind of disaster has occurred, gener-
ally involves people trapped in rubble of some sort. A systematic aerial search
may therefore not be quite as useful for locating survivors. However, they have
been used in the past for large scale disasters like Hurricane Katrina. This was
discussed in Section 2.2.1.

Flying over populated regions poses unique challenges. It would be more
useful if this were considered independently, with UAVs serving in a role other
than target location, such as surveying. For this reason, urban SAR is not
considered specifically in this project.

There may also be obstacles in the form of no-fly zones. These could be
restricted airspace, populated areas, private land or protected wildlife areas
wherein UAVs are not permitted to fly.

In general UAVs suffer from similar limitations that manned aircraft
would, and it is assumed that they would be used with careful considera-
tion by a search team. The advantage is that if a UAV flies in dangerous
conditions, no pilot is placed in danger and the worst case scenario involves a
crashed UAV.

The area wherein the UAVs are expected to assist the search operation
is assumed to be a bounded geographical region. In the larger search plan,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 41

the region that needs to be systematically searched by UAVs needs to be
demarcated. The environment is represented in two dimensions, seeing as the
UAVs are expected to fly at a constant altitude. This will be discussed further
in Section 3.4.

The area within the boundary of the demarcated region is referred to as
the environment (E) for the search. This environment should be fully mapped
prior to the systematic search that needs to be executed by the UAVs. An
example of a map for an environment that has been demarcated for search is
shown in Figure 3.1.

The environment can be seen as a set of continuous points within a certain
coordinate bounds. It should be noted that any point within this map should
be reachable by a UAV from any other point in the map, not including points
where there are obstacles. There should be no enclosed regions. Chapter 5 will
discuss, in more detail, how an environment can be modelled, for the purposes
of this project, using tools such as digital elevation models (DEMs).

The UAVs and obstacles are located within this environment. It is pos-
sible that the survivors are located outside of the region being searched, but
this does not drastically alter the implementation. The UAVs would simply
complete their search without locating the target of the larger search.

3.3 Environment Obstacles
The environment is assumed to be static, and dynamic obstacles are not mod-
elled explicitly. Dynamic obstacles at higher altitudes are unlikely. In regu-
lated airspace, flight plans and collision avoidance by other aircraft means that
the UAVs will most likely not have to avoid other aircraft. The assumption
of a static environment that can be mapped in full prior to the search is a
limitation of this implementation, but at higher altitudes it is considered to
be a valid one.

A short-term, online collision avoidance system, similar to the one devel-
oped by Meiring et al. [16], is assumed to be onboard the UAV. This system
would help UAVs avoid collisions with dynamic obstacles, such as birds, that
may be present in the environment. This onboard collision avoidance would
be designed to adhere as closely as possible to the original path, thereby not
having a noticeable effect on the flight time and energy consumption of the
UAVs overall.

Different types of obstacles are discussed in Section 3.2, since they tend to
be environment specific. Obstacles can include man-made structures, natural
obstacles and no-fly zones. These no-fly zones could be due to treacherous
weather, inaccessible terrain or restricted airspace. No-fly zones could also
simply be areas that have already been searched. A search team may also
exclude areas that they are confident the survivors are not occupying, or areas
that are being searched using some other strategy instead of UAVs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 42

The set of points in an environment that are determined to be obsta-
cles (O) is a subset of the environment space. The search region (S), that
needs to be systematically searched by the UAVs, is therefore the environment
excluding this set of obstacles. This is mathematically expressed as

O ⊂ E (3.1)

S = E \ O (3.2)

where ⊂ is the subset operator, and \ is the set subtraction operator.

3.4 UAV Model
In order to simplify the systematic search, the UAVs are assumed to all fly
at the same constant altitude. They are also assumed to be homogeneous, in
that they are all the same model of UAV and have the same limitations. This
makes the environment planar, or two-dimensional.

The starting point for a UAV for the systematic search would be a point
within this planar environment. This starting point is referred to as the initial
position of a UAV. This is defined as the position of the UAV after it has
already reached the required altitude and ready to start the systematic search.
Two manoeuvres are required to reach this initial position from the ground
station. The first is referred to as take-off, which is the manoeuvre required
to reach the search altitude. The second is referred to as departure, which is
the manoeuvre necessary to reach the initial position of the UAV.

The initial state of the UAV has a heading (ψr), as well as a position
represented by a two-dimensional coordinate. The UAV is represented by
a point mass, therefore the two-dimensional coordinate is indicative of the
position of the UAV’s centre of mass. The heading can also be described as
the yaw of an aircraft. The aircraft is expected to have an associated roll angle
(φr), but this is excluded from the state since it would not affect the planar
heading. The pitch angle (θr) is also excluded, since it is assumed that there
are no altitude changes during the search.

The initial state of a UAV is expressed as

XI = (x0, y0, ψ0) (3.3)

where XI is the initial state of the UAV, x0 and y0 are the two-dimensional
coordinate describing the position of the UAV, and ψr is the heading of the
UAV at its initial position. The position of the UAV is constrained by

(x0, y0) ∈ (S) (3.4)

where S is the entire search area.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 43

From the initial states, a search path must be generated for each UAV. The
final state of the UAV is then considered to be the last point in this path, with
the associated heading of the UAV at that point.

After reaching this final state, an approach and landing manoeuvre would
get the UAV back to the ground station. Landing refers to the altitude change
manoeuvre to get from the search altitude back to the ground. Approach refers
to any manoeuvre that would be required after the final state of the UAV and
prior to the landing manoeuvre.

The search path is a set of discrete waypoints within the planar environ-
ment. The planned search path of a UAV is represented by

XP = ((x0, y0), ..., (xk, yk), ..., (xm, ym)) ∀k ∈ 0,m (3.5)

where XP is the path of the UAV. In this path, (x0, y0) is the initial position
of the UAV, (xm, ym) is the final position of the UAV, and (xk, yk) represents
intermediate waypoint positions which are constrained by

(xk, yk) ∈ (S) ∀k ∈ 0,m (3.6)

where S is the entire search area.
The UAVs are expected to execute a constant speed search. For this

reason, speed is not included in describing the state of a UAV. There may be
slight fluctuations in speed for a real-world application. The time scales over
which the UAVs accelerate and decelerate are considered to be much shorter
that the time scales between waypoints. Therefore, acceleration does not need
to be modelled.

The constant speed assumption ensures that when the UAVs have equal
length paths, they will also have paths that take the same amount of time
to complete. This makes optimizing the search for multiple UAVs easier, and
aids in the refuelling calculations. Maintaining constant speed also generally
consumes less energy than manoeuvres which require acceleration and decel-
eration.

Constant speed also eliminates UAV manoeuvres that take time to exe-
cute. A multi-rotor, for example, can make sharp turns. It does however need
to slow down to execute these manoeuvres. It can also execute a hover, but
both these manoeuvres would be excluded from a constant speed implementa-
tion. This is advantageous because SAR is a time sensitive application.

A UAV is expected to be able to execute a semi-circular or straight-line
manoeuvre, or a combination of the two, when moving between waypoints.
When executing semi-circular manoeuvres, there is a minimum turning radius
for a constant speed aircraft, which is described as

rmin =
V 2
f

g · tan (φmax)
(3.7)

where Vf is the constant forward speed of the UAV, φmax is the maximum
bank angle of the UAV, and rmin is the minimum turning radius of the UAV.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 44

Once the continuous paths of each UAV are established for the search,
the path lengths can be calculated. The path length is the sum of the lengths
of all the individual manoeuvres required to make up the path and can be
expressed as

Pi =
m−1∑
k=0

(`k) ∀i ∈ 1,, nr (3.8)

where Pi is the total path length for the ith UAV, `i is the length of the kth
path segment, and m is the number of path segments. Each path segment can
be viewed as a UAV manoeuvre.

The trajectory planning will be discussed in detail throughout this project.
However, it is assumed that the UAVs have onboard guidance controllers that
control the UAVs to follow the planned paths. The continuous paths are
converted into a discrete set of waypoints that serve as an input vector to the
guidance controller. For the purpose of this project it is assumed that the
UAVs can follow their planned paths exactly.

The amount of fuel a UAV can carry constrains the time it can fly. Since
the UAVs are homogeneous, they all have the same endurance limitation. In
this project, the energy constraint is represented as a predicted flight time
(Tp). The search path length for each UAV would be limited according to

Pi ≤ TpVf ∀i ∈ 1,, nr (3.9)

where Pi is the search path length of the ith UAV, Vf is the forward speed for
the UAV, and Tp is the maximum predicted flight time of the UAV. If energy
consumed during take-off, landing, departure and approach are accounted for
the equation becomes

Pi ≤ (Tp − (TT + TD + TA + TL))Vf ∀i ∈ 1,, nr (3.10)

where TT , TD, TA, and TL are the take-off time, departure time, approach time,
and landing time, respectively. These are subtracted from the total predicted
flight time to get a predicted flight time for the search paths in particular.

These equations assume that all manoeuvres consume energy at the same
rate. A safety factor can be applied to semi-circular manoeuvre and other
relevant manoeuvres to account for higher energy consumption. This will be
addressed later in the project in Section 7.4.3.

When the take-off and landing are modelled explicitly, it is assumed that
take off occurs from a central location, or ground station. This ground station
is assumed to be chosen by the search team, and is expected to have a single
location from which UAVs can take off and land. It is assumed that the ground
station location is chosen as a clearing where the UAVs will not experience any
collisions during take-off and landing.

It should be noted that a constant climb (Vc) and sink (Vs) rate are
assumed for a UAV during take-off and landing. This eases the time calculation

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 45

for these manoeuvres. It is also assumed that a UAV starts its departure and
ends its approach in the centre of the ground station. The headings for the
end of take-off and the start of landing are also the reverse of one another.

3.5 Collisions Model
There are two types of collisions that can occur for a UAV in the environment,
namely collisions with the environment, and collisions with one another. A
collision with the environment occurs if the UAV’s position intersects an ob-
stacle or no-fly zone, which includes leaving the boundary of the environment.
A collision between UAVs occurs when two UAVs occupy the same space at
the same time.

The assumption is made that the UAVs are homogeneous for a singular
implementation. They are all the same type of UAV, implying that they have
the same dynamic constraints and overall dimensions.

To model collisions, one starts by representing the position of the UAVs
at a particular instant in time. This is expressed by

Xi(t) = (xi, yi) ∈ S ∀i ∈ 1,, nr (3.11)

where Xi(t) is the position of the ith UAV at an instant in time, which is
expanded as a two-dimensional coordinate (xi, yi). S is portion of the environ-
ment that is free of obstacles, and represents the entire search area.

Because the UAV is represented as a point mass, some provision must be
made for the space it actually occupies in order to detect collisions. This can
be done using exclusion zones. In essence, the exclusion zone around a UAV
or obstacle should be such that if the point mass of another UAV enters that
zone, a collision is perceived to have occurred.

The exclusion zone around the UAV can be represented as a circular area
within the two-dimensional plane, with the point mass at its centre. The radius
of this zone would be double the largest dimension of the UAV, with respect
to the centre of mass. The exclusion zone can be described conservatively as

Re = 2R (3.12)

where R is the largest dimension of the UAV from its centre of mass, and (Re)
is the exclusion zone radius (Re). With this exclusion zone in mind, collisions
with a UAV at an instant in time can be expressed by√

(xj − xi)2 + (yj − yi)2 ≤ Re ∀i, j ∈ 1,, nr, i 6= j (3.13)

where the ith UAV is still represented as a point mass but the UAV with which
it may collide (the jth UAV) is represented with an exclusion zone of radius
Re. This zone will be equal for any UAV, due to the assumption that the
UAVs are homogeneous.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 46

For the boundary of the environment and the obstacles in the environ-
ment, it is easier to include the exclusion zone within their definition. The
obstacles are therefore increased in size by a width of Re and the boundary is
decreased in size by the same amount. Assuming this has already been done,
a collision of the ith UAV with the environment can simply be expressed as

(xi, yi) /∈ S ∀i ∈ 1,, nr (3.14)

where S is the entire search area and being outside of it would cause a collision
with obstacles in the environment or with the environment border. Provided
Equations 3.13 and 3.14 are not true at any time instant in the search, there
will be no collisions.

3.6 Target Model
In the context of SAR, a target is generally a survivor or group of survivors
that requires rescue. This may be anyone that is in some form of peril within
an environment, and require assistance. For this project, target and survivor
will be used interchangeably.

The target may not always by located within the area that is searched by
the UAVs, seeing as this search may be part of a larger search plan. For the
purposes of this project, it is assumed that the target is within the demarcated
area. The case where the target is not in the environment is not accounted for
because it would simply result in the UAVs completing their systematic search
of the area without locating the survivor(s).

The target is assumed to be static within the environment. This is a
valid assumption in the event that someone is trapped in difficult terrain or
is injured and cannot move, which is often the case in a rescue operation.
Survivors are also often advised to stay put when awaiting a search team.

Given the starting point of a static target within the environment, the
location of the survivor(s) can be represented using as

Xg = (xg, yg) ∈ S (3.15)

whereXg is the location of the target which is described by the two-dimensional
coordinate (xg, yg). The entire search area is represented as S. This location
would be a hidden goal for the UAVs.

The target is assumed to have a uniform chance of being at any point
within this searchable area, even though this region may be part of a larger,
probabilistic search plan. Its location is not known to the UAVs, but it is
assumed to be a constant for the duration of the search.

The target location is expected to be uncovered by the UAVs during the
search. Target detection will be discussed in more detail in Section 3.7. In
short, survivor/target detection should be guaranteed if the target is within

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 47

range of one of the UAV’s onboard sensors. In SAR, false detections (false
positives) are more favourable than failed detections [30]. It is assumed that
the survivor detection technique would be designed in this fashion and that
detection would be guaranteed when in range.

3.7 Target Detection Model
For the purpose of this project it is assumed that the UAVs have onboard
cameras. These could be thermal or visual cameras, or both. Historically,
these have been used in tandem for survivor/target detection using a UAV.
Section 2.2.2.4 discussed an implementation where a thermal camera was used
to find potential victims and a visual camera was used to confirm [30].

In general, the consensus for SAR is that a false positive detection is
acceptable, but a failed detection is not [30]. This is assumed to be the bias
of the algorithm that will be used, and it is therefore assumed that a target
will always be detected when in view. In this project a false positive is not
explicitly dealt with.

Target detection can be online or offline. The processing can be done
onboard the UAV, which may require more processing power, resulting in
heavier, more expensive equipment onboard. The processing can also be done
in post-processing at a ground station. This requires a stable communication
link. Real-time data transfer would be ideal. Section 2.2.2.5 discussed an
application where a stable communication link was one of the main goals.
It is also possible to implement a hybrid solution. For example, to account
for communication failures, UAVs could potentially store enough of the data
captured onboard to ensure that the data reaches the ground station once
communication is re-established.

Regardless of the survivor detection technique, it is assumed that the
target is static and will be detected when within the view of some visual or
thermal camera onboard the UAV. A dynamic target would also be detected
successfully, if the target is moving slow in relation to the camera FOV. It
is important to clarify what it means to be within view. For the case of an
onboard camera, this means that the target is detected the moment it enters
the field of view (FOV) of the camera. The camera FOV refers to the size of
the area on the ground that the camera observes.

The cameras are assumed to be downward facing, so as to enforce a con-
sistent FOV. The roll of the aircraft (φr) would have an impact on the angle
of a camera. However, it is not explicitly considered in this project. It is
assumed that there is a gimbal attached to the camera, with an associated
control system, that corrects for the roll to ensure the camera continually
points downward.

The constant altitude assumption mentioned in Section 3.4 is an advan-
tage when combined with the downward facing camera. It means that the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONCEPTUALIZATION AND MODELLING 48

camera FOV, will remain predictable. This, in turn, means that the max-
imum ground sampling distance (GSD) can be calculated easily, which is a
widely accepted measure of camera accuracy. In this scenario, the GSD is the
distance on the ground that corresponds to the width of one pixel in an image
[62].

The target has been described as a point in Section 3.6. The target has an
overall dimension, but for the purposes of this project, if the point is viewed,
it is assumed that the target has been detected. This means that the survivor
detection algorithm would need the capability to detect a human even when
only partially within the FOV.

Later in this project, the environment will be discretised into a grid using
the FOV. However, the grid cell size will be smaller than the actual FOV.
In this case the target is considered viewed when the UAV flies through the
cell in the grid that the target occupies. There is a chance that detection
happens earlier for a real-world application, but this simplification is made for
the purpose of simulation.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

System Overview

This chapter provides an overview of the system that was developed to co-
operatively search a designated area using multiple unmanned aerial vehicles
(UAVs) in support of search and rescue operations. The system is broken down
into its various components, and each component is briefly discussed. Section
4.1 summarises the components, how they were implemented, and how they
fit together. Sections 4.2 through 4.5 discuss the individual components of the
system.

4.1 System Summary and Scope
Figure 4.1 provides an overview of the system and its components. The grey
and blue regions highlight the components of the system that are the focus
of this project. The purpose of the system is to plan the paths for the UAVs
to completely cover the a designated area while avoiding collisions between
UAVs and with static terrain, and while obeying the dynamic constraints of
the vehicles.

The search region in a SAR operation would be chosen by a search and
rescue team. On the diagram, the region to be searched is referred to as
the environment. Note that this specifically refers to the area that would be
searched by the UAVs. It may however be part of a larger search plan.

The system execution consists of a pre-planning phase and a planning
phase. The pre-planning phase consists of environment modelling and envi-
ronment discretisation. The planning phase consists of the selection of the
UAV initial positions, the division of the area into sub-regions, the planning
of the individual UAV paths for each sub-region subject to the UAV dynamic
constraints, and the flight schedule generation.

The first step is to perform environment modelling of the demarcated
search area using the known environment map as an input. The environment
modelling includes obstacle identification. Once the environment has been

49

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SYSTEM OVERVIEW 50

D
is

cr
et

e
En

vi
ro

n
m

en
t

Divide Areas
Algorithm

Sub-region
Coverage Technique

Environment
Discretization

Flight Schedule
Generation

Planning Phase

UAV Dynamic
Constraints

Geospatial
Data

Final UAV
Paths

Reference
UAV Paths

Sensor Data

Refuelling
Protocol

Ground Station
Location

Pre-planning Phase

Sensing

D
is

cr
et

e
En

vi
ro

n
m

en
t

UAV Initial
Positions

Actual
UAV Paths

Environment
Map

Distributed
Regions

UAV Paths

Ground Station

Environment

UAVs with
Cameras

Environment
Modelling

Figure 4.1: Diagram showing an overview of the multi-robot SAR system.

modelled, a series of calculations are performed to choose a suitable search
altitude and forward speed for the UAVs.

With this information available, the next step is to discretise the envi-
ronment into a search grid. This is done using a mathematical process im-
plemented with Python. The discrete obstacles in the environment need to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SYSTEM OVERVIEW 51

be identified by the user, based on the actual continuous environment model.
The environment modelling and discretisation are collectively called the envi-
ronment representation.

Assuming there is a central deployment zone for the UAVs, the UAV initial
positions can be strategically placed. In this project, the central deployment
zone is called the ground station. It is where the UAVs take off and land. Its
location in the environment would be chosen by the search team.

If only a limited number of UAVs are available for searching an environ-
ment, refuelling or recharging may be necessary. As a whole, the ground station
location and the number of refuels necessary would determine the UAV initial
positions. The refuelling protocol, which was implemented using Python, will
be discussed further in Section 4.5.

The next step in the planning phase of the algorithm is the divide areas al-
gorithm and sub-region coverage technique. Together, these form a distributed
and offline coverage path planning algorithm. The algorithm that was used
to divide the environment into sub-regions is the divide areas algorithm for
optimal multi-robot coverage path planning (DARP). This algorithm seeks to
optimally divide an environment among several robots for coverage. The orig-
inal implementation was done in Java. This original code was used, with some
modifications. It was also adjusted to be run from the larger Python script.

The sub-region coverage technique was implemented as part of the larger
Python script. The method used is called spanning tree coverage (STC). A
bottleneck was found to occur during spanning tree generation, and so this
portion of the code, that implements Prim’s algorithm, was re-written in Java
to reduce the execution time. STC forms closed-loop paths to cover the in-
dividual sub-regions. Dynamic constraints were added to these paths to root
the problem in a real-world application.

According to Lavalle’s book about planning algorithms, everything out-
side of the shaded regions in the system diagram is called the execution phase
[34]. The real-world implementation and testing of these algorithms are be-
yond the scope of the current project. The system was tested in simulation,
and forms the foundation for future work on the practical implementation and
testing of the system using physical UAVs.

4.2 Environment Representation
This section describes the components in the grey region of Figure 4.1. This
portion of the diagram is called the pre-planning phase. It concerns the process
that is followed to convert a three-dimensional, continuous environment into a
two-dimensional discrete environment.

The details of this part of the system will be presented in Chapter 5. The
main feature of the divide-areas and sub-region coverage algorithms in this
system is that they are designed for a rectangular, two-dimensional, grid-based

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SYSTEM OVERVIEW 52

representation of a search environment. A two-dimensional representation is
made possible by using a constant search altitude for the UAVs. A search
altitude has to be carefully chosen so that target detection is possible.

The constant flying speed of the UAVs must also be taken into account
when discretising the environment, due to the dynamic constraints of the
UAVs. The speed should be low enough to allow for 90 degree rotations
within one discrete cell, while also adhering to the complete coverage require-
ment. The search team would be required to make the trade-offs and choose
an appropriate search altitude and speed.

Based on the speed and altitude, environment obstacles can then be iden-
tified. These could be physical obstructions at the flying altitude. They could
also be excluded due to the limitations of the image recognition algorithm that
is assumed to be onboard. Certain regions may also be no-fly zones due to air
space restrictions.

For the practical examples in this report, the environment modelling and
discretisation is done using available topographic maps of real-world locations.
These maps are used to identify regions that classify as obstacles and no-fly
zones. Based on this continuous, two-dimensional environment model, a dis-
crete representation can be created. The flying altitude and speed determines
the discrete element sizes in the environment grid. This element size can then
be used to estimate the obstacles in the environment. This concludes the envi-
ronment representation. The discrete environment representation can now be
fed into the planning phase that divides the search area into sub-regions and
plans the paths for the individual UAVs to cover their allocated sub-region.

4.3 Divide Areas Algorithm
The divide-areas algorithm takes the initial positions of the UAVs and the
grid-based environment as input. The DARP algorithm is used for the area
division, and will be discussed in more detail in Chapter 6. The goal of the
divide-areas algorithm is to assign sub-regions to the robots in an optimal way.

The divide areas algorithm in Figure 4.1 receives the initial positions of
the robots from the refuelling protocol. This assumes that central deployment
is used to assign the initial positions, which will be discussed further in Section
4.5.

The main optimization requirement for DARP is to assign sub-regions of
approximately equal size to each robot initial position. Essentially, the same
number of cells should be assigned to each robot for searching. Paths can then
be planned to cover each sub-region. If each sub-region is covered completely,
it then follows that the entire environment is covered completely.

The idea is that the UAVs would search these sub-regions in a similar
amount of time. Provided they begin their searches simultaneously, they would
then finish at roughly the same time, making it an optimized solution.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SYSTEM OVERVIEW 53

Aside from equal-sized regions for searching, the DARP algorithm also
seeks to form cohesive sub-regions. The UAVs should not be expected to
traverse each other’s sub-regions to reach their own cells. This also presumes
that the initial position of the UAV is within its assigned sub-region.

The DARP algorithm is iterative in nature. Therefore in each iteration,
cells assignments are exchanged between UAVs until it converges to a solution
that meets the requirements of a near-optimal solution. If contiguous sub-
regions can be formed, it means that UAV collisions should not occur during
flight. Not needing additional collision avoidance algorithms is a significant
advantage in a multiple robot application.

Note that some modifications were introduced into the original algorithm.
The most prominent change is that the option was added to change the distance
measure used when dividing the regions between robots.

4.4 Sub-Region Coverage Technique
The sub-regions produced by the divide areas algorithm must be searched
by the individual UAVs assigned to them. There will be one UAV initial
position associated with each sub-region. Note in Figure 4.1 how the sub-
region coverage algorithm takes the distributed regions from the divide areas
algorithm as input.

This project makes use of spanning tree coverage (STC) to cover the sub-
regions. The specific algorithm that is used is a minimum spanning tree (MST)
algorithm referred to as Prim’s algorithm [63]. A contiguous sub-region grid is
used to create a graph that is fed into this algorithm. The resulting spanning
tree can then be circumnavigated to achieve coverage of the sub-region. The
path is a closed loop, meaning that the final and initial positions in the flight
path are the same.

Since it is a MST, weights at the edges of the graph can be used to favour
a certain search direction. In this implementation of the algorithm, dynamic
constraints are also added to each turn manoeuvre.

The paths generated are expected to be executed at a constant speed.
They also have an associated path length. This distance and speed can be
used to calculate an associated time. The time calculated can be adjusted
to represent energy consumption during flight. A flight is only feasible if it is
within the energy constraints of the UAV. Chapter 7 will discuss the sub-region
coverage technique in more detail, along with the approach that was used to
modify the paths to accommodate the dynamic constraints of the UAVs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SYSTEM OVERVIEW 54

4.5 Central Deployment and Scheduling
This section discusses two components of the diagram in Figure 4.1. The
refuelling protocol is used to calculate the number of sub-regions that should
be created by the divide-areas algorithm. This in-turn produces a number
of robot initial positions, which are a multiple of the available UAVs. This
takes the endurance limitations of the UAVs into account. The flight schedule
generation generates the flight plans that allow the UAVs to take off and land
sequentially at the central ground station.

The refuelling protocol takes the ground station location as input. The
location of this would be chosen by the search team. This is from where
the UAVs are launched, as well as where they land. The UAVs can start
their approach for landing and end there departure after take-off at the same
location which are the initial positions of the UAVs in their closed-loop sub-
region coverage paths.

The number of UAVs, when refuelling is considered, would not necessarily
be equivalent to the number of sub-regions. A number of sub-regions could now
be assigned to the same UAV, and it would simply search them sequentially.
Due to endurance limitations, the UAVs would refuel between the sequential
sub-region searches assigned to them. The refuelling protocol in this report is
also set up so that the available UAVs always refuel the same number of times.

Landing and take-off are considered to be the manoeuvres to move to and
from the search altitude. Approach and departure, in turn, refer to manoeuvres
that take the UAVs between the ground station and their initial positions.
The UAV initial positions are arranged around the ground station to make
these approach and departure manoeuvres relatively short. Therefore a larger
portion of the endurance capacity of the UAV is used for the actual search.

Since this is an offline planner, the number of refuels are calculated prior
to knowing the actual flight path lengths. The number of UAV initial positions
are directly correlated with the number of refuels, so a method was devised to
estimate the number of refuels that would be necessary. The initial positions
of the UAVs can then be arranged around the ground station to be fed into
the divide areas algorithm. The final paths and corresponding flight schedule
can then be generated.

The full time taken and energy consumed can then be calculated and
compared to the original energy constraint. If the flight plan is within the
energy constraints of the UAV being used, the final paths are feasible and the
algorithm has successfully found a solution. If not, a rerun of the algorithm
would be necessary with more sub-regions assigned per UAV.

This flight plan can be used for a real world system that uses offline
planning. Survivor detection would occur during flight. The location of the
survivor is not known a priori. However, in this project a number of simulated
survivor locations are used to test the algorithm. Survivor detection times
can therefore be calculated. A snapshot of the environment at the moment of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SYSTEM OVERVIEW 55

detection can also be shown for any simulated survivor location.
The refuelling protocol and central deployment mechanism form the basis

for applying the coverage path planning algorithms in real-world SAR opera-
tions. Accounting for endurance limitations make this implementation feasible
for use with UAVs that have a finite amount of fuel, while a flight schedule
eliminates collisions at the ground station. The divide-areas algorithm elimi-
nates any further collisions while the UAVs are executing their coverage paths,
and dynamic constraints of the UAV are accounted for in the individual sub-
region coverage technique. All these mechanisms combined result in a feasible
path planning technique for use in practice.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Environment Representation

Section 5.1 discusses some background regarding the modelling of environ-
ments. Section 5.2 then discusses in detail how discretisation of the continuous
environment will be executed. Section 5.3 then briefly covers the different un-
manned aerial vehicle (UAV) and camera options available before Section 5.4
shows examples of the actual discretisation process executed on four different
real-world scenarios.

5.1 Background
Assuming that an area for searching has already been demarcated for the
UAVs, the next challenge would be to model the environment. Although the
final representation of the environment will be a two-dimensional one, the
original model would need to be three-dimensional.

From the three-dimensional model, one can ascertain which obstacles are
at an altitude that would obstruct the UAVs. These would be obstacles that
extend to the constant altitude at which the UAVs fly and beyond. A descrip-
tion of the types of obstacles and how they are described within the context
of an environment was given in Sections 3.2 and 3.3.

One way to describe a three-dimensional environment is a digital elevation
model (DEM), which is a type of geographic information system (GIS) layer.
DEMs can generally be divided into digital surface models (DSMs) and digital
terrain models (DTMs). A DSM is a three-dimensional rendering of the Earth’s
surface with all the objects present on it. These objects, whether man-made
or natural, may become obstacles for UAVs in flight. A DTM is generally a
representation of the bare earth without any objects present on it. [64]

There are a number of ways in which to generate a DEM. Ground sur-
veying is an option using a theodolite or a differential GPS (DGPS). These
methods generate discrete data that need to be interpolated to create a DSM
in the form of a continuous raster. Both methods also require skilled labour
and for terrain that is difficult to traverse, these methods become impracti-

56

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 57

cal. Another option is to digitise and interpolate contour lines from existing
contour maps, but this is also rather labour intensive and generates a DTM
rather than a DSM. [64]

Data is often collected using sensors aboard some type of aircraft. syn-
thetic aperture radar interferometry (inSAR) is a method that creates a DEM
using simultaneously captured radar images from multiple different antennas
[64]. This data is gathered using a space shuttle, and the latest release by
NASA in 2014 boasts a resolution of roughly 30 metres [65].

Another example is photogrammetry, wherein images are taken of the
same area from multiple points in order to yield perspective, similar to how
the human eye perceives depth. Lastly, there is a method called light detection
and ranging (LiDAR), wherein light is measured as it reflects off the Earth’s
surface in order to formulate a DSM. This generates large point clouds of high
accuracy data, but is generally quite expensive to implement. [64]

A DEM may be available for certain regions. If a recent DEM for a partic-
ular region is available, it would be useful to use this as a method of identifying
obstacles in a demarcated area. It would be particularly advantageous if an
accurate DEM, such as a LiDAR scan is available. However, there are other
possibilities. For example, in a mountainous region, a contour map may suf-
fice. In other types of environments it may only be necessary to know which
areas are no-fly zones, seen as there would not be obstructions tall enough to
come into the path of the UAVs.

The altitude at which the UAVs fly would be a big factor in determining
the obstructions and no-fly zones. There may also be areas that would not get
searched using a UAV due to a lack of map data.

5.2 Discretisation Methodology
In this section a proposed environment discretisation technique is formulated,
taking into account the required ground sampling distance (GSD) for viable
target detection. The requirement of complete coverage is also taken into
account, which is found to rely on the dynamic constraints of the UAV at a
constant speed.

5.2.1 Target Detection Requirement

Seeing as target detection is the main objective for the UAVs in a search and
rescue (SAR) operation, it becomes a limiting factor in designing discretisa-
tions for a continuous environment. With the assumption that the UAVs are
flying at a constant altitude and that they have downward-facing cameras, a
field of view (FOV) can be calculated. This is the size of the area on the
ground that the camera observes. Target detection occurs when the target is
within the camera FOV.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 58

FOV is camera lens dependant. The diagram in Figure 5.1 shows all the
relevant variables needed to calculate the cross-track field of view (FOVx). A
similar diagram can be used to calculate the in-track field of view (FOVy).
The only difference would be the sensor size variable, which changes from the
sensor width (wlen) to the sensor height (hlen). The other variables include the
focal length of the camera (f), the height of the lens above ground (H) and
the camera’s angle of view (AOV). Lastly, there is the variable α which is an
angle created due to the sensor being slightly smaller than the diameter of the
cone of light projected onto it. The resulting FOV will be a rectangle of the
same aspect ratio as the camera sensor, provided the ground is level.

The assumption that the ground is level is not an accurate one, since most
environments have topographical variations. However, if the GSD calculation
is done for the lowest point in the terrain, any variations in the terrain would
only result in lower, more favourable GSD values. Assuming level ground is
therefore a conservative approach. Similarly, if the FOV is calculated for the
highest topographical point in an environment, the FOV for any point below
this would simply result in larger regions being covered by the camera.

wlen

Lens

f

H

AOV αf

1
2
wlen

α

FOVx

1
2

FOVx

H

Sensor

Ground

Figure 5.1: Diagram showing relevant variables concerned with calculating the
field of view for a camera.

To calculate the FOV, the first equation that is required is the calculation
of the angle α, which makes use of the small triangle in Figure 5.1. The

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 59

equation is expressed as

tanα =
1
2
wlen

f

α = tan−1 (
wlen

2f
)

(5.1)

where wlen is the sensor width and f is the focal length of the onboard camera.
Now that α is known, the larger triangle is used to calculate FOVx with

FOVx

2
= H · tanα

FOVx = 2H · tan (tan−1 (
wlen

2f
))

FOVx = H · wlen

f

(5.2)

where H is the height of the camera sensor above ground and FOVx is the
cross-track camera field of view for level ground. The other dimension of FOV
can be calculated similarly with

FOVy = H · hlen
f

(5.3)

where hlen is the other camera sensor dimension and FOVy is the in-track
camera field of view. It should be noted that FOVx and FOVy will have the
same units as H, which is metres.

The resolution of the camera is the number of pixels along the image
width multiplied with the number of pixels along its height. These can be
used to calculate the ground sampling distance as follows,

GSD =
100 FOVx

pxw

GSD =
100 H · wlen

f · pxw

(5.4)

where pxh and pxw are the two pixel values, and FOVy and FOVx are the
associated field of view values. The FOV value is multiplied by 100 to get the
value in centimetres instead of metres, since GSD is conventionally shown with
a unit of cm/px.

GSD can be used as a constraint when choosing the altitude at which the
UAVs must fly. One would want the UAVs to fly low enough so that the GSD
is still accurate enough to detect the target.

The calculations for FOV are dependant on camera altitude and certain
parameters specific to the camera used. The GSD is in turn dependant on
both the FOV and camera resolution. GSD is therefore both camera- and
altitude-dependant.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 60

l

w 30px

Figure 5.2: Diagram showing the rectangular approximation for a human
viewed from above for calculation of the GSD

If the size of the environment discretisation is set equal to the rectangular
camera field of view, and the type of camera used is known, then a desired
GSD can be used to decide on an appropriate flying height. Choosing a GSD
would depend on the application, seeing as it represents the level of detail that
can potentially be detected in an image.

Taking the conservative approach, the assumption is that one is looking
for a human standing upright, viewed from above. To get a good estimate of
the space occupied by a human in this orientation, one needs anthropometric
data. A survey was done in Europe for people between the ages of 18 and
60 years [66]. Among other measurements, they measured chest depth (w)
and elbow-to-elbow length (l). These dimensions represent those of an upright
human from above and as shown in Figure 5.2.

To calculate GSD, a minimum number of pixels needed to make a hu-
man visible to an image recognition algorithm must be chosen. Rudol and
Doherty [30] developed an image processing algorithm for human detection in
a search and rescue scenario . In their paper they made the decision to put
a 30 pixel requirement on human detection. Figure 5.2 shows the rectangular
approximation for a human that the 30 pixels should represent.

Using the lower percentile measurements of 170mm chest depth and 390 mm
elbow-to-elbow length along with the 30 pixel requirement, one gets a GSD
of roughly 4.7cm/px. This value will be used to calculate appropriate flying
heights, which is a reasonable value considering that most aerial surveys oper-
ate at a GSD of less than 5cm/px [62]. This value would be dependent on the
method of target detection, but this estimation will be used for the purpose
of this project.

The calculation for the maximum allowable height using a GSD require-
ment is expressed as

Hmax =
GSDmax · f · pxw

100wlen

(5.5)

where GSDmax is the maximum allowable GSD to guarantee target detection,
f is the camera’s focal length, pxw is the number of pixels along the image
width for this camera, and wlen is the camera sensor width. A factor of 100 is
used to convert the GSD from a unit of cm/px to a unit of m/px, so that the
resulting maximum flying height (Hmax) is in metres.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 61

This height would be with respect to the lowest point in the topography of
the environment. This ensures that any topographical variation would simply
result in a lower GSD, and therefore higher accuracy.

When choosing a flying altitude for the search, one equal to or lower
than Hmax should be chosen. Choosing higher altitudes means a larger FOV
which leads to faster coverage. However, a search team may choose to favour
having a lower GSD and may therefore prefer lower altitude searches. Since
the proposed method of environment discretisation is based on the FOV, it
means that the obstacle resolution would also be higher at lower altitudes.

5.2.2 Complete Coverage Requirement

Target detection is only reliable when complete coverage is achieved. If por-
tions of the map that the UAVs are expected to cover are in fact not covered,
it is possible to miss a target entirely. In this section it will be shown that the
dynamic constraints of the UAVs impose limitations on the height at which the
UAVs must fly above the ground in order to still providing complete coverage.

The FOV can be used as a guideline when deciding how to discretise the
environment. A FOV is generally rectangular, most commonly with an aspect
ratio of either 4:3 or 3:2. Assuming that a UAV will execute either a straight
line manoeuvre or a circular one within a single discretised cell in the grid, one
needs to ensure that complete coverage is still achieved. Once the UAV enters
a discrete cell, that cell should be completely covered before the UAV exits it
again.

A good number of single robot area coverage techniques employ something
resembling a sweep. Several of these techniques were discussed in Section 2.5.
The technique that was chosen for this project is spanning tree coverage (STC).
This will discussed further in Chapter 7. The important thing to note with
this technique is that within a discrete cell, the UAV is either expected to
move in a straight line or turn through 90 degrees or turn through 90 degrees
using a semi-circular maneuver.

The discretisation for this implementation is assumed to be either rect-
angular or square to correspond to the FOV shape. If it is assumed that the
UAV is omnidirectional, choosing these discretisation sizes would be simplified
greatly. For the square scenario, one can simply set the sides of the square
equal to FOVy to ensure complete coverage. An example of this discretisation
is shown in Figure 5.3a. For the rectangular scenario, the discretisation can
be set exactly equal to the size of the FOV rectangle. This is illustrated in
Figure 5.3b.

The square scenario would have cross-track overlap when executing move-
ments in either dimension. The rectangular discretisation would only have
cross-track overlap in one dimension. In both figures, redundant coverage as a
result of this overlap is shown in grey. An environment would be covered faster

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 62

FOVy

(a) Square discretisation

FOVx

FOVy

(b) Rectangular discretisation

Figure 5.3: Diagrams showing cross track overlap for camera Field of View for
different discretisation techniques.

with the rectangular discretisation provided the direction with no cross-track
overlap is favoured during flight.

The height used in the calculation of this FOV would be with respect to
the highest point in the topography of the environment. This ensures that any
topographical variation would simply cause the FOV size to increase, leading
to more overlap. Figure 5.4a shows what may happen if the lowest point in
the topography is used as reference. The red circles show regions that are
not being covered. Figure 5.4b then shows how complete coverage is achieved
when using the highest point as a reference.

This technique inevitably leads to smaller discretisation, and therefore
more time-consuming coverage. Guaranteed target detection is a priority for
SAR, though. Complete coverage with more overlap is therefore favoured over
faster, and possibly incomplete, coverage.

When considering the dynamic constraints of the UAV, sharp 90 degree
turns are no longer possible. Because this application seeks to implement
constant speed searches, even multi-rotors would not be considered omnidirec-
tional. A 90 degree turn, where a limited turning radius is assumed, is shown
in Figure 5.5.

When creating a discretisation with this in mind, the first constraint is
that the UAV must complete a 90 degree turn within one discrete cell. The
second constraint is that the discrete cell must be fully covered by the camera
during this manoeuvre. With the first constraint, the UAV minimum turning
radius needs to be considered at the chosen constant speed. This calculation
is shown in Equation 3.7. The second constraint demands that as the UAV
rotates, it needs to cover the entire discrete cell. This calculation is complicated
by using a rectangular discretisation, so a square discretisation is assumed. To
achieve this, the FOV needs to reach the furthest corner of the discrete cell
when at the apex of its turn.

Figure 5.6 shows the dimension (L) that needs to be equal to half of the
cross-track FOV. The calculation for this dimension, using relecant dimensions

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 63

∆hg

hgmin

hgmax

Hf

(a) Hf with respect to lowest point in topography

∆hg

hgmin

hgmax

Hf

(b) Hf with respect to highest point in topography

Figure 5.4: Diagrams showing coverage achieved when FOV is calculated using
a height (Hf) with respect to different points in topography.

FO
V
x

Figure 5.5: Diagram showing required FOV to ensure no corner cutting on a
square. discretisation

portrayed in the figure, is as follows

L = 2
√

2 rmin − rmin

FOVx

2
= 2
√

2 rmin − rmin

FOVx = rmin(4
√

2− 2)

(5.6)

where FOVx is the cross-track camera FOV and rmin is the minimum UAV
turning radius at the constant forward. Using the FOV, one can also calculate

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 64

L

r
m
in

2rmin

2r
m
in

2 √
2
r
m
in

Figure 5.6: Diagram showing the dimensions necessary to calculate FOV on a
square discretisation.

the minimum height that the UAV can fly at this speed using

Hmin =
FOVx · f
wlen

(5.7)

whereHmin is the is the minimum height of the UAV, above the highest point in
the topography, to guarantee complete coverage. This highest point is labelled
hgmax in Figure 5.4b. Based on the chosen GSD of 4.7cm/px, Equation 5.5
calculates a maximum allowable height at which the UAV should fly. This
height would be from the lowest point in the topography, labelled hgmin

in
Figure 5.4a.

∆hg

hgmin

hgmax

Hfmax

Hfmin

Hmax Hmin

Figure 5.7: Diagram showing the range of flying heights that can be calculated.

Figure 5.7 shows how these heights can be used to calculate a range of
possible flying heights at this speed. The environment discretisation can only
be performed if the variation in the ground height is less than or equal to the
difference between the minimum height required for coverage and the maxi-
mum height allowed for detection. This constraint is expressed mathematically
by

∆hg ≤ Hmax −Hmin (5.8)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 65

where ∆hg is the difference between the highest and the lowest point in the
search area, Hmin is the minimum height above ground that the UAV must
fly to provide complete coverage, and Hmax is the maximum height above the
ground at which the the onboard camera can still reliably detect the target.

The allowable flying altitude range for the UAV is therefore given by

Hfmin
≤ Hf ≤ Hfmax (5.9)

where Hf is the actual UAV flying altitude and Hfmin
and Hfmax are the min-

imum and maximum flying altitudes allowed. The calculation for these mini-
mum and maximum flying altitudes is given by

Hfmin
= hgmax +Hmin

Hfmax = hgmin
+Hmax

(5.10)

where hgmin
and hgmax are the altitudes of the lowest and highest point in the

topography respectively. This excludes obstacles and is strictly for the area
that needs to be searched. Hmin is the minimum flying height of the UAV
with respect to hgmax , and Hmax is the maximum flying height of the UAV with
respect to hgmin

.
The minimum flying altitude is therefore the maximum ground altitude

plus the minimum flying height above the ground that is required for complete
coverage. The maximum flying altitude is the minimum ground altitude plus
the maximum height above ground that is required for target detection.

Flying higher would be favourable for faster coverage, but flying lower
would allow for a smaller obstacle resolution.

It is useful to note that the requirement for the range of heights can be
used as a tool in choosing one’s search environment boundaries and obstacles.
With the assumption that the topography variation is zero (∆hg = 0), one can
calculate Hmin and Hmax. The difference between them would then work as a
maximum allowable topographical variation for complete coverage and target
detection to be achievable. This is assuming the flying speed is a known value.

A suggested maximum speed can be calculated for the UAV, which would
help ensure that Hfmin

is less than Hfmax . One can rework Equation 5.6 to
calculate a suggested minimum turning radius for the UAV at the maximum
height as follows,

rmin =
FOVx

4
√

2− 2

rmin =
Hmax −∆hg

4
√

2− 2
· (wlen

f
)

(5.11)

where rmin is the suggested minimum turning radius and fovx is the cross-
track camera FOV, calculated using the maximum height of the UAV above the
highest point in the topography. Hmax is the maximum height from the lowest
point in the topography and ∆hg is the topographic variation in the search

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 66

area. Equation 3.7 can then be reworked to calculate a suggested maximum
constant speed at which the UAV should fly for this minimum turning radius
as follows,

Vmax =
√
rmin · g tan (φmax) (5.12)

where Vmax is the suggested maximum speed, φmax is the maximum bank angle
of the UAV, and g is the gravitational acceleration constant. A speed lower
than this maximum, but higher than the stall speed of the UAV can then be
selected. The ideal speed would be the cruise speed of the UAV, since this is
where it flies the most efficiently. The range of possible speeds are expressed
as

Vstall ≤ Vf ≤ Vmax (5.13)

where Vf is the constant forward speed for the UAV, Vstall is the stall speed,
and Vmax is the suggested maximum speed that corresponds to the minimum
turning radius rmin of the UAV.

5.2.3 Discretisation Technique

Once the speed (Vf) and height (Hf) for the search operation are chosen, it
is time to calculate the final size of the square discretisation. This is also
assuming a camera has been selected and its relevant parameters are known.
The overall process is described in the method below:

1. Use the chosen height to calculate the actual camera FOV with Equations
5.2 and 5.3. Note that this should be relative to the highest point within
the environment (hgmax).

2. Use the chosen speed to calculate the minimum turning radius of the
UAV with Equation 3.7.

3. Conservatively assume that the turning radius of the UAV will be equal
to half the dimension of the square discretisation. Now, Equation 5.14
can be used to calculate the size of this square discretisation using

l =
FOVx

2
√

2− 1
(5.14)

where l is the dimension of the square discretisation and fovx is the
cross-track FOV

4. Check that the the calculated minimum turning radius is in fact less
than or equal to half the dimension of the square discretisation. If it
is, then this is an appropriate discretisation size for this combination of
speed and height. Note how this generates a range of acceptable turning
radius values for this descretisation size, with rmin as the lower limit and
l
2
as the upper limit. For the purpose of this project however, the aircraft

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 67

is assumed to be flying at the minimum turning radius. The condition
used is expressed as

rmin ≤
l

2
(5.15)

5.2.4 Cross-track overlap

Once a flying height and speed is selected, it is useful to have a metric that
represents the amount of redundant coverage. In this case, it is most useful to
calculate the cross-track overlap. For the purpose of this project, this would
be the overlap of FOVx as the UAV moves in a straight line over a square
discretisation of dimension l. The calculation is shown in Equation 5.16.

Figure 5.3a shows the cross-track overlap for a square discretisation, when
the UAV is moving in a straight line. They green represents the portion of
the FOV that covers the discrete cell, whereas the grey portion represents the
amount of cross-track overlap in that instance.

It is important to note that FOVy may not be equal to the square dimen-
sion (l) as in that example. Because this is however the direction in which
the UAV will be moving, coverage should be guaranteed regardless. In-track
overlap is a less meaningful measure since there is continuous movement along
that direction. Only the cross-track percentage overlap is therefore defined, as
follows

%Overlap =
FOVx − l

l
· 100 (5.16)

where FOVx is the cross-track FOV and l is the dimension of the square
democratisation used to form a gird-based environment. This overlap percent-
age is simply a value to represent relative redundant coverage and should not
be accepted as an accurate measure.

There is an additional overlap that occurs as a result of topographic vari-
ations. The camera FOV can be calculated with respect to the lowest point
in the topography to consider the worst case scenario overlap. Similarly, one
could use the highest point in the topography to calculate a best case scenario.

Note that this overlap may cause early target detection in practice. This
is not considered for the sake of this project. It is assumed that the target
is detected when the UAV traverses the discrete cell in which the target is
present.

5.3 UAV and Camera Payload
There are many options to choose from for UAV and camera combinations.
The goal of this project is not to do an in depth study of the different options
available, however there are a few key factors to note.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 68

With UAVs there are multi-rotor, single-rotor, and fixed-wing options.
Fixed-wing aircraft have longer flight times and higher payload capacities.
Longer flight times allow for larger areas to be searched and higher payload
capacities allow better cameras to be mounted. Both of these are favourable
for survivor detection.

Within this class of aircraft there are a myriad of options. Their designs
vary to accommodate applications in surveillance, mapping, aerial photogra-
phy, military defense, firefighting, structure inspections, and more.

They may vary in engine type, overall size, payload capacity, cruise speeds,
ability for vertical take off and landing (VTOL), endurance, and resistance to
environmental factors such as wind, rain, and snow.

There are also several different camera options that can be mounted to
the UAV. Based on the camera parameters, a range of possible UAV heights
and velocities can be determined during discretisation of an environment. The
camera is considered the payload of a UAV and so the UAV must be equipped
to handle this payload.

The calculated range of velocities and heights need to be within the UAV
capabilities. Therefore it is important to choose an appropriate UAV and
camera combination for a specific environment.

Table 5.1 shows several different options for UAVs and Table 5.2 shows
a number of possible camera payloads. These are by no means an exhaustive
list. They simply illustrate the range of products that are available, and some
of them will be chosen for the scenarios in Section 5.4.

UAV
Name

Cruise
Speed
(m/s)

Speed
Limits
(m/s)

Payload
Capacity

(kg)

Weight
(kg)

Altitude
Limits
(m)

Flight
Time Take-off Power

Source
Intended

Application Ref

Wingtra I 16 - 0.8 3.7 <5000 42-59min VTOL Li-ion
Battery

Surveying and
Mapping [67]

GULL 24 <38 - 18 - - - STOL Piston
Engine

Naval and
Coastguard
Applications

[68]

Albatross 19 <35 4.4 10 - <4hrs Runway Li-ion
Battery

Open Source
Long Range
Applications

[69]

Sea Cavalry
SD-40 25-40 <50 6 34 <5000 <6hrs VTOL Battery Maritime Patrol,

Emergency Rescue [70]

AVEM 18 - 0.5 2 <3500 <3hrs Hand
Launch Battery Aerial Mapping

for GIS [71]

D-Sentry 30 >20 1 7.5 <4000 <1hrs VTOL Battery
Aerial Mapping,
Surveillance,

Search and Rescue
[72]

Strix 400 14-25 7-33 2.5 6.5 <5000 <10hrs Hand
Launch

Li-ion
Battery
and Solar

Surveillance,
Endurance
Applications

[73]

Table 5.1: List of possible UAVs with their associated capabilities and limita-
tions.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 69

Camera
Name

Camera
Type

Focal
Length
(mm)

Sensor
Type

Sensor
Size
(mm)

Resolution
Payload
Weight
(g)

Maximum
Height
(m)

Commonly
Paired with

UAVs
Ref

Sony RX1R II RGB 35 Full frame 35.9 x 24 8000 x 5320 590 367 Wingtra I,
Trinity F90+ [67]

Sony a6100 RGB 20 APS-C 23.5 x 15.6 6000 x 4000 550 240 Wingtra I
Albatross [67]

MicaSense RedEdge-MX RGB, RE, NIR 5.5 Five
Sensors 4.8 x 3.6 1280 x 960 380 69 Wingtra I [67]

MicaSense RedEdge-P RGB, RE, NIR 5.5 Five
Sensors 5.04 x 3.78 1459 x 1088 502 75 Wingtra I [67]

Flir Vue Pro Thermal IR 13 Uncooled VOx
Microbolometer 2.88 x 2.05 336 x 256 72 71 Albatross [74]

Mavic Air 2 Camera RGB 4.4 1/2” CMOS 6.4 x 4.8 4000 x 3000 - 129 Mavic Air 2 [75]

Table 5.2: List of possible camera payloads with their associated parameters
and limitations.

The maximum height (Hmax) value is included in the list of possible cam-
eras. For this calculation a GSD of 4.7cm/px is used as the limiting value, as
calculated in 5.2.1. From this it is clear to see why the Sony RX1R II is one of
the most popular cameras in use. It outperforms the rest of the options quite
significantly, and so will be used for all the scenarios presented in the following
Section 5.4.

The UAVs used will however vary. For both mountainous examples, the
Strix 400 will be used. The ground SAR example will make use of the Wingtra
I, and the marine example will make use of the GULL 24. These are intuitive
choices that will be elaborated on in the respective sections.

5.4 Discretisation Examples
This section shows examples of the proposed discretisation methodology being
applied to four different scenarios in the context of South Africa. In each
scenario it is assumed that the proper permissions were acquired to fly over
private property, roads, and other restricted regions. It is also assumed that
flying at these altitudes is prohibited and that no manned aircraft will enter
this airspace for the duration of the search.

A fair amount of technical knowledge would be necessary to do these
discretisations by hand for a real-world SAR operation. It is likely that a form
of software would need to be developed to automate this process to a degree,
in order for it to be more practical for use in a real-world application.

The topographic maps used for the examples in this section were obtained
from a South African topographic maps website [8]. The corresponding satel-
lite images were found using either Google maps [7] or Mapcarta [9].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 70

5.4.1 Low Altitude Mountainous SAR

For mountainous terrains, the topography may vary significantly. The avail-
ability of a contour map is therefore essential to ascertain where the UAV can
reasonably fly.

Environments like these are challenging for image recognition software
and make target detection a challenge. It is therefore important to carefully
consider possible flying heights with respect to the variations in topography.

This example is of a region north of Caledon in the Western Cape. The
central mountain in this area is Spitskop, which has a peak height above sea
level of roughly 608 m. A possible scenario in this case is hikers who have
gotten lost.

Figure 5.8 shows a satellite image of the area that is intended to be
searched. Figure 5.9 shows the associated topographical map which serves
as the starting map for this section. The real world size of these maps is about
15.3 km by 7.7 km.

The UAV chosen for this application is the Strix 400. It has long flying
times which may be necessary for the UAVs to move between the launch zone
and the search area. Due to the mountainous terrain, taking off and landing in
the search area may be a challenge. Furthermore, it has an appropriate payload
capacity for mounting a Sony RX1R II camera. It also has a lower cruise speed,
which proves useful for applications with large topographic variations.

With the starting point of the Sony RX1R II,Hmax can be calculated using
Equation 5.5. The resulting height, that corresponds to a GSD of 4.7 cm/px,
is 367 m.

One can now calculate a suggested maximum speed for the UAV using
this maximum height as the flying height. To simplify the calculation, it is
initially assumed that there is no topographic variation (∆hg = 0). Using
this assumption with Equations 5.11 and 5.12, one gets a suggested maximum
speed of 21.7 m/s.

Since the 14 m/s cruise speed of the Strix 400 is substantially lower than
this, it can be used as the constant flying speed for this example. This speed
can be used to calculate a minimum allowable flying height (Hmin) for the
UAV. Using Equation 5.7, this value turns out to be 153 m.

Since the minimum height is measured from the lowest point in the to-
pography, and the maximum height is measured from the highest point in
the topography, one can use these values to calculate a maximum allowable
topographic variation for the environment ((∆hg)max).

This is done using the requirement shown in Equation 5.8, which is re-
worked as shown in Equation 5.17. The resulting maximum variation becomes
214 m.

(∆hg)max = Hmax −Hmin (5.17)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 71

Figure 5.8: Satellite image of Spitskop example environment. [7]

Figure 5.9: Contour map of Spitskop example environment. [8]

The environment for this example is shown in Figure 5.9, which has an
overall topographic variation of 360m. From this it is clear that the entire
region can not be searched with this UAV and camera combination.

When looking at Equation 5.10, it is clear that the range of allowable
flying heights depends on the topographic variation. Therefore, one can choose
a topographic variation as a means to choose a flying height. It is best to choose
one lower than the maximum allowable variation, and so a value of 200 m is
chosen.

The search team can then decide how best this 200 m variation can be
utilised. For this application it is assumed that searching between the altitudes
above sea level of 300 m and 500 m would be the most useful.

The reason for this would most likely be due to predictions for plausible
survivor location. These heights are also chosen partially due to the availability
of contour lines at these altitudes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 72

With these height calculations, the diagram in Figure 5.7 can be adjusted
to show the calculated values for this scenario, which has been done in Figure
5.10.

∆hg = 200m

hgmin = 300m

hgmax = 500m

Hfmax = 667m

Hfmin
= 653m

Hmax = 367m

Hmin = 153m

Figure 5.10: Diagram showing the range of flying heights that can be calcu-
lated.

Note that all the values along the right-hand side of the figure are absolute
heights above sea level. The other three height values are relative to their
respective datum lines.

The range of possible flying height (Hf) values is calculated using Equa-
tion 5.10. With this range in mind, a height of 660 m above sea level is chosen
as the flying height. This is just below the maximum height, so as to favour
larger grid cell sizes which correspond to a faster search. The actual maxi-
mum GSD and %Overlap for this scenario can now be calculated. The height
for both calculations should be taken with respect to the lowest point in the
topography (hgmin

), and is thus 360 m.
The GSD can be calculated using Equation 5.4, and the resulting value is

roughly 4.6 cm/px. This is lower than the maximum of 4.7 cm/px and confirms
that this is an acceptable flying height.

The %Overlap can be calculated using Equation 5.16. The result is 311%.
This is a rather large value, due to the conservative approach to ensure com-
plete coverage. To reduce this value using the proposed discretisation tech-
nique, ideally one would want a steeper bank angle or a lower flying speed.

Since this height is above the peak of the mountain, it should be noted that
the UAV can safely fly at any point in the map without physical obstructions.
However, to ensure complete coverage and target detection (provided the target
is present in the environment), certain areas are excluded from the UAV search.

It is assumed that these excluded regions would be better searched manu-
ally and that the UAVs would be best utilised outside of these regions. Taking
the contour lines from Figure 5.9 and excluding these regions results in Figure
5.11.

Now that the obstacles for this region have been defined, and a flying speed
and height have been selected, discretisation can begin. The steps followed

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 73

Figure 5.11: Contour map of Spitskop with excluded regions for the search
shown in black.

here are listed in Section 5.2.3 and are repeated with the same numbering
convention below:

1. The chosen flying height (Hf) is 660 m above sea level. The discretisation
is performed relative to the highest point in the topography (hgmax),
which is 500 m, making the relative height from this point 160 m. This
height is used to calculate the FOV with Equations 5.2 and 5.3. The
resulting FOV is 164 m in the x-dimension (FOVx) and 110 m in the
y-dimension (FOVy).

2. The chosen flying speed (Vf) is 14 m/s. This can be used to calculate a
minimum turning radius using Equation 3.7. The bank angle is assumed
to be 25 degrees. This is a generalised assumption that will be used
throughout this project unless stipulated otherwise. It is possible that
an aircraft may even be able to sustain a 60 degree bank angle, so this is
a conservative value. With this in mind the resulting minimum turning
radius is roughly 43 m.

3. Now the square discretisation can be calculated according to Equation
5.14, resulting in a side length (l) for the squares of 89.8 m.

4. Lastly it is important to double check that the minimum turning ra-
dius fits into the suggested square discretisation. Since half the square
discretisation results in a value of about 45 m, this is confirmed.

When adding discrete obstacles to this two-dimensional representation of
the environment, it is important to note that the STC algorithm is going to be
applied to this discretisation. The STC algorithm will be detailed in Chapter

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 74

7, and requires that cells be arranged into groups of four, effectively doubling
cell sizes and decreasing overall resolution.

Discrete obstacles are added to the maps at the larger cell size. The
larger cell sizes are what is used in the divide-areas algorithm, where cells are
assigned to UAVs for searching. Seeing as the UAVs can physically fly over
any point in the map, it would be up to the search team to decide whether
under- or over-estimating the obstacles would be more appropriate.

Under-estimating the obstacle sizes means the UAV may cover certain
cells incompletely and miss a target present in that cell. Over-estimating
obstacle sizes means that more areas where the UAVs could potentially detect
a target are excluded from the search, but the UAVs can more efficiently cover
areas where detection is guaranteed provided the target is present.

In this case, it is assumed that the search team opted for over-estimating
obstacles. The resulting map for this is shown in Figure 5.12, which shows the
discretisations with the discrete obstacle approximations. Both the smaller
cells and larger cells are portrayed in the figure.

Figure 5.12: Graph showing the map of Spitskop with the discretisations over-
laid, including the over-estimated discrete obstacles.

Table 5.3 shows a summary of the parameters used for the discretisation.
Note that the flying height (Hf) is a height above sea level. The height used in
calculating the discretisation size would be this height relative to the highest
point in the topography. In contrast, the height used to calculate the actual
GSD and %Overlap achieved would be with respect to the lowest point in the
topography.

A more detailed version of this, namely Table A.1, is shown in Appendix
A. This version shows a summary of the values and associated equations re-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 75

quired to formulate this discretisation. For each of the examples following this
one, a summary table will be given as well as an associated detailed table in
the appendix.

Variable Name Value Units Equation
φmax 25.0 degrees
Vf 14.0 m/s
Hf 660.0 m 5.9
l 89.8 m 5.14
GSD 4.6 cm/px 5.4
%Overlap 311 % 5.16

Table 5.3: Summary of the parameters for the Spitskop environment.

5.4.2 High Altitude Mountainous SAR

The example shown in this section is Champagne Castle, a section of the Drak-
ensberg mountain in KwaZulu-Natal. The highest peak above sea level in this
case is 3377 m. Figures 5.13 and 5.14 show a satellite image and topographical
map of this area respectively. The actual size of this map is 11.5 km by 5.5 km.

Overall this is a much steeper environment. For this reason a likely sce-
nario for SAR in this case may be hikers that have fallen and are injured near
cliffs or other treacherous terrain.

For this example, the Strix 400 UAV will once again be used in combina-
tion with the Sony RX1R II camera. The benefits of this UAV for mountainous
terrain were discussed in Section 5.4.1. In addition to these benefits, this UAV
has a high maximum flying altitude, making it ideal for this high altitude
scenario.

Although this environment features a much steeper topography, the max-
imum allowable variation in topography for this camera and UAV combination
is still 214 m. Using the methodology detailed in Section 5.4.1, the region cho-
sen for search is that spanning from an altitude of 3200 m to 3377 m. This
represents a topographic variation of 177 m. It is assumed that someone has
gone missing near the peak of Champagne Castle, hence the targeted search
of this high altitude. Due to the steep environment, this represents a fairly
narrow search area. Narrow regions of lower altitude would also be possible.
It depends on where a survivor is most likely to be.

This example also features the South Africa to Lesotho border. The
assumption here is that the UAVs are not permitted to cross this border. This
narrows down the allowable search area even further.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 76

Figure 5.13: Satellite image of Champagne Castle in the Drakensberg. [9]

Figure 5.14: Contour map of Champagne Castle in the Drakensberg [8].

A summary of the parameters used for the discretisation are shown in
Table 5.4. A more detailed table of the parameters and equations used to
perform the discretisation in this example are listed in Table A.2. The range
of possible flying heights found can be seen in Table A.2. The flying height is
chosen at the lower end of the spectrum to maximise the range of topographic
heights wherein a target can be detected.

Note that once again, the UAV can physically fly over any region of the
map, since the chosen flying height is 3535 m, as listed in Table 5.4. Crossing
the border is however strictly not permitted. The obstacles are therefore set
up to over estimate the border obstacle, but under-estimate the rest of the ob-
stacles. This increases the area that the UAVs can search, but still guarantees
that the border will not be crossed.

Figure 5.15 shows the continuous obstacles on the topographic map. The
Lesotho border obstacle is the obstacle on the bottom left of the diagram. The
effective size of the search region for the UAVs becomes much smaller than the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 77

Variable Name Value Units Equation
φmax 25.0 degrees
Vf 14.0 m/s
Hf 3535.0 m 5.9
l 88.6 m 5.14
GSD 4.3 cm/px 5.4
%Overlap 288 % 5.16

Table 5.4: Summary of the parameters for the Champagne Castle environment.

size of the map for this example. Some regions are also enclosed spaces in this
two-dimensional map. How these are dealt with during an actual search will
be discussed in Chapter 6.

Figure 5.15: Contour map of Champagne Castle with excluded regions for the
search shown in black.

Figure 5.16 shows the obstacle approximations in the discrete environ-
ment. Note the overestimation of obstacle sizes on the bottom left obstacle,
representing the Lesotho border.

5.4.3 Ground SAR

Ground search and rescue often involves people going missing or running away
from populated areas. For this reason, the scenario shown in this section is the
surrounding area of a town called Aberdeen in the Northern Cape. Figures
5.17 and 5.18 show the satellite and topographic maps of the area respectively.
They represent a real world area of roughly 15.8 km by 7.6 km.

For this example, the Wingtra I UAV is used in combination with the
Sony RX1R II Camera. This UAV has a slightly higher cruise speed than

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 78

Figure 5.16: Graph showing a contour map of Champagne Castle with the
discretisation overlaid, including the discrete obstacle approximations.

Figure 5.17: Satellite map of Aberdeen and the surrounding area. [7]

the Strix 400 UAV used in both mountainous examples. This means the area
can be searched faster, while not allowing for as large topographic variations.
The topography in this map varies between 706 m and 1711 m. However, it is
assumed that the mountain in the top left corner does not need to be searched
using the UAVs. The mountain is excluded by excluding any area above 850 m
height above sea level from the search. This results in a total environment
variation of 144 m, which is within the 167 m limit that results from this UAV
and camera combination.

The mountain may be excluded for a number of reasons. One reason could
be that a ground team was deployed to search this area instead of using an
aerial search with the UAVs. It may also have been determined that this is an

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 79

Figure 5.18: Contour map of Aberdeen and the surrounding area. [8]

unlikely location for the survivor to go, therefore the UAV are focused on the
larger open area around the town.

The final flying height that is chosen for the craft is 1060 m. This means
that the mountain is a physical obstacle at any point where it exceeds this
height.

Figure 5.19 shows the excluded region in black and grey. The grey region
is the part of the excluded region that is a physical obstruction for the UAVs
at their flying altitude. The UAVs cannot traverse this part of the map at the
chosen constant flying altitude. The black portion represents a region that can
be traversed at the flying altitude, but is simply excluded from the search.

The town of Aberdeen, featured at the lower end of the map will also
not be searched. It is assumed that the target will not be present in this area.
Figure 5.20 shows the final discretisation overlaid onto the map. In this image,
the town of Aberdeen is also excluded using discrete obstacles.

Figure 5.19: Contour map of Aberdeen where excluded regions for the search
are shown in black, with the grey portion representing physical obstructions.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 80

Figure 5.20: Graph showing a contour map of Aberdeen with the discretisation
overlaid, including the discrete obstacle approximations.

The excluded region representing the mountain is also converted into dis-
crete obstacles, and it is assumed that the search team has decided to over-
estimate this region for this scenario.

Table 5.5 summarises the parameters used for the discretisation of this
environment. For a more detailed listing of the calculations used to discretise
this environment, see Table A.3 in Appendix A.

Variable Name Value Units Equation
φmax 25.0 degrees
Vf 16.0 m/s
Hf 1060.0 m 5.9
l 117.8 m 5.14
GSD 4.5 cm/px 5.4
%Overlap 208 % 5.16

Table 5.5: Summary of the parameters for the Aberdeen environment.

5.4.4 Marine SAR

Marine SAR may involve vessels in distress or swimmers that have been swept
in by rip-currents. The scenario shown in this section is a portion of the
Jeffreys Bay coastline in the Eastern Cape. Specifically, the beach shown in a

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 81

popular swimming beach called Main Beach. This is a smaller map and the
plausible scenario here would be a swimmer swept up by a current, and is now
missing.

Figures 5.21 and 5.22 show the respective satellite and topographic maps
of the area, representing a real world area of 3.3 km by 1.6 km.

s

Figure 5.21: Satellite image of Jeffreys Bay Main Beach. [7]

Figure 5.22: Contour map of Jeffreys Bay Main Beach. [8]

The GULL 24 UAV is chosen in combination with the Sony RX1R II
camera for this example. This UAV was developed specifically for marine ap-
plications and features the ability to take off and land on water. It is therefore
viewed as an appropriate UAV for this scenario.

This map features essentially no topographic variation once the coastal
land is excluded. It is assumed that an estimated variation of 10 m would
suffice. This would account for any slight variations due to rocks or waves.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 82

The data available on the GULL UAV simply states that the cruise speed
should be lower than 38 m/s [68]. No data was found regarding a minimum,
but it is assumed for this application that 19 m/s would be an acceptable speed.
It should also be noted that this craft cannot be on the water when there are
waves higher than 0.3 m.

Figure 5.23 shows the map with the coastline excluded as an obstacle,
shown in black. With people being swept into the ocean, time is of the essence,
hence this application boasts a rather high altitude, high speed implementa-
tion. The flying height chosen for this example is 215 m above sea level.

Figure 5.23: Contour map of Jeffreys Bay with excluded coastal region shown
in black.

Due to the small environment, a smaller minimum turning radius allows
for a more appropriate discretisation. It is assumed that for this smaller en-
vironment, the GULL 24 UAV can sustain bank angles of 35 degrees. This
may not be the case, and so a different UAV may be more appropriate for this
example in a real world scenario

Because the UAV flies above any physical obstructions that may be on the
ground, the discrete obstacles in this case are underestimating the excluded
coastline region. Figure 5.24 shows the discretisation overlaid on the map,
with the few discrete obstacles used to represent the coastline.

Table 5.6 shows a summary of the parameters used for the discretisation of
this environment. Table A.4 is a more detailed table, showing the discretisation
steps as a set of values and equation references. This can be found in Appendix
A.

5.4.5 Discussion

The proposed discretisation technique worked well with the four example envi-
ronments. The Aberdeen environment is the only one where there is a physical

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. ENVIRONMENT REPRESENTATION 83

Figure 5.24: Graph showing a contour map of Jeffreys Bay with the discreti-
sation overlaid, including the under-estimated discrete obstacles.

Variable Name Value Units Equation
φmax 35.0 degrees
Vf 19.0 m/s
Hf 215.0 m 5.9
l 115.0 m 5.14
GSD 2.8 cm/px 5.4
%Overlap 92 % 5.16

Table 5.6: Summary of the parameters for the Jeffreys Bay environment.

obstruction at the flying altitude. In all other examples, the obstacles repre-
sent no-fly zones. Regions are also excluded due to the limits of the cameras
onboard. The constant flying altitude essentially limits the topographic vari-
ation in the search area, so that survivor detection can still be guaranteed. It
may be useful to develop a version of this algorithm where the flying altitude
of the UAVs can vary, but this is not covered in the scope of this project.
In the mountainous examples, the limit in topographic variation that can be
accommodated makes for higher obstacle densities. The resulting environment
for the Champaigne Castle example also forms enclosed regions.

In all the examples, the flying altitudes are quite high. The resulting
dimension of the discrete cells is over 80 m, in each example. This is well
above the physical dimensions of UAVs. This means that so long as the UAVs
are not flying in the same cells, there will be no collisions between them,
according to the UAV collisions model that was given in Section 3.5.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Divide Areas Algorithm

This chapter describes the approach that was used to divide the search environ-
ment into sub-regions based on the individual UAV locations. The approach
is based on the divide areas algorithm for optimal multi-robot coverage path
planning (DARP). Section 6.1 provides an overview of the DARP algorithm
and how it executes. The advantages and disadvantages of DARP are also
discussed, as well as the motivation for using the algorithm. Section 6.2 de-
scribes how the DARP algorithm was modified for the multi-robot search and
rescue problem. Section 6.3 shows some illustrative examples of how DARP is
applied to the grid map representations that were fitted to real-world maps in
the previous chapter.

6.1 DARP Algorithm
The approach used in this project to achieve coverage is two-fold. First the
environment is divided into sub-regions based on the initial positions of the
robots. Next, each robot is expected to search a specific sub-region in the
environment using a single robot coverage technique. This section discusses
the algorithm used to divide the environment into sub-regions.

The algorithm that will be discussed is the divide areas algorithm for
optimal multi-robot coverage path planning (DARP). The DARP algorithm
was developed by Kapoutsis et al. [6]. The background information presented
in this section was sourced from the paper that they wrote discussing their
implementation.

DARP is a grid-based, distributed, and offline algorithm. Since it is offline,
the environment is known in full a priori, as well as the robot initial positions.
The environment division is then executed to satisfy a number of requirements
to optimise the coverage, and is based on the initial position of the robots in
the search region.

The distributed nature of this algorithm means that area is divided into
sub-regions. However, to achieve optimal coverage, this algorithm proposes

84

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 85

that one robot is assigned to cover each region and that the regions should be
contiguous and equal sized.

Because it is a grid-based algorithm, the environment should be discrete
and two-dimensional. An example environment is shown in Figure 6.1a. The
dimension of this environment is a 10 by 10 grid. This environment also has
several discrete obstacles, shown as solid black cells. The rest of the cells can
be seen as free cells. The initial positions of the five robots in this environment
are shown as black and white dots.

The results of applying DARP to the example environment can be seen
in Figure 6.1b. The free cells are grouped to form contiguous sub-regions
represented in different colours. Each robot initial position also resides in its
own sub-region. An individual area coverage technique can then be applied to
cover each sub-region with the robot that starts within that region.

(a) Environment Grid (b) DARP Application

Figure 6.1: Example environment grid showing the resulting area division after
applying the DARP algorithm to it.

The objectives of the DARP algorithm are listed below:

1. Every cell in the environment, that is not classified as an obstacle, must
be covered. This is known as complete coverage.

2. Each cell in the environment must only be visited once, and only by one
of the robots. This is known as the non-backtracking requirement.

3. Each robot should have as close to an equal amount of cells as possible
assigned to it for covering. Their sets of cells should be of roughly the
same size.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 86

4. The sets of cells assigned to each robot should be a connected sub-region.
This means that when generating a path to cover the cells within its set,
a robot would not need to traverse the sub-region of another robot to
reach its own.

5. The initial position of each robot should be contained within the set of
cells assigned to it. This means that a robot would not need to traverse
another robot’s sub-region to reach its sub-region for coverage.

The objectives are met using an iterative approach. The algorithm slowly
changes the sub-regions to have spatial connectivity and be of equal size. The
location of these regions are based on the robot initial positions, to ensure one
is present to search each region. There are therefore an equal number of robots
to sub-regions.

Provided each cell is assigned to a robot, each cell will be covered with the
single robot coverage algorithm. Note that the no backtracking requirement
needs to be met by the single robot coverage algorithm as well.

In each iteration of the algorithm, three multipliers are calculated to up-
date a distance matrix. Eventually it converges until the conditions for opti-
mal coverage are sufficiently met. What the algorithm does in each iteration
is summarised below:

1. Assign each cell with coordinate (x, y) to a robot using

A(x, y) =argmin Ei(x, y)
i∈1,...,nr

(6.1)

where A is the assignment matrix, i is the robot index, and Ei is the
evaluation matrix for the ith robot.

2. For each ith robot where i ∈ 1, ..., nr:

a) Determine the amount of cells assigned to each robot (ki).
b) Update correction multiplier (mi) using

mi = mi + c(ki − f) ∀i ∈ 1, ..., nr (6.2)

where c is a positive constant, and f is the desired number of cells
to be assigned to each robot.

c) Establish a matrix representing all cells that are spatially connected
to the robot (Ri) and one representing those cells that are not con-
nected (Qi).

d) Calculate connectivity matrix (Ci) using

Ci(x, y) = min(||[x, y]− r||)−min(||[x, y]− q||)
∀r ∈ Ri, q ∈ Qi, i ∈ 1, ..., nr

(6.3)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 87

where r is an index for spatially connected cells in Ri, and q is an
index for unconnected cells in Qi.

e) Generate the randomized matrix (Zi).

f) Update evaluation matrices using

Ei = mi(Ei ◦ Ci ◦ Zi) ∀i ∈ 1, ..., nr (6.4)

where mi is the correction multiplier, Ci is the connectivity matrix
multiplier and Zi is the randomized matrix multiplier for each ith

robot.

The algorithm starts by operating similar to a Voronoi partition [3]. A
matrix is made for each robot with the same dimension as the environment.
These are referred to as evaluation matrices (Ei). They contain the distances
from each cell in the environment to the respective robots. The original al-
gorithm makes use of the euclidean distance measure for constructing these
matrices.

The evaluation matrices are then compared to one another to generate an
assignment matrix (A). Each free cell in the environment is assigned the index
of a robot. This is done according to Equation 6.1, which initially means that
a cell is assigned to the robot closest to it.

The robots are expected to cover the cells that are assigned to them.
Because each cell is assigned one robot, the first objective for optimal coverage
is met. However, the regions formed by these assigned cells are not necessarily
contiguous, nor are they of equal size.

The evaluation matrices are therefore iteratively updated to meet the
third and fourth objectives for optimal coverage. This is done using three
different multipliers, and the process is illustrated in detail in Figure 6.2.

The first multiplier is the correction multiplier (mi), which is associated
with the third requirement of equal sized regions. A scalar multiplier is cal-
culated for each robot, to be multiplied with its associated evaluation matrix.
The calculation of this multiplier is highlighted in green in Figure 6.2.

For each robot, the desired number of cells to be assigned, denoted by f ,
is the total cells in the region divided by the number of robots. The actual
number of cells assigned to the ith robot is denoted by ki. The difference
between these, multiplied by a positive constant (c), is used to to update the
correction multiplier according to Equation 6.2.

Overall, the multiplier’s value decreases if too many cells are assigned to
this robot and increases if too few are assigned. This update occurs in each
iteration.

The next multiplier is the connectivity matrix (Ci), which is associated
with the fourth objective of contiguous sub-regions. The algorithm detects any
regions that are not spatially connected to the robot assigned to it. For each
robot there is a matrix representing all the cells that are spatially connected

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 88

to the robot they are assigned to (Ri). Similarly there is matrix representing
all the cells that are disconnected from the robot they are assigned to (Qi).

Equation 6.3 shows the equation used to calculate the multiplier. This
formula is applied to every cell in the environment. The distance of each cell
to the nearest cell within the spatially connected region is calculated and the
distance to the nearest disconnected cell is then subtracted from this.

The connectivity matrix increases the likelihood of cells closer to the con-
nected region being assigned to that robot. Those further away in turn become
less likely to be assigned to this robot in the next iteration. A weight is associ-
ated with this matrix which increases or decreases its effect per iteration. The
calculation of the connectivity multiplier is highlighted blue in Figure 6.2.

The algorithm terminates when two conditions are met. The first is that
all regions are connected, and so all the connectivity matrices are a matrix of
ones. The second is that all robots have been assigned a similar number of
cells.

The maximum allowable discrepancy in assignments (∆max), as shown in
Figure 6.2, can be set by the user. This is defined as the maximum allowable
difference between the most number of cells assigned to a single robot and the
least assigned to a single robot.

The last multiplier is a random matrix multiplier (Zi), which is highlighted
yellow in Figure 6.2. This multiplier is a matrix of small random values that
account for any edge cases. Generally, the effect it has is that cells which are
equidistant from two or more robots are randomly assigned to different robots
until the requirements are met. Distance in this case refers to the adjusted
distances of the evaluation matrices.

This multiplier helps resolve edge cases but causes a random element
to the solution, meaning the same environment may have multiple different
solutions. How much they differ would depend on the weight of the random
element, which can be adjusted.

Equation 6.4 gives the equation to update the evaluation matrices in each
iteration, with i representing the robot index and nr representing the total
number of robots. This equation is reiterated in Figure 6.2, which portrays
the logical flow of the DARP algorithm overall.

The final requirement of no backtracking was met by dividing the envi-
ronment into smaller cells. Each discrete cell in the environment is divided
into four equal sized, smaller cells. These are the cells that the UAVs would
traverse. The size of the smaller cells would be determined by the footprint of
the UAV’s camera to ensure complete coverage. This only works for certain
individual area coverage algorithms. The sweep-like search of the spanning
tree algorithm which is used in this project means that the no backtracking
requirement is indeed met using this technique.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 89

Calculate
Evaluation
Matrices

(𝐸𝑖 , 𝑖 ∈ 1, … , 𝑛𝑟)

Calculate
Assignment
Matrix (𝐴)

𝑖 = 1

Unconnected
Region

Calculate
Connectivity
Matrix (𝐶𝑖)

Connectivity
Matrix (𝐶𝑖) is

Matrix of Ones

Set Starting
Discrepancy

(∆𝑡ℎ)

Max – Min Cells
Assigned ≤ ∆𝑡ℎ

All Regions
Connected

𝑖 + +

True

False

SUCCESS

𝑖 == 𝑛𝑟
False

True

𝑖 =1

Desired
Cells Assigned
(𝑘𝑖 == 𝑓)

Correction
Multiplier is
one (𝑚𝑖= 1)

Calculate
Correction

Multiplier (𝑚𝑖)

𝑖 + +

True

False

𝑖 == 𝑛𝑟
False

True

Calculate Random
Matrix Multiplier

(𝑍𝑖)

Update Evaluation Matrices
𝐸𝑖 = 𝑚𝑖 (𝐸𝑖 ∘ 𝐶𝑖 ∘ 𝑍𝑖)

𝑖𝑡𝑒𝑟 + +

START

False

True

False

True

Iterations ≤ Max
Iterations

(𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥)

True

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 𝑖𝑡𝑒𝑟𝑚𝑎𝑥/2

∆𝑡ℎ ++

∆𝑡ℎ≤ ∆𝑚𝑎𝑥

True

FAILURE

False

False

𝑖𝑡𝑒𝑟 = 0

Figure 6.2: Flow diagram representing the logic for the DARP algorithm.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 90

6.2 DARP Advantages and Disadvantages
There are some clear advantages and disadvantages to this algorithm. Firstly,
when looking at the fact that DARP is a grid-based algorithm, there are res-
olution limitations. Many existing algorithms make use of a grid-based rep-
resentation of the environment. In offline approaches, this is convenient to
represent the environment. One disadvantage is that if the grid resolution
limits how accurately the environment is portrayed. This is why it is called an
approximate approach [17].

This inaccuracy can be combated by introducing some sensor overlap,
or by simply ensuring the resolution is very high. However, higher resolu-
tion means more computational power is required, so this should not be done
irresponsibly.

A cell in DARP also represents four smaller cells, which are representa-
tive of the actual discretisation of the environment for coverage by a UAV.
This technique to avoid backtracking effectively reduces the resolution, caus-
ing the environment representation to be less accurate. The advantage of no
backtracking is favoured over the decrease in resolution for the purpose of this
project, though.

A search team would need to decide for any given obstacle how best to
represent it in a discrete environment. The examples of Section 5.4 showed
how a discretisation can be executed and how obstacles can reasonably be
approximated, already using the larger cells. In these scenarios there is signif-
icant overlap, which would most likely offset any inaccuracies in environment
representation.

One drawback of DARP is that it cannot account for regions enclosed
by obstacles. Because it is a two-dimensional implementation, it does not
allow for the traversing of obstacles by the UAVs. The search area must be
a contiguous region of cells and cannot have isolated sub-regions. To address
this, Baras et al. [56] proposed a method to extend the algorithm to the third
dimension, but this will not be explored in this project .

Since the UAVs fly at a constant altitude, a two-dimensional representa-
tion is very intuitive. A higher altitude flight also means that the UAVs are
unlikely to encounter any physical obstacles, making it easier to represent the
environment in this way.

Because DARP is a distributed algorithm, each UAV travels only within
its allocated sub-region. These regions do not overlap, meaning that the UAVs
will never collide, provided they follow their planned paths. Therefore, it re-
moves a layer of complexity that often gets added with multi-robot approaches.
So long as the UAVs follow their paths within a reasonable margin of error,
they will never collide with one-another.

The individual sub-regions also mean that existing single-robot coverage
techniques can be used to achieve coverage of the entire environment. The
problem of optimising multi-robot coverage is greatly simplified in this manner.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 91

DARP is also an offline approach to coverage path planning (CPP), so
the environment is known prior to the planning phase. Online approaches are
generally considered appropriate for dynamic environments [43]. This could
refer to any amount of objects in motion within the environment that need to
be avoided. Often times, the other UAVs in the environment are modeled as
dynamic obstacles from the perspective of a single UAV. With this distributed
approach, this is unnecessary, because the UAV paths will never cross one-
anothers’ paths.

Sometimes, online approaches are deemed appropriate because inputting
the environment into the planner a priori is considered too costly [43]. In the
case of SAR, it is reasonable to assume that plotting the environment from
a bird’s eye view is possible with available topographic maps and satellite
imagery, particularly when flying at higher altitudes. The advantage of having
this information available a priori is that the search of the area can be optimised
beforehand and that no decision-making is required in real-time during flight
[43].

There is generally enough information to map out the aerial environment
beforehand, seeing as UAVs fly high enough to avoid most obstructions in an
environment. The examples of Section 5.4 illustrated this phenomenon.

It should be noted that in online approaches, information sharing becomes
quite critical. If the UAVs have a large enough communication range they can
follow a centralized approach, where all data is sent to a central command
station or UAV, that plans all their paths simultaneously. They could also all
operate independently and simply share information when in range, which is
a decentralized approach. [36]

For the offline case, approaches can generally be viewed as centralized.
Their paths are planned in full beforehand, and the only thing that may re-
quire monitoring during flight, is whether they follow this trajectory within an
acceptable margin of error to avoid collisions, and achieve good coverage. For
SAR it would also be beneficial to receive real-time data that can be used to
locate a target.

A benefit of the offline approach is that the UAVs require less sensory
equipment on board. If a UAV is lost during a search, which is not unlikely in
treacherous environments, it is best to reduce the loss as much as possible. It is
also possible to continue without connectivity to a central command station,
provided the UAV has a navigation controller on board and can follow its
planned trajectory. This may be useful in harsher weather conditions.

The methods described in this thesis work on the assumption that the
UAVs have a guidance controller on board and that the UAVs can follow their
paths within a reasonable margin of error.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 92

6.3 Algorithm Modifications
A minor modification was made to the DARP algorithm to make random
environment generation easier. An enclosed space checker was introduced to
remove any regions enclosed by obstacles that cannot be reached by the UAVs.
This ensures that the algorithm will not fail when a randomly generated en-
vironment contains enclosed regions. The obstacle density would just change,
since the enclosed regions are set as obstacles themselves.

Another change was introduced regarding the distance measures used.
The DARP algorithm originally only has the option of using euclidean dis-
tances to set up the evaluation matrices. The option to use manhattan or
geodesic-manhattan distance measures was introduced into the algorithm. De-
pending on the weight of the random matrix multiplier, these distance mea-
sures tend to change the general shape of the sub-regions generated by DARP.
These distance measures in particular were also used in a paper by Nair and
Guruprassad utilizing the Voronoi partition to divide an environment [3]. In
this, they compared the various methods and chose to use the geodesic man-
hattan method for their final implementation. They found that manhattan dis-
tance measures worked better for a grid-based environment and that geodesic
distances made it easier to divide the environment around obstacles in a logical
manner. Because of this it was deemed appropriate to include the manhattan
and geodesic manhattan options for further investigation in this context as
well.

Another modification that was made to the DARP algorithm was that
initial positions of the UAVs were redefined for use with multiple UAVs in a
search and rescue context. An initial position was reinterpreted as a point
from where the UAVs start their search, already at the correct altitude. This
implies that there needs to be a take-off and landing region for the UAVs.
For this project, it is assumed that the UAVs take off from a central ground
station and fly to their initial positions to execute their search. These initial
positions may be spread out over the map, or clustered closely together. The
search team can choose a configuration that applies well to the environment at
hand. A series of configurations were proposed for different numbers of UAVs.

The DARP algorithm was also modified to take into account the en-
durance of the UAVs. The path lengths of the UAVs should not exceed their
flight capabilities. A more detailed description of how the DARP algorithm
was modified for refuelling will be presented in Chapter 8. How this is done
using DARP is by assigning multiple sub-regions to a single UAV. If refuelling
is required, a UAV would finish a particular sub-region, land, and then take
off again to a new initial position for searching the next sub-region that is
assigned to it.

It should be noted that the ground station, where take-off and landing
occur, is seen as an obstacle. It would be unwise to allow UAVs to fly over
this area seeing as it may induce collisions. It is also unlikely a survivor would

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 93

be present in such an area without being found.
The original algorithm assumes an orthogonal vehicle when implementing

their sub-region coverage technique. This means that the paths for cell cov-
erage are always straight lines of the same length, since the cells are square
and the use Manhattan motions. With this in place, if the algorithm can gen-
erate sub-regions of exactly the same size, the path lengths of the individual
UAVs would be the same length. This is assuming these single robot coverage
algorithms cover each cell only once.

For this project, the dynamics constraints of the UAVs were introduced
in the sub-region coverage technique, and the semi-circular path segments are
actually slightly shorter than the straight-line segments. Strictly speaking, the
number of rotations in a path would influence the total path length. However,
this slight discrepancy in the total path lengths was considered to be negligible,
and was not taken into account in the sub-region division.

6.4 Illustrative Examples with Different
Environments

This section shows examples of how the divide areas algorithm divides the de-
marcated search area into sub-regions, using the same four environments that
were discretised in the previous chapter. For clarity, the sub-region divisions
are shown on the discretised environments and they are not overlaid on the
original satellite images or topographical maps. For each example, a different
number of UAVs are used to search the area, to illustrate the effect of the
number of UAVs.

Two separate UAV configurations are also explored for each scenario. A
dispersed configuration means that the UAVs are some distance apart and are
fairly spread out through the environment initially. A clustered configuration
implies that the UAV initial positions are very close together, which tends to
pose more of a challenge when attempting to divide areas fairly. The clustered
scenario is a precursor to the configurations that will be used when a central
take-off and landing zone is explored in more detail. Due to the central take-off,
the UAVs are likely to be closely spaced once they reach their initial positions
at the search altitude.

Spitskop

The Spitskop environment is shown in Figures 6.3b and 6.3a. Due to the large
area to be covered, five UAVs are used. The UAVs are assumed to start within
the centre of one of the small discrete cells and are shown on the figures as
black dots with a small white dots at their centres.

In the clustered example, the UAVs are spaced at most five cells apart.
This showcases the trade-offs that DARP can make, even when the UAV ini-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 94

(a) Dispersed UAVs

(b) Clustered UAVs

Figure 6.3: Results of applying the DARP algorithm to the Spitskop example
environment with five UAVs

tial positions are close together, to form contiguous regions for searching. The
black regions in the figures are naturally the discrete obstacles in the environ-
ment. The other coloured regions all respectively represent a sub-region to be
searched by a particular UAV, which is also present within that sub-region.

The shapes of the sub-regions are clearly very dependent on the UAV
initial positions. The regions in the clustered example form very narrow sec-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 95

tions around the UAV initial positions. This is necessary to keep the UAVs
in their assigned sub-regions, while also keeping the regions contiguous and
equal-sized. In the dispersed example, the sub-regions have shapes similar to
what a Voronoi partition would have resulted in.

The size of the Spitskop map is 3698 cells in total, with 967 of them being
obstacles. The environment therefore has an obstacle density of about 26%,
and a resulting 2731 free cells. With five UAV initial positions, a perfect divi-
sion of this environment would result in a discrepancy of one. The discrepancy
is the difference between the maximum number of cells assigned to one UAV
and the minimum number of cells assigned to one UAV. It is a measure of how
equally the area is divided. A perfect division will always have a value of one
or zero.

The clustered scenario achieved a perfect discrepancy, with 546 being
assigned to each robot except one, which has 547 cells assigned to it. The
dispersed scenario scenario came close to a perfect division, with a final dis-
crepancy of four cells. The cell assignments for the five UAVs were 546, 544,
547, 548 and 546 cells respectively. In both cases, the resulting sub-regions
were very close in size and were contiguous. The objectives for optimal area
division were practically achieved.

Champaigne Castle

The next environment is the Champagne Castle scenario. This environment
has a high obstacle density, in part to show how the algorithm would deal
with a narrow search region. The original discretisation of this environment
has enclosed spaces. These enclosed regions can be seen in Figure 6.4.

Figure 6.4: Champagne Castle example environment with its enclosed spaces.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 96

There are two options for dealing with these enclosed regions, both of
which are shown in Figure 6.5.

(a) Champagne Castle example environment with its enclosed spaces removed as
obstacle.

(b) Champagne Castle example environment with its enclosed spaces joined to the
main region.

Figure 6.5: Representation of the two ways to handle enclosed spaces on the
Champagne Castle example.

The first option is to remove the enclosed regions, that are not spatially
connected to the main region, by making them obstacles. Figure 6.5a shows
how these regions are ignored by viewing them as obstacles. In this example,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 97

three regions are automatically removed by the algorithm. This is shown by
adding black squares in these regions, which represent obstacles. What is left
is a spatially connected, but smaller search region. Some regions are effectively
not covered.

The second option for dealing with the enclosed regions is to connect them
to the main region. This is only feasible for scenarios where the obstacles that
get removed are not physical obstructions. For the Champagne Castle exam-
ple, the obstacles in the environment are not physical obstructions. Some of
the obstacles represent the South African and Lesotho border. These obstacles
cannot be removed.

The rest of the obstacles in this example can be removed though, since
they represent regions that are excluded simply because target detection is not
guaranteed in them. The UAVs can technically fly over these regions, therefore
a minimal amount of obstacles are removed to allow the UAVs passage. The
resulting environment map can be seen in Figure 6.5b. Some of the black
squares, representing obstacles, have been removed to make the search zone a
spatially connected area.

The UAVs can traverse these regions in this case, but are not guaranteed
to detect a survivor when flying over them. These areas should therefore not
be considered covered in the SAR operation. Some redundant coverage is
favoured over missing certain areas for searching in this case. There may be
scenarios wherein a search team decides it is more appropriate to exclude these
regions than incur redundant coverage by including them. It would depend on
the scenario.

The environment representation with the removed obstacles is used in the
DARP implementation for this example. The dispersed and clustered versions
of this implementation can be seen in Figures 6.6a and 6.6b respectively. For
this environment, the sub-region shapes do not differ as greatly, due to the
limited space to begin with.

Three UAVs were placed in the environment since it is a smaller search
region. The narrow search region means that there are some spaces that are
only one large cell wide. These regions make it possible for UAVs to effectively
block one another during the division of areas. A UAV initial position should
ideally not be in or near such a narrow region.

The overall size of this environment is 2015 cells. Of these, 1641 cells are
classified as obstacles, making the resulting obstacle density about 81%. The
resulting 374 cells need to be searched by three UAVs, therefore a discrepancy
of one would indicate a perfectly equal area division.

Due to the high obstacle density and the challenging environment shape,
the area division in this environment is less than perfect for both cases. The
dispersed scenario had a resulting discrepancy of 41 cells. The actual assign-
ments for the three UAVs were 123, 146 and 105 cells. For the clustered
scenario, there was a discrepancy of 30 cells. The final assignments were 142,
120 and 112 cells respectively.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 98

(a) Dispersed UAVs

(b) Clustered UAVs

Figure 6.6: Results of applying the DARP algorithm to the Chapaigne Castle
example environment with three UAVs

This is not an ideal scenario for application of the DARP algorithm. For
the algorithm to have more suitable cell assignments, it may be useful in
future to allow some overlap between the individual sub-regions, but this would
require collision avoidance to be considered.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 99

Aberdeen

The third example for a DARP implementation is that of Aberdeen, and in
this case four UAVs are used. This is a wider open region and the shapes
produced by the DARP algorithm are very intuitive in Figures 6.7a and 6.7b.

The clustered example features a configuration where the UAVs are in a
square formation close to an obstacle in the environment. This also results in

(a) Dispersed UAVs

(b) Clustered UAVs

Figure 6.7: Results of applying the DARP algorithm to the Aberdeen example
environment with four UAVs

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 100

the sub-regions forming very narrow portions near the UAV initial positions.
The overall shapes are not quite as elongated as with the Spitskop example.
This is because there is more open space for the search, with less obstacles in
the environment.

The dispersed example very closely represents a Voronoi partition due to
the spread of the UAVs. They are spaced fairly equidistant from one-another,
but still far apart.

This Aberdeen map consists of 2244 cells in total, with 394 of them being
classified as obstacles. The obstacle density is about 18%. As expected, this
is a considerably lower obstacle density than the mountainous environments
of Spitskop and Champaigne Castle. With four UAVs, and 1850 free cells, a
perfect division would once again result in a discrepancy of one.

For both the dispersed and clustered scenario, a perfect division was
achieved for this environment. In both cases, two UAVs were allocated 463
cells and the other two were allocated 462 cells. This environment is notably
less complex than the mountainous examples, which is likely why these perfect
divisions were achievable. This is an example of an environment to which the
DARP algorithm is well suited.

Jeffreys Bay

Figures 6.8a and 6.8b finally show the smallest environment, which naturally
only has two UAVs assigned to it. The clustered scenario here does not result
in any noticeable changes, but these examples illustrate the algorithm’s ability
to work with a smaller environment.

The total environment size for this environment is only 105 cells, with 17
of them being classified as obstacles. The resulting obstacle density is 16%,
but the shape of the region of free cells is notably simply. With 88 free cells,
a perfect division in this environment would assign 44 cells to each of the two
UAVs, and have a resulting discrepancy of zero. In both environments, this
perfect division was achieved.

Discussion

The DARP algorithm produced contiguous regions for all the example envi-
ronments. The marine scenario (Jeffreys Bay) and ground scenario (Aberdeen)
produced perfect area divisions, in terms of equal sized sub-regions, as well.
The Spitskop environment, which is a mountainous environment with 26% ob-
stacles, also had near perfect area divisions. The DARP algorithm appears
well suited to these environments. The area division was sub-optimal for the
Champaigne Castle environment, due to its 81% obstacle density and chal-
lenging shape. The DARP algorithm is less well suited to this environment.
Overall, these illustrative results give preliminary evidence that there may

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 101

(a) Dispersed UAVs

(b) Clustered UAVs

Figure 6.8: Results of applying the DARP algorithm to the Jeffreys Bay ex-
ample environment with two UAVs

be some correlation between obstacle density and how successful the DARP
algorithm is.

In each case shown, a different number of UAVs were shown. It is likely in
a real world scenario that the number of UAVs would be limited by availability.
Depending on the number of UAVs available and the size of the environment,
one UAV may need to refuel and fly more than once to cover its region. This
project deals with this problem by introducing a ground station for take-off,
landing, and refuelling. The UAVs in the environment would have a certain

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DIVIDE AREAS ALGORITHM 102

endurance, and based on this a refuelling plan can be developed. This will be
discussed in detail in Chapter 8.

The actual paths of the UAVs will be generated using spanning tree cover-
age (STC). This is not yet shown in the examples of this section. These paths
play an important roll when calculating UAV endurance limitations. There is
only a limited path length that a UAV can execute before needing to refuel or
recharge, at which point it needs to be back at the ground station to do so.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Sub-Region Coverage Technique

This chapter discusses the technique used to generate paths for the individual
UAVs in the environment. After dividing the environment into sub-regions, a
coverage path is devised for each region using spanning tree coverage (STC).
Section 7.1 provides an overview of the method employed as well as the mo-
tivation for using it. Section 7.2 discusses the generation of a spanning tree
for each sub-region. Section 7.3 explains how the spanning tree is circumnavi-
gated to generate the paths for the UAVs. The considerations when using this
technique in the SAR context is discussed in Section 7.4. Illustrative examples
are then shown in Section 7.5.

7.1 Sub-Region Coverage Overview
In this project, the problem of covering a demarcated search area with multiple
UAVs is solved by first dividing the free cells in the environment into sub-
regions. Once the environment has been divided into contiguous sub-regions,
it is possible to use single robot coverage algorithms to cover each sub-region. If
each UAV is guaranteed to achieve coverage of its assigned sub-region, coverage
of all the free cells in the environment is achieved.

To avoid backtracking in the search, the environment is represented using
large cells. These large cells each represent a set of four smaller cells. These
smaller cells are the ones the UAVs are expected to traverse. If a UAV traverses
a small cell using one of a few different manoeuvres, this cell is viewed as
covered. A path needs to be generated to make sure that the UAV executes
one of these manoeuvres in each of the free cells assigned to it. The technique
used in this project to achieve coverage is spanning tree coverage (STC).

Figure 7.1 helps to visualize the concept of small cells and large cells. The
obstacles in this environment, shown as solid black cells, are the size of a large
cell. The smaller cells are indicated on this grid of large cells using dotted
lines. This example environment was shown in Chapter 6 with the large cells
numbered. Now it shown with actual distances in metres, to root the problem

103

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 104

in the real world.

Figure 7.1: Example environment where the divide areas algorithm has been
applied, with small cells depicted inside larger cells.

The discretisation sizes are calculated based on the UAV and camera
combination used to execute the search plan. In this case the Wingtra I and
Sony RX1R II were used.

The starting environment here represents a region of about 5.6 km2. It
is discretised so that the camera is guaranteed to cover a small cell with a
straight line manoeuvre or a 90 degree turn. The dynamic constraints of the
UAV flying at a constant speed and height are taken into consideration. Any
rotation would therefore have a curvature to it. The constant flying altitude
of the UAVs is chosen as 210 m above the highest point in the topography.
The constant flying speed for the UAVs is chosen as 16 m/s. Based on these
decisions, the small cell sizes are determined to guarantee coverage with the
specified manoeuvres. These small discrete cells are grouped into the larger
cells to form an environment representation that can be used in the divide
areas algorithm. This then guarantees that no backtracking would occur when
using a spanning tree to achieve coverage.

Figure 7.1 shows each sub-region created by the divide areas algorithm in
a different colour. One UAV’s initial position is within each sub-region. Figure
7.2 shows how a path would be generated for the UAV in a sub-region to cover
that region using STC. In particular, the green sub-region is shown here.

Figure 7.2a shows the spanning tree that would be generated for this
sub-region. Note how it connects the centres of all the large cells without
creating any loops. Figure 7.2b then shows that a path can be generated to
circumnavigate this tree. Here, the spanning tree is shown in white, and the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 105

path itself in black. The resulting path covers each cell in the environment
using either straight line manoeuvres or 90 degree turns. Complete coverage
is therefore achieved.

Figure 7.2c finally shows the path in isolation, without the tree. The
path meets the dynamic constraints of the UAVs and guarantees coverage.
The UAV initial position, which is shown as the bigger black dot with a white
dot at its centre, is where the path both starts and ends. It is therefore a
closed loop path.

If this coverage technique is applied to each of the sub-regions, the whole
environment will be covered.

(a) Tree (b) Circumnavigation (c) Final path

Figure 7.2: Illustration showing how a spanning tree is used for coverage on
one sub-region.

There are a number of advantages to using STC specifically. The most
obvious advantage is that it guarantees complete coverage. All the cells will
be reached provided the divide areas algorithm creates contiguous sub-regions
for each UAV to cover.

Another advantage is the closed-loop path. In this project, a central
ground station for take-off and landing will be used when forming a more
complete problem with endurance considerations. The UAVs could then take
off from this area to reach their initial positions, complete their circuit within
their endurance limitations, and then land again after they return to where
they started.

The closed loop simplifies the take-off and landing problem. It also means
that multiple circuits can be used to formulate a refuelling plan. This will be
discussed in Chapter 8 in detail.

The spanning tree algorithm, as it is applied here, means that the UAVs
can use simple manoeuvres to cover the area. They only need to be able to
execute 90 degree turns and straight line manoeuvres. This means that achiev-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 106

ing complete coverage is easier, since coverage only needs to be guaranteed for
these specific motions in each cell.

Ensuring the UAVs can execute their paths within their dynamic con-
straints is also simplified. If a way is formulated for them to execute each
manoeuvre within a cell, then it follows that they can execute their entire
paths.

The final benefit of STC is that there is an option to use minimum span-
ning trees (MSTs). This means that weights can be assigned to certain points
of a graph to change the shape of the spanning tree. This can be used to
favour certain sweep directions for a specific environment. Certain sweep direc-
tions way be more favourable due to weather conditions or simply environment
shape.

STC is a grid-based, offline technique. Therefore it has some inherent
disadvantages. The resolution of the environment is limited since UAV ma-
noeuvres need to be executed within the confines of the cells. The modularity
it offers is very useful in guaranteeing coverage and generating full path plans
a priori. However, this discrete environment is only an approximation of the
real environment.

The technique used for environment representation in this project intro-
duces a large amount of overlap with the camera FOV when covering a cell.
The disadvantage of this is that there is redundant coverage. However, this
overlap likely offsets the inaccuracy in the environment representation.

The offline technique means that the algorithm is not adaptable to a
dynamic environment. However, there is less need for onboard equipment to
plan paths in real-time. Since the UAVs fly very high, a static representation
of the environment is realistic. With topographic maps and satellite imagery,
it would be fairly easy to formulate a two-dimensional, static environment
representation. It is assumed there are no dynamic obstacles to consider for
the purpose of this project.

The algorithm also cannot adapt in scenarios where the divide areas al-
gorithm fails, but the divide areas algorithm is quite robust and the scenarios
wherein it fails are likely avoidable.

7.2 Spanning Tree Generation
Kocay and Kreher [76] wrote a book in which they address the spanning tree
as a structure. Much of the information in this section is with reference to this
book. Provided one has a connected and undirected graph, a subset of this
graph can be found that is referred to as a spanning tree. A graph constitutes
a set of nodes and edges. Figure 7.3 shows an example graph with four nodes
and five edges. A spanning tree is a subset of the graph that has a number
of properties. It contains all the nodes of the original graph but only enough
edges to connect all the nodes to form a connected graph.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 107

The nodes in a spanning tree are connected so as not to form loops. The
result is that the number of edges is equal to one less than the number of
nodes. A number of possible spanning trees can be generated for the example
graph. In this case there are eight possibilities, which are shown in Figure 7.4.

Figure 7.3: Diagram showing an example of a graph with four nodes and five
edges.

Figure 7.4: Diagram showing possible spanning trees of the example graph.

A specific type of spanning tree seeks to minimise the overall spanning
tree weight. This is known as a minimum spanning tree (MST). This is useful
for a graph that has weights assigned to its edges. This weight could be
representative of a number of different things, for example spatial distance
between nodes. A minimum spanning tree would effectively minimise the cost
of connecting all the nodes in the tree.

Figure 7.5a shows the spanning tree graph with weights assigned to its
edges. There are often multiple MSTs to a graph. In this case there is only
one, and it is shown in Figure 7.5b. The total weight of the MST for this
graph is 8.

With the grid-based environments used in this project, a graph can be
made using the large cells in the environment. Figure 7.6 shows the process of
creating a graph using the centres of the large, free cells.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 108

(a) Graph with Weights. (b) Minimum Spanning Tree.

Figure 7.5: Diagrams showing an example of a a graph with weights and the
resulting Minimum Spanning Tree of that graph

Step 1: Discretise environment Step 2: Group into large cells

Step 4: Generate graphStep 3: Add obstacles

Figure 7.6: Illustration showing how a discrete environment is used to create
a connected, undirected graph.

Step 1 in Figure 7.6 shows a square environment that has been discre-
tised into small cells. The number of rows and columns for this environment
approximation is required to be even, since they need to be grouped to form
the large cells. Step 2 shows how the small cells are grouped into larger cells

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 109

for the square environment. Step 3 then shows how obstacles are added to
the environment at the resolution of the large cells. In this case, two cells are
designated as obstacles.

This environment can now be converted into a connected and undirected
graph by introducing a set of nodes and edges. The nodes are at the centres
of the large cells that are not obstacles. All the free cells in the environment
get connected by the graph.

Step 4 in Figure 7.6 shows the resulting graph in black, with the dots
representing the nodes of the graph and the lines between them representing
the edges. The nodes are at the corners of small cells, excluding those at the
borders of the free region. The edges in turn are along the edges of the small
cells and connect the nodes. Altogether, this graph has 14 nodes and 17 edges.

Seeing as the edges provide a path from any one node to any other node
in the graph, it is a connected graph. The edges also do not have an associated
direction, meaning the graph is undirected. With these properties, the graph
can be used to construct a spanning tree.

The spanning tree is still a connected and undirected graph, but if one
edge were removed the graph becomes disconnected. Figure 7.7 shows an
example of a spanning tree that could be found for this example, with 14
nodes and 13 edges.

Figure 7.7: Diagram showing a possible spanning tree for the environment
graph.

This spanning tree is the first step in achieving coverage for this envi-
ronment. However, a single spanning tree would be used for a single UAV in
that capacity. Therefore, if the divide areas algorithm is applied to generate a
sub-region for each UAV, each sub-region would have a spanning tree applied
to it as if it were its own environment. Taking the example environment from

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 110

Figure 7.1, a set of spanning trees can be found. The result is shown in Figure
7.8. Here the spanning trees are the dark black lines connecting the large cell
centres.

The UAV initial positions are adjacent to the spanning trees, at the centres
of small cells. The UAVs are expected to traverse the small cells in order to
achieve coverage. Therefore, the spanning trees set up a type of barrier for the
UAVs to follow in order to cover their respective sub-regions.

Figure 7.8: Example environment with a spanning tree generated within each
sub-region.

The spanning trees in this example are generated using Prim’s algorithm
[63]. This is an algorithm that generates an MST. For this tree, all edges
are weighted equally and any of the possible spanning trees would qualify as
an MST. The effect that adding weights has on the coverage paths will be
discussed further in Section 7.4.2.

7.3 Path Generation
In order to cover the sub-regions using a spanning tree, the trees are circum-
navigated. The clockwise circumnavigation process is described in Section
7.3.1. Dynamic constraints are then taken into account for the generated
paths, which is discussed in Section 7.3.2.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 111

7.3.1 Spanning Tree Circumnavigation

Once the spanning tree has been generated, it can be used to achieve coverage
of an environment or region. This is done by circumnavigation of the tree and
is referred to as offline spanning tree coverage (STC), according to Gabriely
and Rimon [53]. When generating a path that circumnavigates the tree, one
effectively generates a coverage path that moves through the centres of the
small cells, which are the original environment discretisations.

Gabriely and Rimon [53] did not document their process for spanning tree
circumnavigation, therefore a unique circumnavigation method was developed
as part of this project. Circumnavigation was achieved using a two phase
process. Initially, a series of arrows are generated to represent a clockwise
motion around the tree. This looks similar to a directed graph, because the
edges are assigned directions. However, because these arrows are used to
generate a path for tree circumnavigation, there will be two arrows on each
edge and the order in which they are used is crucial. In the second phase,
these arrows are used to generate the waypoints necessary to circumnavigate
the tree.

A convention was established in order to generate the arrows and way-
points consistently. Firstly, once the tree is generated, a starting node is cho-
sen. From this node, a walk is done from one node to the next to form arrows.
These arrows are generated in such a way that they can be used to represent a
clockwise motion around the tree. Keeping this clockwise convention in mind,
waypoints are generated for each arrow.

The direction an arrow points always represents a forward direction within
its reference frame. If the next arrow is pointing in the same direction, it is
considered a forward motion (F). Three other motions are possible, namely left
(L), right (R) and backward (B) motions. It is important to note that, although
backtracking is allowed for arrows, this is not the case for the waypoints. A
representation of how a reference frame would move with the arrows in the
event of a right turn is shown in Figure 7.9.

To generate the arrows, the algorithm first chooses a starting node. This
node is one of the nodes on the tree with only one edge. Of the nodes numbered
in Figure 7.10a: nodes 0, 10 and 13 would qualify. Assuming node 0 is chosen,
the arrows can then be generated as shown in Figure 7.10b. A gap is placed
between the arrows here for clarity, but they can be viewed as lying on the
edges of the spanning tree.

The arrows follow a clockwise motion, with orange being generated first.
Next follows blue and then green. Every time a backward motion is executed,
the arrow colours are changed in order to show the order of arrow generation
clearly.

In order to generate the arrows in the correct order, a prioritisation strat-
egy is used based on the clockwise convention. When a node has multiple
edges, the correct next arrow direction is chosen by cycling through the pos-

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 112

Figure 7.9: Diagram showing how the reference frame representing motions
would move with a right turn.

(a) Numbered nodes (b) Arrows

Figure 7.10: Illustration showing how arrows are generated for the first phase
of spanning tree circumnavigation.

sible motions in the reference frame (Figure 7.9). Left is prioritised first, then
forward, right and lastly backwards.

This convention ultimately results in a clockwise circumnavigation. As
an example, observe node 7 with the assumption that the last arrow generated
was the orange arrow which runs from node 6 to node 7. The next arrow is
chosen by looking at the edges of node 7.

Node 7 does not have a left edge and so the next arrow will not be in
that direction. However, it has a forward edge and so that is chosen as the
next arrow. The right and backward edges are not considered because of the
existence of the forward edge. The next arrow is thus one going from from node
7 to node 8. The order of these arrows is important for waypoint generation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 113

Figure 7.11 shows the four different motions and how waypoints would
be generated for them. The reference frame of the previous arrow is used to
establish what motion occurred. For a left turn, one waypoint would be added.
Correspondingly, a forward motion would constitute adding two waypoints, a
right turn requires adding three, and a backward motion requires adding four
waypoints.

Figure 7.11: Diagram showing the four possible motions of an arrow within a
particular reference frame.

In the figure, the grey arrow represents the previous arrow and the grey
dots are its associated waypoints. The reference frame shown is for this arrow.
The current arrow is shown in black with the black dots being the waypoints
that are generated at this instance.

The start node will always be treated as a backward motion, and so the
waypoints phase will always start with the generation of four waypoints. Figure
7.12a shows all the waypoints generated from the arrows of corresponding
colours. The first four orange waypoints are linked to the arrow running from
node 0 to node 1. All waypoints after that follow the motions as depicted
in Figure 7.11. Figure 7.12b shows the path generated from these waypoints
overlaid on the original spanning tree, which is shown in grey. This clearly
shows the resulting circumnavigation path in black.

The resulting path achieves full coverage of the environment, provided
the UAV is capable of orthogonal motions. The assumption here is that the
camera footprint will cover the cell when the UAV traverses that cell. The
discretisation of the environment into the small cells would be executed with
this in mind.

To bring it back to the original problem, this technique should be com-
bined with the divide areas algorithm. This circumnavigation would be applied
to each sub-region in a divided environment. Figure 7.13 depicts this on the
example environment used in this chapter so far. Here the spanning trees

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 114

are depicted in white. The circumnavigation paths with their waypoints are
depicted in black.

(a) Path generated by generating way-
points from arrows

(b) Resulting circumnavigation path
around spanning tree

Figure 7.12: Illustration of how waypoints are generated from arrows along
with the resulting circumnavigation path around the spanning tree.

Figure 7.13: Example environment with the spanning tree circumnavigation
shown.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 115

Note how the UAV initial positions lie on one of the waypoints that are
generated. This waypoint can be set as the starting point for the UAV paths.
The UAVs are each then part of a closed-loop path. If they follow these paths
in a clockwise fashion, each UAV would traverse each cell in its assigned sub-
region. The ultimate result then is complete coverage of all the free cells,
provided the search vehicle is capable of orthogonal movements. The UAV
ends where it starts, resulting in the closed loop.

7.3.2 Dynamic Constraints

The circumnavigation of a spanning tree results in complete coverage, but
does not yet account for the dynamic constraints of the UAV. The dynamic
constraints should be taken into account when discretising the environment to
ensure coverage. It is assumed that the motions used here would still result in
complete coverage as a UAV traverses a cell.

The simple motions of the circumnavigation mean that dynamic con-
straints only come into play for the 90 degree turns. To facilitate the process
of adding them, the waypoints that are generated in the circumnavigation are
all shifted by half a cell. This places diagonal lines on each cell where a turn
occurs. These diagonal lines can then be replaced with a circular waypoint.

The result is a set of waypoints for the UAV that are either straight line
waypoints or circular waypoints. To illustrate this, the waypoints that are
generated for a backward motion are shown again in Figure 7.14a. The arrows
here show the direction of motion of the UAV, which is clockwise around the
spanning tree.

(a) Original waypoints (b) Half shifts (c) Circular waypoints

Figure 7.14: Diagrams showing how the original waypoints are shifted to form
a set of circular and straight line waypoints.

The dimension of a small cell (l) is indicated in the figure. The spanning
tree is not shown, but it would have a vertex spanning from the centre of the
bottom large cell to the centre of the top large cell.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 116

The result of applying the the half shifts to the waypoints is shown in
Figure 7.14b. The shifts are done counter clockwise, in the direction opposite
to the direction of motion. The two 90 degree turns become diagonal lines
which can now by converted into circular waypoints. Figure 7.14c shows the
curves that replace the diagonal lines. If these curves were given as input to
a UAV, it would be represented as a radius and an angle, instead of the point
coordinates that represent the straight lines.

Equation 3.7 showed the calculation to determine the minimum turning
radius of a UAV for a limiting bank angle and speed. It is assumed that the
bank angle chosen can be sustained throughout the path and that it does not
result in an very costly manoeuvre in terms of energy consumption. The speed
of the vehicle and a sustainable bank angle is chosen as part of the environment
discretisation process.

This minimum turning radius will be used as the turning radius of the
UAV for all 90 degree manoeuvres. It is possible that this radius is equal to
the size of half the discretisation (r = l

2
). This is depicted in Figure 7.15a.

In this case, the diagonal line from the half shifts would be replaced by one
circular waypoint. There is also the case where the radius is smaller than this
dimension (r < l

2
). In this case, two straight line segments are added to ensure

the waypoints still form a closed loop. This is depicted in Figure 7.15b. The
discretisations are designed explicitly so that the radius would never exceed
this dimension.

(a) r = l
2 (b) r < l

2

Figure 7.15: Diagrams showing how the waypoints look when the turning
radius is equal to or smaller than half the discretisation size.

It is also possible to simply increase the turning radius of the UAV to
match the dimension of half the square discretisation. For this project, the
minimum turning radius is simply used as the turning radius.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 117

Dynamic constraints can be added to the circumnavigation paths in the
example shown in Figure 7.13. In doing so the UAV initial positions would
also get shifted by half a cell. Figure 7.16 depicts just the intermediate step of
the counter clockwise half-shifts of the paths. The spanning tree is no longer
depicted in this figure.

Figure 7.16: Example environment with waypoint half-shifts shown.

Figure 7.17 goes on to show the diagonals being replaced by circular way-
points. This figure represents the final paths of the UAVs to cover their as-
signed sub-regions.

For this example, the minimum turning radius was calculated as roughly
56 m. Half the size of the square discretisation was 58.9 m. The turning radius
is smaller than half the square discretisation (r < l

2
) so the scenario in Figure

7.15b applies. The waypoints are very close together for the straight line
segments, though, so they are not really distinguishable in the figure.

It is possible to maintain the initial positions of the UAVs and not shift
them with the waypoints. However, in this application, the initial positions
of the UAVs are chosen by the search team. After take-off, the UAVs would
navigate to their assigned initial positions to execute their search. Therefore,
maintaining these initial positions exactly is not critical.

The shifts also prove useful in ascertaining the initial trajectory of the
UAVs. This trajectory is important to know for a fixed-wing UAV. A means
can then be found for the fixed wing to take off and reach the required altitude,
position, and heading to start the search of its region.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 118

Figure 7.17: Example environment with dynamic constraints shown.

7.4 Spanning Tree Coverage for SAR
This section discusses three prominent considerations when applying STC to a
SAR scenario. Section 7.4.1 discusses survivor detection in a SAR operation.
Section 7.4.2 goes on to mention how weather conditions can be accounted for
using spanning tree weights. Lastly, UAV endurance limitations are addressed
in Section 7.4.3.

7.4.1 Survivor Detection

The main objective of a SAR operation is to locate a survivor or group of
survivors. Survivor detection would occur in real-time. A camera onboard
a UAV would locate a target and then follow some procedure to inform the
relevant parties of the target location. For the purpose of this project it is
assumed that if a target is present within the bounds of a discrete element, it
would be detected by the UAV as it traverses that small cell.

There is by definition camera overlap between the cells. The overlap
regions are not considered for target detection, though. The portion of the
camera FOV that is within the cell the UAV is traversing, is assumed to be
where a target can be spotted.

This algorithm does not address what happens once the target is detected.
The UAVs may, for example, plan paths to land directly after detecting the
survivors, or they might continue on their coverage paths.

Regardless of what happens at detection, it is possible to calculate the
time to locate the survivor(s). It is important, first of all, to reiterate the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 119

assumption that the target is assumed to be stationary for the UAV search
duration.

Figure 7.18 shows a potential target location within the example environ-
ment used previously. It is shown as a black X mark. This is a simulated
target position. In practice, the target location is unknown until one of the
UAVs enter that cell.

Figure 7.18: Example environment showing the DARP division and target
location.

To simulate a detection event, a snapshot can be taken of the UAVs when
the target is found. If a UAV enters the cell the target is in, it completes its
manoeuvre in that cell. Similarly, every other UAV’s path can be drawn to
the last waypoint prior to the detection event.

The resulting snapshot for this scenario, with the paths taken from Figure
7.17 can be seen in Figure 7.19. Because these paths are executed at a constant
speed (Vf), time is simply a question of determining distance.

The distance of a straight line waypoint would always be the length of
the discretisation itself. Therefore, with a constant flying speed, the time
associated with a straight line waypoint can be calculated using

ts =
l

Vf
(7.1)

where ts is the time to execute a straight line manoeuvre, l is the dimension
of a small cell discretisation and Vf is the constant flying speed of the UAVs.

A circular waypoint length may be the length of two short straight line
segments and the arc length of the 90 degree curve. If the radius of the curve

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 120

Figure 7.19: Snapshot of example environment at time of target detection.

is equal to half the dimension of the square cell, it becomes just an arc length.
The calculation for the time associated with a 90 degree turn is given by

tc =
2 · (l

2
− rmin) + rmin · π2

Vf
(7.2)

where tc is the time to execute a 90 degree turn, rmin is the minimum turning
radius of the UAV and Vf is the constant flying speed of the UAVs.

For this example, when making use of these time equations, the time
at which the target is found in the search is two-and-a-half minutes into the
search. If the total path lengths for these sub-regions were executed, they
would take between seven-and-a-half and eight minutes each.

7.4.2 Weather Conditions

Weather conditions are regularly a consideration in SAR operations. For target
detection there may be visibility consideration when there is heavy rain or fog.
High winds or wet conditions may also make it impossible for UAVs to assist.

The advantage of using UAVs is that no human life is put at risk during
the search. Therefore, even if there is a high risk of losing a UAV during a
SAR operation, no lives are put at risk.

There is one way in which the spanning tree style coverage algorithm can
account for weather conditions, and this is using the weights of an MST. The
algorithm used to generate the spanning trees in this section is called Prim’s
algorithm. It is an MST algorithm, that seeks to minimise the weight of a
spanning tree.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 121

Up until this point, the weights of all the tree edges were made equal. By
looking at the results of Figure 7.17, one can see that the way the algorithm is
set up automatically favours an up-and-down type sweep. This can be altered
to accommodate weather conditions.

Figure 7.20: Example environment where the y-dimension is favoured during
path generation.

Figure 7.21: Example environment where the x-dimension is favoured during
path generation.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 122

A crosswind may make it more challenging for UAVs to adhere to their
trajectories. Therefore it is advantageous to favour flying in the direction that
is on the same axis as the wind direction, or the axis on which the largest
component of the wind is.

The spanning tree for the grid-based environments of this project has two
axes that can be favoured. If the y-axis is favoured, the resulting paths will
have paths that closely resemble a back-and-forth sweep along this axis. This
is shown in Figure 7.20. Here, the edges that are parallel to the x-axis would
have higher weights than those on on the y-axis. Similarly, the weights can be
altered to favour a sweep along the x-axis, as shown in Figure 7.21. Here the
edges that are parallel to the y-axis would have higher weights. Due to the
closed-loop nature of this algorithm, an axis can be favoured, but a direction
cannot. Therefore, if the wind is on an axis, the UAV favours upwind and
downwind equally, while avoiding a crosswind.

7.4.3 UAV Endurance

Once a type of UAV is chosen for an application, it is important to know its
endurance capabilities. Longer endurance means that a UAV can continuously
search a larger region without refuelling or recharging. In general, longer
endurance means less UAVs would be necessary to cover a region. If refuelling
is factored in, longer endurance means the search time would not be prolonged
as much by refuelling events. There would be less or no refuelling events.

Often, solar-powered and light-weight vehicles have longer endurance [77].
Solar panels and light-weight materials may however be more expensive. Fly-
ing in overcast or harsher conditions may also prove challenging. It would be
up to the search team to make an informed decision for a specific scenario
regarding which UAV is most appropriate.

The search team must select a UAV that suits their robustness require-
ments while also having a reasonably good endurance. They may also need to
factor in likelihood of UAV loss. It may for example be a good decision to use
more readily available and cheaper UAVs in a scenario with high risk of UAV
loss.

A number of implementations seek to minimise rotations in the UAV
paths [49, 52]. This is because drag is increased during a rotation as opposed
to flat flying. This means that to maintain a constant speed, thrust needs to
be increased, and so energy consumption is increased [78].

Depending on the shape of a sub-region it may be beneficial to sweep along
one dimension, so as to reduce the number of rotations in a path. However, it is
important to consider that the distance flown in a cell is longer when executing
straight line motions than 90 degree rotations, provided the turning radius is
non-zero. The benefit of minimising rotations may therefore be diminished by
the difference in flight path lengths for the different manoeuvres.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 123

The way endurance is treated in this project is based on the predicted
flight times of a particular UAV. This prediction is used to calculate the number
of cells that can be assigned to that UAV for one flight. This is then compared
to the total number of cells in the environment. In this way a minimum number
of flights by this UAV is calculated. If this number of flights is more than the
number of UAVs available, refuelling or recharging may be necessary to achieve
complete coverage.

To show this mathematically, one can start by assuming a specific number
of UAVs are available, represented by (nr)avail. Based on the type of UAV used,
a predicted flight time of that UAV (Tp) can be found in its specifications. To
be conservative, it is assumed that this time is representative of flight time
when flying level and straight. Therefore, rotations and changes in altitude
would constitute reducing this time.

For this project, a 30% safety factor (kt = 1.3) will be applied to any
rotation, as well as to any take-off and landing time, when representing energy
consumption. Because of this, the time to execute a flight path is differentiated
from the energy consumption, which is also measured in time.

The time taken to execute the flight path would be a matter of adding the
time taken to execute the straight line manoeuvres and the time to execute
the 90 degree turns in a path. This is done using

Tf = nsts + nctc (7.3)

where Tf is the total time to execute a flight path. ns is the number of straight
line manoeuvres and nc is the number of 90 degree turns in the path. ts and
tc are the times to execute a straight-line manoeuvre and a 90 degree turn
respectively. .

The energy consumption during flight is also measured in units of time,
but the safety factor is applied to rotations. This is calculated using

(Tf)e = nsts + kt(nctc) (7.4)

where (Tf)e is the total energy consumption during flight and kt is a positive
safety factor. Any additional components of flight, such as take-off and landing
times, are not shown in these equations. This would have to be added to
measure whether the flight paths are within the energy limits if the UAV.

To ensure the UAVs complete their paths within their energy limits, the
predicted flight time can be used to calculate whether any refuels would be
necessary. The time to execute a 90 degree turn (tc), with the safety factor
applied, can be compared with the time taken to execute a straight line ma-
noeuvre (ts). The maximum of these is then used to conservatively represent
the energy taken to cover a specific cell. The maximum energy to cover a large
cell is the four times this amount.

The total available flight time, which represents the total available energy,
can be divided by this to get a maximum number of large cells that can be

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 124

assigned to a specific UAV, as given by

cellsmax =
Tp − ktTm

max(kttc, ts) · 4
(7.5)

where cellsmax is the maximum number of large cells that can be assigned to a
specific UAV, Tp is the predicted flight time of the UAV and Tm is an estimation
of the time to execute any manoeuvres not included in the coverage path of
a UAV, such as take-off and landing times, which also have the safety factor
applied to them.

The suggested maximum number of cells per UAV can be used to calcu-
late the required number of UAVs to cover the environment without needing
refuels. It can be calculated by dividing the total free cells in the environment
with the maximum number of cells that can be assigned per UAV. This value
is referred to as the equivalent number of UAVs. It represents the number of
UAV initial positions required to search the area. Several UAV initial posi-
tions would then be assigned to one UAV, depending on how many UAVs are
physically available. Assuming all the UAVs refuel an equal number of times,
the equivalent UAVs are adjusted to be a multiple of the number of available
UAVs in the second step of the equation given below as

(nr)eq =
cellsfree
cellsmax

(nr)eq = ceil(
(nr)eq

(nr)avail
) · (nr)avail

(7.6)

where cellsfree are the total number of free cells in the demarcated search area,
cellsmax is the maximum number of cells that a UAV can cover in a single flight
before having to refuel, (nr)eq is the equivalent number of UAVs, and (nr)avail
is the available number of UAVs.

The number of refuels can then easily be represented as one less than
the equivalent number divided by the available UAVs. The equivalent UAVs
ultimately represent the number of UAV initial positions, which are a multiple
of the number of available UAVs. Note that refuels, for the purpose of this
project, will refer to any act of getting the UAV flight ready again. This may
be a refuel, recharge, or even a battery change. The calculation for getting the
number of refuels is given by

refuels =
(nr)eq

(nr)avail
− 1 (7.7)

where (nr)avail is the number of available UAVs and (nr)eq is the equivalent
number of UAVs, which equal the number of sub-regions.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 125

7.5 Illustrative Examples with Different
Environments

This section shows examples of the coverage paths that were generated for
the real-world environments that were introduced and discretised in Chapter
5, and divided into sub-regions in Chapter 6. Two of the four real-world
environments are shown with the paths generated using STC laid over the sub-
regions generated by the divide areas algorithm. The other two environments
are not shown, since this would not add any new information. How their
coverage paths would look is fairly intuitive.

Spitskop, Dispersed Initial Positions

Figure 7.22 shows the Spitskop example environment with dispersed UAV ini-
tial positions. Figure 7.22a shows the full paths generated by the spanning
tree algorithm, with dynamic constraints incorporated. Figure 7.22b shows a
snapshot of this same environment at the time of target detection.

The type of UAV used to cover this environment is the Strix 400. Ac-
cording to its specifications, this UAV can fly for between 9 and 10 continuous
hours. This endurance can be attributed to its use of both solar and battery
power [73].

However, the actual path lengths for this area division with five UAVs is
roughly 190 km per UAV. The selected constant speed chosen for the flights
is 14 m/s, which is the cruise speed for this UAV. The time to complete these
flight paths is therefore under 4 hours. This is well under the endurance limit.

The energy consumption during flight, should however have a safety factor
applied so that it can be compared to the endurance limit. Therefore, Equation
7.4 is used to calculate the times representative of energy consumption. The
values are also just under 4 hours, and so are still within the endurance limit,
meaning that it is feasible to cover this entire environment with the available
UAVs, without needing to recharge them. When adding the safety factor for
rotational movements, the times increase only by around 7 minutes.

The flight metrics for each UAV is shown in Figure 7.23. This is a table
that the algorithm outputs upon completion. The first column is the UAV
index. For each UAV, a series of time values are shown in minutes. From left to
right, these values represent flight path times (Tf), energy consumption times
((Tf)e), endurance limit (Tp), and the difference between the endurance limit
and the energy consumption (Tp−(Tf)e). The time difference is representative
of the remaining energy available for landing, take-off, or any other additional
manoeuvres since these values are not included in the energy consumption
calculation. The distance value shows the flight path lengths, and then the
final column shows the number of rotations that is in each flight path.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 126

(a) STC paths.

(b) Survivor detection snapshot.

Figure 7.22: Dispersed Spitskop example environment with the coverage paths
and survivor detection.

Figure 7.23: Table generated by the program for the dispersed Spitskop ex-
ample environment.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 127

Since the Time Excess column has positive values, these paths are feasible
for these UAVs without needing to recharge their batteries. It is important to
account for landing and take-off before making this deduction though. This
will be addressed in Chapter 8. The time limit used is conservatively chosen
as 9 hours here, since this is the lower end of the predicted endurance.

The flight metrics show that the flight paths are feasible, but an important
thing to note is the time it takes for this coverage plan to locate a survivor
in the environment. A target is introduced at a random location. For this
environment, the target is placed at a distance of 2 km on the x-axis and 3.7 km
on the y-axis. The time of detection with these coverage paths is roughly 2
hours into the search. The target is shown as an "X" and can be found in the
orange sub-region.

Spitskop, Clustered Initial Positions

Figure 7.24a shows the STC paths generated for the Spitskop example envi-
ronment, but with the clustered UAV initial positions. Figure 7.24b shows the
survivor detection using these paths.

The target location is the same as with the dispersed example, but in this
case it appears in the red sub-region. However, due to the different shapes of
the sub-regions, the time to find the target is roughly 3 hours and 5 minutes.
It therefore takes longer for the UAVs to find this target for the clustered
example than the dispersed example. This is an intuitive result since the
UAVs are positioned further from the target in the clustered example.

Figure 7.25 once again shows the table generated by the algorithm. Over-
all the time and distance values are very similar to the dispersed example.
This means that the DARP algorithm is very successful in dividing the areas
equally amongst the UAVs for both versions of the example.

If, for the moment, we assumed that there are no additional manoeuvres
such as take-off and landing times, one can calculate how many UAVs are
needed to cover this environment without refuels. Equations 7.5 and 7.6 can
be used to do this. If the value is rounded up to the nearest integer, the number
of required UAVs is three. This would be the case for both the clustered and
the dispersed scenario.

Aberdeen, Clustered Initial Positions

The next examples discuss the Aberdeen example environment. In this case,
only the clustered initial positions example is shown. It is however, first shown
with the up-and-down sweep favoured and then a left-to-right sweep.

These examples make use of the Wingtra I. This UAV has a significantly
lower endurance than the Strix 400 so these examples show a scenario wherein
refuelling would be beneficial. According to the specifications, the Wingtra

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 128

(a) STC paths.

(b) Survivor detection snapshot.

Figure 7.24: Clustered Spitskop example environment with the coverage paths
and survivor detection.

Figure 7.25: Table generated by the program for the clustered Spitskop exam-
ple environment.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 129

I has a maximum endurance of between 42 and 59 minutes [67]. The lower
estimation of 42 minutes is used in these examples.

Figure 7.26a shows the paths generated when four clustered UAVs are
used in this environment. Here the paths favour a up-and-down sweep. A
target is placed at a distance of 6.2 km on the x-axis and 4.7 km on the y-axis,
which falls in the orange sub-region. The detection of this target is depicted
in Figure 7.26b.

(a) STC paths.

(b) Survivor detection snapshot.

Figure 7.26: Clustered Aberdeen example environment with the coverage paths
and survivor detection.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 130

The time to detect the target in this case is 3 hours and about 26 min-
utes. This is assuming these paths can be executed of course. In reality, this
implementation would require refuelling, which would naturally alter the time
it takes to find the target. Once again it is also important to factor in take-off
and landing times in a real world scenario.

The table generated by the algorithm is shown in Figure 7.27. The actual
flight times (Tf) are about 3 hours and 40 minutes. When factoring in energy
consumption this time (Te) increases by roughly 8 minutes in each case. This
value increases slightly with the number of rotations in a path. The energy
consumption is far more than the limiting time of 42 minutes. Therefore, the
Time Excess column has negative values, which reinforces that refuelling would
be necessary for this case.

Figure 7.27: Table generated by the program for the clustered Aberdeen ex-
ample environment.

As what was done with the Spitskop environment, one can calculate the
number of UAVs that are needed to cover this environment without refuelling.
This is once again assuming that there are no additional manoeuvres such
as take-off and landing. According to Equations 7.5 and 7.6, the number of
UAVs required would be 23. This is an unrealistic amount to have available,
therefore reinforcing the need for a refuelling protocol.

Figures 7.28a and 7.28b show the same Aberdeen example but with a left-
to-right sweep favoured. Because of how the paths are oriented in this case,
the target is found in 30 minutes.

According to the table in Figure 7.29, the distances and flight times for
this case are quite similar to the up-and-down sweep. The longest flight path
here is 215 km long, which is only slightly longer than the longest path for the
up-and-down sweep, which is 211.7 km.

Although the flight paths are slightly longer, the number of rotations
for this example is significantly reduced. This is because the sub-regions are
longer in the favoured dimension in the sweep. For the up-and-down sweep,
there were up to 320 rotations in one path. For this left-to-right sweep, the
maximum rotations in one path is 188.

This difference in rotations means that the energy consumption values do
not increase by as much in this case. This is anecdotal evidence that reducing
rotations could decrease energy consumption. However, the value only changes
by a few minutes. Overall, the Time Excess value remains similar for both
scenarios. There is no immediate gain in minimising rotations unless they use

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 131

(a) STC paths.

(b) Survivor detection snapshot.

Figure 7.28: Clustered Aberdeen example environment with the coverage paths
and survivor detection when using a left-to-right sweep.

Figure 7.29: Table generated by the program for the clustered Aberdeen ex-
ample environment with a left-to-right sweep.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. SUB-REGION COVERAGE TECHNIQUE 132

significantly more energy than flying straight. In this case, the assumption
was that rotations use 30% more energy than flying straight.

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Central Deployment and Flight
Scheduling

To bring the implementation in this project closer to a real-world SAR oper-
ation, this chapter details the inclusion of central deployment as well as flight
scheduling and UAV endurance considerations. Section 8.1 gives an overview
of the methods used. Section 8.2 looks at the procedures used to calculate
take-off, departure, approach and landing times for UAVs that refuel. Section
8.3 and 8.4 then respectively discuss how the number of refuels are estimated
for a particular scenario and how the flight schedules are consequently drawn
up. Section 8.5 finally shows the familiar real-world examples with central
deployment and endurance considerations.

8.1 Central Deployment Concept
A problem that has been mentioned throughout this project is the UAV en-
durance limitations. The algorithms that have already been discussed can be
used when accounting for this.

The spanning tree algorithm, that is used to generate the coverage paths
in the environment sub-regions, forms closed-loop paths. This means that a
UAV in a given sub-region can be expected to end its path with the same
heading and at the same coordinates as where it started.

These closed-loop paths work well with a central ground station concept.
This means that the UAVs take off and land from a central location within
the environment. With a central location for take-off, a single UAV can be
launched easily to multiple initial positions in the environment at different
times. A single UAV can therefore be used to search multiple sub-regions,
with refuelling events in between.

The full path of the UAV, from the start of take-off to the end of landing,
should take place within the endurance limitations of the UAV. If each single
sub-region can be searched within the endurance limit of the UAV, it therefore

133

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 134

follows that the entire environment can be searched within the endurance lim-
itations of the craft used. This presumes that all the UAVs in the environment
have the same endurance limitations and that they always start their search
fully fuelled or charged.

Refuelling in this chapter refers to any event, or sequence of events, nec-
essary to get a UAV flight ready. This could be changing or recharging of
batteries. It could also be a physical refuel for combustion engine powered
craft.

With refuelling, a single UAV initial position will still be present within
each sub-region after execution of the divide areas algorithm. However, multi-
ple initial positions may represent a single physical UAV. For this chapter, the
number of UAV initial positions will be referred to as the equivalent number
of UAVs. These are not representative of the number of actual UAVs used to
cover the environment.

To make use of this central ground station concept, the equivalent number
of UAVs need to have initial positions assigned to them. These initial positions
need to be spread out enough to ease the division of areas, while also being
close enough to the ground station to enable moving to and from UAV initial
positions in a reasonable amount of time.

In this project, the UAVs are clustered with at least one large cell in
between them. It is possible to space them one cell apart, but then the divide
areas algorithm would be more likely to take longer to execute, or fail to find a
solution. The UAVs are also placed in the outer small cells within these large
cells and shifted in a clockwise manner. The outer small cells are used so as
not to place all the UAVs directly adjacent to an obstacle. This also allows
them to be spaced slightly further apart.

Figure 8.1 shows example configurations. The first configuration on the
left is used for between one and four equivalent UAVs. The one on the right is
used for between five and eight UAVs. The internal area of this is considered
to be the ground station and is viewed as an obstacle to the divide areas
algorithm. It is assumed that the survivor would not be present in this region,

Figure 8.1: Diagram showing a central ground station with UAV configuration
examples.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 135

or that it is searched manually, if necessary.
For each increase in configuration size after this, the maximum number

of UAV positions increases by four. Larger configurations should be used with
care, particularly in smaller environments. It is not wise to place a ground
station in an environment that occupies a large percentage of that environment.

Note that for a number of equivalent UAVs that is not a multiple of four,
the UAVs’ positions are simply filled in clockwise from the top left corner. It
is possible to create countless alternative configurations for different numbers
of UAVs, but the configurations in this project are designed to be as simple as
possible. A detailed study into the different possibilities is not explored.

When placing a ground station and UAV initial positions in the environ-
ment, it should be placed logically. The search team should choose a wide
open region where take-off and landing would be unobstructed. The take-off
and landing are assumed to respectively end and start in the centre of this
ground station. In other words, the craft reaches altitude at the centre of the
ground station after take-off. Similarly, it starts its descent to the ground for
landing from the centre of the ground station.

Flight schedules need to be calculated to make this ground station concept
feasible. To start with, the problem of flight times can be addressed. Figure 8.2
shows an environment with eight equivalent UAVs. Each is treated as though
it is its own craft and the DARP and STC algorithms are used to generate
coverage paths.

Figure 8.2: Example environment with coverage paths from a central ground
station.

Due to the constant speed application, the path distances can be used
to easily calculate the time taken to execute each path. The eight equivalent

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 136

UAVs, however, actually represent two physical UAVs that each refuel three
times.

Figure 8.3 shows the sub-regions associated with each UAV in the same
colour. To differentiate them, the shading of each sub-region is slightly differ-
ent. This is to visualise which paths belong to the same aircraft. Note how
there are now four UAV initial positions associated with each colour sub-region.

Figure 8.3: Example environment with coverage paths for two UAVs that
refuel.

Take-off and landing times can be calculated to and from the centre of
the ground stations, as mentioned. Departure and approach times are also
calculated. These are related to the manoeuvre associated with moving to and
from the initial positions of the equivalent UAVs. With these times as well as
the flight times known, a flight schedule can be created. The assumption is
that the UAVs take off one after the other and land in the same order. One
UAV has to complete its take-off and departure before the next can begin its
take-off. Similarly, one UAV has to complete its approach and landing before
another can begin its approach. Similar length paths makes this a feasible
schedule, without introducing too many wait times.

An airborne wait cycle would be a circular manoeuvre that the UAV
executes while waiting for its turn to land. It may also wait on the ground
before taking off, but this does not consume energy needed for flight.

The flight schedule for this example is shown in Figure 8.4. The legend
describes what each colour represents. Each coloured region is representative
of an action that consumes energy, except for the refuelling time.

The two UAVs are indexed as robot 0 and robot 1. Robot 0 takes off
first, followed by robot 1. The small white regions on the schedule represent

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 137

Figure 8.4: Flight schedule for the example environment.

time spent waiting on the ground prior to take-off. A green region would
represent an airborne wait cycle. This schedule does not incur any of these
wait cycles. To link the flight schedule back to the coverage paths in Figure
8.3, the blue sub-regions in this figure have been assigned to robot 0 and the
orange sub-regions have been assigned to robot 1.

Note that this example utilises the Wingtra I UAV, which has rather short
flight times. It is limited to about 42 minutes of flight time.

This is still an offline implementation. This means that the number of
refuels must be calculated before generating the paths and schedule. After
the algorithm is run it is then possible to check that the number of refuels is
sufficient for the endurance limitations.

It is possible to therefore iteratively run the full algorithm until a feasible
solution is found. However, in this project an accurate estimation of refuels is
favoured over such an approach. This saves execution time when generating
the algorithm.

Providing a ground station and endurance considerations makes it easy to
see how these algorithms can be used for a real world SAR problem. Central
deployment is an intuitive approach for a SAR operation using UAVs. Planning
around endurance limitations is also crucial to ensuring the mission’s success.

8.2 Time Calculations for UAV Manoeuvres
Departure and approach refer to manoeuvres between the UAV initial position
and the centre of the ground station. Take-off would be the manoeuvre to reach
the search altitude at the centre of the ground station and landing would be
the descent to the ground from the centre of the ground station.

The times associated with all four of these manoeuvres need to be calcu-
lated for each equivalent UAV. This information is critical to later developing
a feasible flight schedule.

The style of configurations for the UAV initial positions was shown in
Figure 8.1. The smallest ground station size is the size of one large cell. The
take-off and landing zone would be within this cell.

Figure 8.3 is labelled with an x-axis and a y-axis. Using this axis system,
it is assumed for this project that the take-off occurs along the positive y-axis.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 138

If north is at the top of the map, as is the general convention, take-off occurs
in a northerly direction.

Once the UAV reaches altitude after take-off, it is assumed to have the
take-off heading, at the centre of the ground station. The style of UAV would
determine how this is achieved. It may take off vertically, from a runway
or perhaps be launched by a mechanism or a person. Assuming it reaches
altitude at the centre of the ground station, it follows that the take-off must
be completed within one half of a large cell size, or simply the length of a small
cell. It may be that this angle is too steep for a particular UAV. In this case
the take-off region needs to be larger or some of the altitude should be gained
during the departure.

For the purpose of this project, reaching altitude at the centre is assumed
to be possible. The time to achieve this is a factor of only the altitude that
needs to be gained and the climb rate of the UAV. The calculation is expressed
by

TT =
Hf −HT

Vc
(8.1)

where TT is the take-off duration, HT is the ground height from which the
take-off occurs, Hf is the search altitude of the UAV, and Vc is the climb rate
of the UAV. The landing time is calculated in a similar fashion. This is the
time taken to descend to the ground from the centre of the ground station at
the search altitude and is expressed by

TL =
Hf −HT

Vs
(8.2)

where TL is the landing duration, HT is the ground height for take-off (which
coincides with the landing ground height), and Vs is the UAV sink rate

Once again, it is assumed that landing is possible within a small cell
length. If this is not possible, then the same rules would apply. Either the
landing region needs to be larger or the descent should start during the ap-
proach.

The benefit of reaching altitude at the cell centre is that the time taken
to reach the UAV initial positions from this point would be similar for all the
equivalent UAVs. The time to reach the initial positions from the centre of
the ground station is referred to as the departure time (TD).

Calculating the departure and approach paths is done using an algorithm
developed by Milne at Stellenbosch University [79]. The algorithm was origi-
nally developed in Matlab, but was reworked into Python for this application.
The algorithm takes two waypoints as inputs. The UAV is assumed to fly at
a given speed. With the initial and final positions, initial and final headings,
and constant speed known, a path is generated to get from the one point to
the other.

First, the departure path is generated to take the UAV from the take-off
position and heading to the initial position and heading of the search path.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 139

The time it takes to execute this path is called the departure time (TD). After
departure, the planned coverage path for that sub-region can be carried out.
Since this is a closed-loop path, the final position and heading of the UAV are
the same as its initial position and heading.

Following the coverage path is the approach path, which is calculated from
the final position of the coverage path to the centre of the ground station using
the same algorithm as with the departure. The time to execute the approach
path is known as the approach time (TA). This path starts with the same
position and heading as what the departure path ended with.

Both the departure and approach manoeuvres are assumed to be carried
out at the search speed of the UAV. The constant speed that is used for these
manoeuvres is therefore the same as what is used for the coverage paths. The
same dynamic constraints would apply during rotations.

To illustrate how this algorithm functions, an example with two points is
shown below. The centre of the ground station is placed at a distance of 200 m
on the x and y axes. The runway, if applicable, is assumed to be aligned with
the y-axis. A UAV initial/final position is then represented by the point at
a position of 700 m on both axes. The algorithm connects the two waypoints
using a straight line tangential to two arcs representing the minimum turning
radius of the UAV. This ensures that the UAV can reach the desired heading
at the end of its path.

After take-off, the starting heading is chosen to be in the direction of the
positive y-axis. For this example, the desired final heading of the UAV, at the
initial position for the coverage path, is assumed to be in the direction of the
positive x-axis. Assuming in this case that the speed limits the turning radius
of the UAV to 50 m, four possible paths are generated. These are depicted in
Figure 8.5a. The shortest of these is then selected, which is depicted again in
Figure 8.5b.

Both waypoints are shown in the figures. The green circle represents the
starting arc and the red circle represents the ending arc on the path. The
small straight lines extending from the arcs are the heading vectors at both
waypoints.

The same method is used to generate the approach paths. Figure 8.6a
shows the four possible approach paths. Figure 8.6b then shows the shortest
path of the four that gets selected.

The positions of the start and end waypoints are opposite to that during
departure. Due to the closed-loop coverage path, the approach starts where
the departure ended, with the same heading along the positive x-axis. At the
end of the approach, the UAV is at the start of its descent from the search
altitude to the ground. The heading at the end waypoint, at the centre of
the ground station, is therefore assumed to be in the direction of the negative
y-axis. This would be its landing heading. Both heading vectors are shown on
the figures.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 140

(a) Four possible departure paths. (b) Shortest departure path.

Figure 8.5: Diagram showing the four possible departure paths for the UAV
and the selected shortest path.

(a) Possible approach paths for a UAV (b) Shortest approach path for a UAV.

Figure 8.6: Diagrams showing the four possible aaproach paths for the UAV
and the selected shortest path.

Now that the path lengths for departure and approach are known, they
can be used to calculate the times associated with them. The calculations for
departure time and approach times are as follows,

TD =
PD
Vf

(8.3)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 141

TA =
PA
Vf

(8.4)

where PD and PA are the path lengths for the departure and approach ma-
noeuvres respectively. TD and TA are the corresponding durations for these
manoeuvres, and Vf is the constant flying speed of the UAVs.

Determining the heading of the UAV at the start and end of its coverage
path is done using the half shifts that are used when formulating the coverage
paths. The coverage paths are executed clockwise, but the half shifts are
counter clockwise. The heading is therefore always in the opposite direction
to the shift relative to the small cell centre.

Figure 8.7 shows how this works. The top square represents a large cell. A
UAV initial position (the black dot) is in the top right small cell of the large cell.
The bottom images depict the four possible half shifts of this initial position
within the small cell. In each case it is clear that the heading, represented by
the arrows, is in the opposite direction to the shift.

Figure 8.7: Diagram showing relationship between heading and half shifts.

The departure and approach paths developed by the algorithm mentioned
can be overlaid onto the example of Figure 8.3. Figure 8.8a shows the departure
paths for the eight equivalent UAVs of this example. For clarity, the sub-region
colours are removed in the figure. A zoomed in view is also shown in Figure
8.8b to more clearly see the headings when they start their coverage paths.

Note that these departure paths would not all be executed at once, but
one after the other. In practice, the starting position may not be in the centre
of the ground station. It would depend on a number of factors and may be
unique to a scenario.

There are certain edge cases wherein collisions could occur between UAVs.
There is assumed to be an online, short-term collision avoidance system on-
board each UAV. This system should be designed to avoid dynamic obstacles
in the environment, including other UAVs, while adhering as closely as possible
to the original planned path [16].

The approach paths are also shown in Figures 8.9a and 8.9b. Note how
the headings at the start of these paths are the same as those at the end of the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 142

departure paths. Once again, green represents the arc where the path begins
and red represents where it ends.

(a) Departure Paths. (b) Zoomed Departure Paths.

Figure 8.8: Departure paths for UAVs in the example environment.

(a) Approach Paths. (b) Zoomed Approach Paths.

Figure 8.9: Approach paths for UAVs in the example environment.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 143

8.3 Endurance Estimation
Flight schedules are generated after the coverage paths have already been de-
termined. Therefore, before exact schedules and times are known, the number
of sub-regions should already be known. The number of sub-regions are equal
to the equivalent number of UAVs, and these are a function of the number
of refuels. It follows then that the number of refuels for the UAVs should be
known prior to formulating the coverage paths.

This section discusses the technique used to determine the number of
refuels that will be necessary in a specific scenario. Figure 8.10 depicts the
logic used in the form of a flow diagram. The first step for calculating refuels
is determining the number of cells that can feasibly be assigned to each UAV.

START

𝑆𝑎 = 0, 𝑆𝑏 = 3

𝑆𝑏 ≠ 𝑆𝑎

𝑆𝑎 = 𝑆𝑏

𝑇𝑚 = 𝑓(𝑆𝑎)

cellsmax = 𝑓(𝑇𝑚)

Calculate 𝑡𝑐
and 𝑡𝑠

cellsfree = 𝑓(𝑆𝑎)

(𝑛𝑟)eq= ceil(cellsfree
cellsmax ∙ (𝑛𝑟)avail

) ∙ (𝑛𝑟)avail

𝑆𝑏 = 3 + 2 ∙ (
𝑛𝑟 eq

4
− 1)

refuels =
neq

navail
− 1

END

True

False

Figure 8.10: Flow diagram showing the logical progression for calculating the
number of refuels.

Equation 7.5 can be used to calculate the maximum number of cells that
can be assigned to a single UAV. The variable Tm in this equation represents
any manoeuvres outside of the coverage flight time that consume energy. This
includes take-off, departure, wait, approach, and landing times. A safety factor
is applied to all of these to account for increased energy consumption due to
the changes in altitude and rotations. The calculation is reiterated with the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 144

details of the Tm variable expanded,

cellsmax =
Tp − kt(TT + TD + TW + TA + TL)

max(kttc, ts) · 4
(8.5)

where TT , TD, TW , TA and TL are the take-off, departure, wait, approach and
landing times, and kt is the safety factor. Tp is the predicted flight time of the
UAV, tc is the time it takes to execute a 90 degree turn, and ts is the time it
takes to execute a straight line manoeuvre in the confines of a small cell. The
denominator as a whole is the maximum time it can take to cover a large cell,
which consists of four small cells.

Most of these times need to be estimated in order to get the number
of refuels. Once the number of refuels is known, the actual times can be
calculated. The energy consumption can then be checked to ensure that it is
within the limits of the vehicle. Having to rerun the algorithm is undesirable
though, so this implementation seeks to make fairly accurate estimates of
these times. The take-off and landing times are known and do not need to
be estimated. They are a function of the search altitude and the climb and
sink rates of the UAV. They can be calculated using Equations 8.1 and 8.2.

The departure and approach times can be approximated as two arcs and
a straight line. To be conservative, the arcs are assumed to be full circles.
The straight line distance is also conservatively assumed as the distance from
the centre of the ground station to the edge of a corner starting cell. This
approximation is depicted in Figure 8.11. Note that the arcs are a function of
the minimum turning radius of the UAV (rmin) and the straight line distance
is a function of the small cell length (l).

Figure 8.11: Diaram showing the approximation used for a departure or ap-
proach path length.

The total distance of the circles and the straight line is divided by the
cruising speed of the UAV at the search altitude. This gives an estimated

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 145

departure or approach time given by

TD ≈ TA ≈
4π · rmin +

√
2 S · l

Vf
(8.6)

where TD and TA are the approximate times to complete the departure and
approach manoeuvres respectively, rmin is the minimum turning radius of the
UAV, l is the dimension of a small cell, and Vf is the constant flying speed of
the UAV. The S variable represents the number of large cells that represent
the square occupied by the UAV initial positions. Note that the time estimate
is a factor of the ground station size. For Figure 8.11 this value would be three
since it is a three-by-three large cell grid.

A wait cycle is incurred only when one UAV wants to start its approach,
but another UAV is still busy with their approach or landing. Wait cycles are
always one full circle at the minimum turning radius. This ensures that the
starting point and heading of the UAV, as it starts its approach, remain con-
stant. This circle coincides with the starting arc of the approach manoeuvre.
These manoeuvres do not often occur and so one wait cycle is assumed to be
a reasonable estimate. The estimated wait time calculation is given by

TW ≈
2π · rmin

Vf
(8.7)

where TW is the approximate time to complete an airborne wait cycle, rmin is
the minimum UAV turning radius, and Vf is the constant flying speed of the
UAV.

The departure and approach times are a function of the ground station
size. Similarly, the number of free cells in the environment also change de-
pending on this size. The free cells represent the total number of cells in the
environment with the number of obstacle cells subtracted. Since the ground
station is viewed as an obstacle it would then change the number of free cells
when it is added. The size of the ground station can be represented by a value
two less than the size variable mentioned previously. The free cells can be
represented as a factor of this since all other obstacles in the environment are
constant. The free cells can then divided by the the maximum number of cells
that can be assigned to one UAV. This gives the equivalent number of UAVs
needed to search this environment.

Once again, the value for the equivalent number of UAVs is adjusted to be
an integer multiple of the number of available UAVs. The overall expression
is given by

(nr)eq =
Nt −No − (S − 2)2

cellsmax

(nr)eq = ceil(
(nr)eq

(nr)avail
) · (nr)avail

(8.8)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 146

where Nt is the total number of cells in the environment, No is the number of
cells in the environment that are classified as obstacles, and (S−2)2 is the num-
ber of cells that make up the ground station. (nr)eq is the equivalent number
of UAVs which is the same as the number of sub-regions in the environment;
(nr)avail is the number of available UAVs; and cellsmax is the maximum num-
ber of cells that a UAV can search before needing to refuel. The flow diagram
of Figure 8.10 shows the equation with the notation prior to expanding the
definition of the free cells. It also merges the two-step equation into one.

This is where the algorithm becomes iterative, since the equivalent number
of UAVs can change the size of the ground station. Therefore, the way this
algorithm is executed is by assuming a ground station size. Initially it is
assumed to have a size of one cell, since this is the smallest configuration.
The size variable S in turn becomes three cells initially, as shown on the flow
diagram.

The calculations are executed up until the equivalent number of UAVs
can be found. If this number of UAVs demands a bigger ground station, the
calculation is restarted at this new ground station size. Figure 8.10 clearly
shows the loop formed from this logic. The algorithm converges, and so the
size will eventually no longer be adjusted. The number of refuels can then be
calculated.

Refuels are calculated using Equation 7.7 which is reiterated in the flow
diagram. With the refuels known, the algorithm terminates. The actual energy
consumed can then be calculated when the algorithm is run with this number
of refuels. It should then be confirmed that the energy consumption is within
limits.

Note that no special considerations in terms of energy consumption are
made for undesirable weather conditions. However, it is possible to add an
overall safety factor to the predicted flight time (Tp) of the UAV to accommo-
date this in a real world scenario.

8.4 Flight Schedule and Survivor Detection
This section works through the process of creating a full flight schedule for an
environment. The first example shown in this section is the one that has been
carried throughout this chapter. A second example is also shown to give insight
into the variations that may occur in a flight schedule. For the examples in
this section, the ground was assumed to be level. For a real-world scenario,
this would likely not be the case. The flight schedule generated in this section
is also a preliminary one. For real-world application, some adjustments may
be necessary.

Once the number of refuels for a specific environment are known, the
initial positions of the equivalent UAVs are placed. The divide areas algorithm

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 147

then assigns sub-regions to each equivalent UAV. The coverage path lengths for
each region can then be determined using the sub-region coverage technique.

With the paths known, the starting headings are known at the UAV
initial positions. The take-off, departure, approach, and landing times are then
calculated according to the methods described in Section 8.2. Furthermore,
the actual flight times can be calculated. This would be the sum of all the
manoeuvres executed during the coverage path, each multiplied by the time
to execute them. In this case it is the number of straight line manoeuvres (ns)
and 90 degree circular manoeuvres (nc), multiplied by the times to execute
them. The relevant calculations were shown in Equations 7.1 through 7.3.

The total time to execute a sub-region search is calculated according to

Ttot = TT + TD + TW + TA + TL + nsts + nctc (8.9)

which excludes the time used to refuel and the time spent idle on the ground
in between searches, but includes the time to execute the coverage path. Using
the same variables, but with the safety factors applied as necessary to represent
energy consumption during flight, an expression for total energy consumption
can be created. This is given by

(Ttot)e = kt · (TT + TD + TW + TA + TL) + nsts + kt · nctc (8.10)

where Ttot is the total time to execute a sub-region search and (Ttot)e is an
approximation of the energy consumption during a sub-region search. TT ,
TD, TW , TA and TL are the respective times to complete take-off, departure,
any airborne wait cycles, approach and landing. The number of straight-line
manoeuvres in the coverage path is ns, and the time to execute a straight
line manoeuvre is ts. The number of 90 degree turns is nc and the time to
execute one turn is tc. kt is a factor applied to account for an increase in energy
consumption during certain manoeuvres, that may decrease the predicted flight
time.

Note that each equivalent UAV now has an associated take-off, departure,
flight, approach, and landing time. With these known, the schedule can be
designed. A UAV is selected to be the first one to take off. It is only assumed
to be safe for the next UAV to take off once the first UAV has completed its
take-off and departure manoeuvres.

For this reason, take-off and departure are grouped into one category in
Figure 8.12. The blue regions show this time. Once a UAV has reached its
initial position it starts on its coverage path. The time to execute the coverage
paths are represented by the orange regions on this flight schedule. Once the
first UAV completes a coverage path, it immediately starts with its approach
and landing manoeuvres. Refer to robot 0 on the figure. The landing and
approach is grouped into the same category and is represented by the red
region.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 148

Figure 8.12: Flight schedule for the example environment with survivor detec-
tion indicated.

Note that the next UAV cannot start its approach and landing until the
previous one has completed theirs. If a UAV finishes its coverage path before
the previous UAV has finished landing, it is not permitted to land yet. It
would have to execute an airborne wait cycle. This specific situation does not
occur on this example flight schedule. Note the absence of green regions. The
advantage of having similar coverage path lengths, as well as similar approach
and departure times, is that wait times seldom occur.

The purple region on the flight schedule indicates the time taken to refuel
or recharge the UAV once it has landed. For this example it was chosen as
two minutes. Particularly since this scenario would only require a battery
change, this is expected to be sufficient. The actual time needed to complete
a refuel would have to be tested for a specific UAV in a real-world scenario. It
would also be advisable to allocate more time than necessary to this activity,
to ensure the UAVs can adhere to their planned schedules.

The flight schedule also has white regions. These simply represent time
where the UAV is idle on the ground, waiting for its turn to take off. One
UAV needs to complete its take-off and departure before another can begin.
The last UAV also needs to have finished landing before the first UAV in the
schedule can take off again.

Figure 8.13 shows the execution of the planned flight schedule by the two
UAVs up to the point where the survivor is found. The target is placed at a
200 m distance on the x-axis and a roughly 2.5 km distance on the y-axis. A
snapshot is taken at the time the target it found. This time is also indicated on
the flight schedule with a dotted line. The "X" indicates which UAV detects
the target at this time. In this case, the survivor is found in a blue sub-
region, representing robot 0 on the schedule. The detection occurs after the
first refuel. Both UAVs have completed their first sub-region search and the
survivor detection occurs during the second sub-region search.

Completing the full flight schedule would take about 2 hours and 13 min-
utes. The target, in this case, is located around 45 minutes into the search.
The order in which the sub-regions are searched determines how soon a target
is found. This order is standardised for this algorithm. It is possible to change
which regions get searched first depending on information of the target’s most

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 149

Figure 8.13: Snapshot of example environment at the point of target detection.

likely location. This is not explored further in the scope of this project.
A second example environment is shown to illustrate a scenario where a

wait cycle is introduced. Figure 8.14 shows the resulting flight schedule for
this example. The target is found by the second UAV, after having refuelled

Figure 8.14: Flight schedule for the second example environment with survivor
detection indicated.

twice. Note that for the full plan, a wait cycle is induced for the second last
landing event. This is represented by the green section on the schedule. This
time represents one full circle of flight at the minimum turning radius. This
ensures that the first UAV finishes its approach and landing before the second
UAV begins its approach. To ensure the start position and heading during
approach are constant, the wait cycles are always in multiples of the time to
execute one 360 degree turn during flight.

The map of the second example environment, with the coverage paths
generated, is shown in Figure 8.15. Figure 8.16 shows the execution of the
planned flight schedules for the two UAVs up to the point where the survivor
is found. The survivor was placed at 20 m in the x-axis and about 1 km on

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 150

Figure 8.15: Second example environment with coverage paths depicted.

Figure 8.16: Snapshot of second example environment at point of target de-
tection.

the y-axis. Executing this full flight schedule would take about 2 hours and
18 minutes. Survivor detection occurs roughly 1 hour and 33 minutes into the
search. Figure 8.16 shows a snapshot of the paths at this time.

Note how both UAVs completely search two sub-regions before the target
is found. It is located well into the third orange sub-region. The orange regions
represents robot 1 in the flight schedule.

The algorithm for the refuelling problem also outputs a tabular format of

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 151

the data. Figure 8.17 shows the tabulated data for this example. The data is
divided amongst two tables for the refuelling output. In each table, the index
of the physical UAV and the number of refuels it has had are indicated.

The first table shows all the times used for the flight schedule. The sum
of these times gives the total time from take-off through to landing. The
distance and rotations columns are values associated with the coverage path
in particular. This table is shown in Figure 8.17a.

The second table indicates the total time it takes each UAV to complete
its path from the moment it leaves the ground to when it lands again. The
associated energy value, where the safety factor is included, is also shown. The
time excess value is then an indicator of whether the flight plan is within the
energy constraints of the UAV. This is the final check to see if the generated
plan is feasible. In this case it is, as can be seen in Figure 8.17b. The time
excess values are around seven minutes, which is also a good buffer to ensure
the UAVs can actually complete their planned routes.

(a) Table showing the time values associated with each phase in in the flight plan of
the UAVs.

(b) Table showing the values necessary to determine the feasibility of the flight plan
for the UAVs.

Figure 8.17: Tables showing algorithm outputs for example environment

8.5 Illustrative Examples with Different
Environments

This section presents several of the example environments that have been used
throughout this project. Here they are shown in the context of the refuelling
problem. In each case, a limited number of UAVs are provided so that refu-
elling would be required.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 152

The figures showing the coverage paths and survivor detection are shown
at the end of this section. The flight schedules and data table for each scenario
are also shown for each example, as they are discussed. The actual approach
and departure paths are not depicted on the figures of this section, but are
considered implicitly present.

Spitskop

The first example is the Spitskop environment. This environment made use of
a Strix 400 UAV in the original problem. Due to this UAV’s long endurance
capabilities, it can search quite large areas before needing to refuel. The ex-
amples given throughout this chapter so far have made use of the Wingtra I,
which is more suitable for smaller areas.

For this example, the number of available UAVs were selected as two.
Having only two UAVs available is very possible for a SAR scenario. For this
case the ground station is placed at a 12 km distance on the x-axis and a 1 km
distance on the y-axis.

With this ground station location, the take-off height is roughly 350 m
above sea level. The take-off and landing times can be calculated using this
and the desired flying altitude of 660 m above sea level for the search. Table
8.20a shows the take-off time as just over a minute and the landing time as
just under a minute long.

Using the iterative technique described in Section 8.3, it was found that
one refuel should be sufficient to cover the demarcated search area with two
UAVs. This brings the equivalent number of UAVs to four. With this many
equivalent UAVs, the ground station is the size of one large cell. The four
initial positions of the UAVs are placed around this ground station as shown
in Figures 8.18a and 8.18b.

The initial positions are similar to the clustered scenario shown in Figure
7.24. They are once again shown as a black dot with a white dot at its
centre. With these initial positions known, the sub-regions were generated
with the divide areas algorithm. Two of these sub-regions were then assigned
to each UAV. The regions of the same colour belong to the same UAV in
Figures 8.18a and 8.18b. They are shaded slightly differently to still make them
distinguishable. Within these sub-regions, the coverage paths are generated
using the sub-region coverage technique. Figure 8.18a shows these paths.

The time to execute these respective paths at the 14 m/s constant speed
of the UAVs is shown in the "Flight" column of the table in Figure 8.20a. The
"Distance" and "Rotations" columns are also associated with the coverage
path. They represent the physical length of the coverage path in kilometres
and the number of 90 degree rotations within the path.

The coverage path generation results in the half shifts of the UAV initial
positions, which make it easier to determine the headings of the UAVs at their

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 153

(a) Coverage paths for Spitskop example environment with a central ground station.

(b) Snapshot of the Spitskop example environment at the point of target detection

Figure 8.18: Spitskop example environment with two UAVs that refuel.

initial positions. With this known, the approach and departure times can be
calculated. These are also detailed in the table.

The table entries for the tables in Figure 8.20 have four rows, represent-
ing each equivalent UAV. The first column of both tables shows the index of
the actual UAV. The second column then references how many refuels have
occurred for the physical UAV at this point.

With the take-off, departure, flight, approach and landing times known, a
flight schedule can be drawn up. During the creation of this schedule, it may

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 154

be found that airborne wait times are necessary. In this case, no wait times
are induced and so the "Wait" column in the table of Figure 8.20a has zero
values.

The resulting flight schedule is shown in Figure 8.19a. Here the one
refuelling event can clearly be seen for each UAV. A more detailed view of this
refuelling event for both UAVs can be seen in Figure 8.19b. The purple regions
represent the five minute refuelling time that is allocated for this UAV. In a
real-world scenario, these schedules may need to be adjusted based on data
collected regarding the UAV’s performance, and the time taken to replace its
battery, which represents a refuelling event. Slightly more time is given for
refuelling the Strix 400 over the Wingtra I. It is a larger UAV with bigger
batteries, so it is reasonable to assume that changing out the batteries would
be more time consuming.

(a)

(b)

Figure 8.19: Flight schedule for the Spitskop example environment with two
UAVs that refuel.

There are no green regions, meaning that there are no airborne wait cycles.
The white region indicates a time where the first UAV waits on the ground.
It can only take off once the second UAV has completed its landing.

The total time taken for each equivalent UAV to complete its cycle from
the start of take-off to the end of landing is shown in the third column of the
table in Figure 8.20b. In this case the time to complete the full flight plan is
about 9 hours and 53 minutes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 155

(a)

(b)

Figure 8.20: Data tables generated for the Spitskop example environment with
two UAVs that refuel.

The target is at a distance of 2 km on the x-axis and 3.7 km on the y-axis,
as it was previously in Section 7.5. A snapshot of when the target is located,
with central deployment and refuelling, is shown in Figure 8.18b. The time
at which this occurs is roughly 1 hour and 49 minutes into the search. The
detection occurs in the first orange region that is searched. If this were the
second region searched, the time would be significantly longer.

Although refuelling allows the area to be searched with only two UAVs,
having four UAVs searching in parallel would still be much preferred. In gen-
eral, having more UAVs available increases the odds of finding the survivor(s)
sooner for any scenario. The target detection event is also indicated on the
flight schedule with a dotted line and an "X" that shows it was detected by
the second UAV on the schedule, prior to refuelling.

To convert the total time for searching to a value representing energy
consumption, a safety factor of 1.3 is applied to certain manoeuvres. The
next column shows the energy value that is calculated. The energy value
represents the energy required to completely search a single sub-region. The
"Time Limit" column then represents the amount of energy available. Since
the Strix 400 UAV is rated for 9 hours of flight at the lower end of its bracket,
this value is 540 minutes.

The "Time Excess" column gives the difference between the available
energy and the total energy used. Therefore, a positive excess value indicates
a feasible flight plan. In this case, there is an excess of around 4 hours in each
case, which is more than sufficient.

Champaigne Castle

The Champaigne Castle example was also originally searched with a Strix
400. With this UAV’s endurance, only one UAV could cover the entire region
without refuelling. Therefore it is not explored as a possible refuelling example.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 156

Aberdeen

The Aberdeen example, on the other hand, shows an example of the opposite
problem. This is a large region that was originally going to be searched using
the Wingtra I. However, this UAV has an endurance of just 42 minutes.

The number of equivalent UAVs would be a multiple of the available
UAVs. Assuming there are 2 UAVs available, the equivalent UAVs become
28. This results in a ground station size of 9 by 9 large cells. This can be
used, but the size is impractical. It would also not be advisable to try and
optimally divide a region into 28 sub-regions using the iterative divide areas
algorithm. The Aberdeen scenario therefore shows why long endurance craft
are so valuable when it comes to large search regions. Endurance should also
be factored in when choosing the UAV to search an area. The Wingtra I is
more suitable for smaller areas. Since the Strix 400 has a lower cruise speed
than the Wingtra I, it can be used instead of the Wingtra I with the same
discretisation. It is assumed that three UAVs are available to search this area.
The ground station is positioned at 5.5 km on the x-axis and 2.5 km on the
y-axis.

The take-off height at the ground station is about 790 m above sea level.
The flying altitude is 1060 m above sea level. The difference between this is
the height used in calculating the take-off and landing times.

The endurance estimations can be used to determine the number of re-
fuels, which is just one. The number of equivalent UAVs then becomes six.
These are arranged around the ground station as shown in Figure 8.21a. This
figure also shows the resulting coverage paths. Figure 8.21b shows the target
at a distance of 6.2 km on the x-axis and 4.7 km on the y-axis. This figure
shows a snapshot at the moment of survivor detection.

With the paths known, all the relevant times can be calculated to generate
the flight schedule. The relevant times are shown in the table of Figure 8.23a.

This scenario causes airborne wait cycles, unlike the Spitskop example.
The full flight schedule is shown in Figure 8.22a. The refuelling event is shown
in more detail in Figure 8.22b, where the green regions are visible.

The green regions represent a wait cycle. The UAV waits in the sky by
flying in a circle. The wait is induced because a UAV is busy landing when
another finishes its coverage path. In this case, robot 1 has to execute one
wait cycle to allow robot 0 to finish its landing, before starting its approach.
Similarly, robot 2 has to execute two wait cycles while waiting for robot 1.

The table of Figure 8.23a shows these wait times. One wait cycle takes
just over 30 seconds to complete. Two wait cycles take about a minute. They
will always be multiples of the time taken to complete one cycle.

The table of Figure 8.23b shows the energy values. Once again, the excess
values are positive, indicating a feasible flight plan. The tables have six entries
this time, representing the six equivalent UAVs.

The total flight schedule for the Aberdeen environment would take about

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 157

(a) Coverage paths for Aberdeen example environment with a central ground station.

(b) Snapshot of the Aberdeen example environment at point of target detection

Figure 8.21: Aberdeen example environment with three UAVs that refuel.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 158

(a)

(b)

Figure 8.22: Flight schedule for the Aberdeen example environment with three
UAVs that refuel.

(a)

(b)

Figure 8.23: Data tables generated for the Aberdeen example environment
with three UAVs that refuel.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 159

5 hours and 50 minutes to complete. The target is found quite early into the
second sub-region search by robot 0. The time of target detection is about
3 hours and 6 minutes into the search. Robot 0 covers the blue sub-regions,
where the target is located, of Figure 8.21b.

Jeffreys Bay

The Jeffreys Bay example environment is also explored. It is a small environ-
ment and it is assumed that only one GULL UAV is available for the search.
The constant search speed in this scenario is 19 m/s. Normally, these UAVs
have a long endurance. It is assumed in this case that a large portion of the
UAV payload capacity is not available. It may carry supplies for survivors
or perhaps additional electronic equipment. It is assumed the UAV has a 30
minutes flying time available. In that case, it needs to refuel once to complete
its search of this region. Since there is only one UAV, the regions of Figures
8.25a and 8.21b are both shades of blue. The target location for Figure 8.25b
is at 2 km on the x-axis and 1.1 km on the y-axis. This figure shows a snapshot
at the time of detection.

In this case the full flight plan would take about 43 minutes and target
detection occurs at roughly 36 minutes into the search. This detection time is
indicated in Figure 8.26.

Detection occurs after having refuelled once. The table in Figure 8.24a
shows the times associated with the flight plan. No wait times are induced
since there is only one UAV. The table in Figure 8.24b indicates a feasible
flight plan since the excess is once again positive.

A 30 minute flight limit is not uncommon for multi-rotor UAVs. This
implementation could then also be seen as a demonstration of how a plan
could look for such a vehicle, and how they are only suitable for quite small
areas.

(a)

(b)

Figure 8.24: Data tables generated for the Jeffreys Bay example environment
with one UAV that refuels.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 8. CENTRAL DEPLOYMENT AND FLIGHT SCHEDULING 160

(a) Coverage paths for Jeffreys Bay example environment with a central ground
station.

(b) Snapshot of the Jeffreys Bay example environment at point of target detection

Figure 8.25: Jeffreys Bay example environment with one UAV that refuels.

Figure 8.26: Flight schedule for the Jeffreys Bay example environment with
one UAV that refuels.

Stellenbosch University https://scholar.sun.ac.za

Chapter 9

Monte Carlo Simulations

This chapter presents Monte Carlo simulation results for the automated search
and rescue approach that was developed to use multiple unmanned aerial ve-
hicles (UAVs) to cooperatively search a designated area. Section 9.2 presents
simulation tests that were performed to investigated the execution times of
the divide areas algorithm and the sub-region coverage algorithm. Section 9.3
presents simulations that were performed to test the survivor detection perfor-
mance of the full system. The survivor detection performance was evaluated
both in terms of the time taken to find the survivor, and the energy consump-
tion of the UAVs. The survivor detection performance with and without the
need for refuelling was evaluated and compared.

9.1 Experimental Setup, Procedure, and
Results

9.1.1 Data Sets

The Monte Carlo simulations in this chapter were performed using two main
data sets. The first data set contains a wide range of environment sizes, with
a large variation in the environment shape, but with less simulation runs per
environment size. The second data set contains four specific environment
sizes with fixed environment dimensions, but with more simulation runs per
environment size. The first data set contains a range of obstacle densities
from 0% to 25% in increments of 5%. The second data set only contains two
obstacle densities, namely no obstacles and 10% obstacle density.

Each data set is composed of three subsets. The first subset of simulations
establishes the baseline for the algorithm and does not consider the operational
constraints of the UAVs. The simulations are performed for environments with
no obstacles and random UAV initial positions, with different environment
sizes and different numbers of UAVs. The endurance limits, flight scheduling,
and central deployment are not incorporated. The second subset is the same

161

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 162

as the first subset, except that obstacles are introduced into the environment.
The simulations are performed with the same environment sizes and numbers
of UAVs as the first subset, but with a range of obstacle densities. The third
subset of simulations incorporates central deployment, flight scheduling, and
endurance considerations. These simulations are performed with two UAVs,
but with the number of sub-regions increasing with the environment size, and
assuming the UAVs will sequentially search the sub-regions with refuels in
between.

Note that the first data set looks at a very wide range of environment
sizes, with changing shapes. One environment size, which is represented as a
number of cells, can have a near square shape or possibly be very elongated in
either dimension. The effect of environment shape is not explicitly explored.

The changing shapes are introduced by sweeping through a number of
cells between 10 and 100, in increments of 5, for both environment dimensions.
A resulting 361 combinations are possible, ranging from a total environment
size of 100 cells to 10000 cells. This is done for two and eight UAVs in the
environment.

The second data set looks at four environment sizes explicitly. The shape
is also kept constant in each case, with the vertical always being larger than the
horizontal. The ratio between the number of rows and columns is kept between
a value of one and two, to ensure the shape does not have a large impact on
the results. The environment sizes vary between 2000 and 8000 total cells, in
increments of 2000. The actual environment sizes used are 40x50 cells, 50x80
cells, 75x80 cells and 80x100 cells. For each combination of environment size
and number of robots, 25 simulation runs are done. This ensures that the
spread of the data can be explored, particularly for the divide areas algorithm
where there is a random component to the data.

9.1.2 Simulation Setup and Procedure

A number of parameters are kept constant to make the results comparable.
The maximum iterations, as a parameter for the DARP algorithm, is kept at
10000. Due to the nature of the algorithm this means that the actual maximum
is closer to about 20000 iterations. The maximum allowable cell discrepancy
is kept at 10% of the environment size. The discrepancy is not necessarily a
function of environment size, but it is assumed that higher discrepancies are
more acceptable with larger environments. This may not always be the case,
particularly with high obstacle densities and more robots. For the environ-
ments tested in the simulation however, this gave an acceptable result. The
DARP algorithm does seek to minimise the discrepancy, and so the limit is
used as a last resort when finding a solution. The limit is rarely reached.

The weights of the random matrix and the connectivity multiplier in the
DARP algorithm are also kept at a constant value. The connectivity weight is
set to 0.1 and the weight of the random matrix is kept at 0.001. The trend for

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 163

these values is that higher values lead to less iterations and lower execution
times. Higher values, however, increase the number of failed runs. The ran-
dom component should generally be lower than the connectivity component
to achieve success. There are cases where the maximum iterations are reached
before a solution is found. A detailed investigation of the relationship between
the algorithm results and the weights is however not performed.

All the simulations also make use of one assumed UAV and camera com-
bination. The Strix 400 UAV is used in combination with the Sony RX1R II
camera. The ground is assumed to be level, so the take off and landing heights
are equal to the ground elevation. The height of the UAV above ground is
assumed to be 160 m; it is assumed to fly at its cruise speed of 14 m/s; and
the time taken to refuel this UAV is assumed to be five minutes. With these
values, the small cells in the environment have a roughly 90 m dimension. The
environments tested therefore range in size from roughly 3 km2 to 320 km2

in the first data set. This simulation therefore addresses a large variety of
environments.

The Monte Carlo simulations were run on the same device. The compo-
nents include an AMD Ryzen 7 5800H processor with a clock speed of 3.2 GHz;
16 GB DDR4 RAM with a RAM speed of 3200 MHz; and a 512 GB SSD.

9.1.3 Simulation Failures

With all the simulations that are run, there are occasionally runs that are
aborted. In the case with no obstacles, this means no solution was found for
the divide areas algorithm. There are a few edge cases where a solution may
not be possible, for example when the UAVs are tightly clustered and block
each other.

Aside from that, it would mean a solution exists but it can simply not be
found within the maximum number of iterations allowed. This maximum can
be increased, or the weights of the random and connectivity component can
be changed in order to find the solution. As of yet, no framework is available
for selecting weights appropriate to a specific scenario. It would be valuable if
one was developed, but this is beyond the scope of this project.

In the case where there are obstacles, it is also possible that during random
obstacle generation, enclosed regions are formed. These enclosed regions are
viewed as obstacles, in this implementation of the algorithm, which increases
the obstacle density. If it is increased by more than 1%, the algorithm is
aborted. Similarly, if a robot is removed in the process, the algorithm is
aborted.

In these simulations, aborted runs are rerun until there is a successful
equivalent. Results are only shown for those that successfully find a solution.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 164

9.1.4 Simulation Results

Section 9.2 presents simulation tests that were performed to investigated the
execution times of the divide areas algorithm and the spanning tree coverage
algorithm. This includes performance measures such as execution time and
number of iterations. The sub-region coverage technique and the divide-areas
algorithm are looked at separately. The performance of the divide areas al-
gorithm in terms of discrepancy is shown. This indicates how well it divides
the area. Algorithm failures are also briefly explored. These failures do not
include aborts due to obstacle density changes or robot removals.

Section 9.3 presents simulations that were performed to test the survivor
detection performance of the full system. The predicted time for path com-
pletion is shown, which gives an indication of the longest time it would take
to find a target. The estimated energy consumption is also shown to show the
efficacy of the refuelling protocol.

Lastly, the Aberdeen environment is explored specifically. This shows the
variation in survivor detection times one can expect in a single environment.
Two separate simulations were run for this scenario, with constant values more
appropriate to this case specifically. Section 9.3.2 discusses this further.

9.2 Algorithm Execution Time
In this section, the algorithm performance is discussed largely in the sense of
execution time and number of iterations to find a solution. The goal is to
ascertain whether the algorithm can feasibly be used in a time sensitive SAR
operation. Moreover, the general bottle-necks and possible improvements are
discussed. Section 9.2.1 discusses the performance of the divide areas algorithm
and Section 9.2.2 addresses the sub-region coverage technique. In both cases,
central deployment and refuelling are investigated to assess its impact on the
solution.

9.2.1 Divide Areas Algorithm Performance

This section presents the Monte Carlo simulation tests that were performed
to investigate the execution time of the DARP algorithm that divides the
designated search area into sub-regions. The execution time was measured
both in terms of the total execution time of the algorithm, and the number
of iterations taken to find a solution. Simulation experiments were performed
to determine the execution time for different environment sizes, for differ-
ent numbers of UAVs, for different obstacle densities, and finally for different
deployment strategies (central deployment or distributed deployment). The
discrepancy between the number of cells assigned to each sub-region, as well
as the failure rate of the DARP algorithm, are also briefly discussed.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 165

The Monte Carlo simulation results are mostly presented in the form of
box-and-whisker plots. Because the DARP algorithm has a random compo-
nent, it is appropriate to show the data in this format. The box-and-whiskers
plots show the statistical distributions of the data, including the median and
mean values, the 25th and 75th percentiles, and the minimum and maximum
values.

The number of iterations and algorithm execution times were investigated
using Monte Carlo simulations performed using the second data set described
in Section 9.1. The second data set uses four specific environment sizes with
fixed environment dimensions. More simulation runs are done per environment
size, making it more appropriate when investigating the spread of the data.
The second data set only contains two obstacle densities, namely no obstacles
and 10% obstacles.

DARP Execution Time vs Environment Size and Number of UAVs,
No Obstacles

Simulations tests were performed to investigate the effect of the environment
size and the number of UAVs on the number of DARP iterations and the
total DARP execution time. The first set of simulations was performed with
environments that contain no obstacles.

Monte Carlo simulations were performed with four different environments
sizes, ranging from 2000 to 8000 cells in increments of 2000 cells, to show the
effect of environment size on the algorithm execution time. (This is the number
of large cells, with each large cell consisting of four small cells.)

Assuming a flying height of 160 m, the small cell discretisation size is
89.8 m, and the large cell dimension is then 179.5 m. This means that a 40x50
cell environment (2000 cells total) represents a 7.1 km by 9 km search area. A
80x100 cell environment (8000 cells total) represents a 14.4 km by 18 km search
area.

Figures 9.1a and 9.1b show the distributions of the number of DARP
iterations as a function of the number of UAVs for the smallest (2000 cell) and
largest (8000 cell) environments, respectively. Figures 9.2a and 9.2b show the
corresponding distributions of the total DARP execution times as a function
of the number of UAVs.

The box and whisker plots show the median, the 25th and 75th percentiles,
and the minimum and maximum values of each distribution. In addition, the
"X" marks the mean value.

The simulation results show that the number of DARP iterations and the
algorithm execution time generally increase with the environment size and the
number of UAVs. More UAVs means that more sub-regions must be formed
from the same environment. There are more boundaries that need to be ne-
gotiated between the regions to form contiguous, equal-sized sub-regions.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 166

(a) 40x50 Cell Environments (b) 80x100 Cell Environments

Figure 9.1: Box-and-whisker plots of DARP iterations for simulations in no
obstacle environments containing UAVs with random initial positions.

(a) 40x50 Cell Environments (b) 80x100 Cell Environments

Figure 9.2: Box-and-whisker plots of DARP execution time for simulations in
no obstacle environments containing UAVs with random initial positions.

The number of iterations and execution times also vary more as the num-
ber of UAVs increases. The likely reason for this is that the range of possible
UAVs configurations increase with an increase in the number of UAVs. There
are a wider range of possibilities which can make the algorithm execute faster
or slower. It is likely that more closely clustered UAVs would cause the algo-
rithm to take longer to execute.

It is also clear from the results that an increase in environment size causes
an increase in both the number of iterations and the execution time of the algo-
rithm. This is evident by looking at the mean values in particular. On average
it takes more iterations and therefore more time to negotiate assignments when
there are more cells.

To show the trend more clearly, the mean values for the four different
environment sizes are plotted in Figure 9.3. The DARP iterations and the
execution time increase nearly linearly with the increase in the environment
size.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 167

(a) Iterations (b) Execution Time

Figure 9.3: Mean values of DARP algorithm for simulations in no obstacle
environments containing UAVs with random initial positions.

DARP Execution Time vs Environment Size and Number of UAVs,
for 10% Obstacle Density

A second simulation was run for environments with a 10% obstacle density.
These simulations were performed using the same experimental setup as for
the environments with no obstacles, except that 10% of the free cells were
randomly marked as obstacles.

The Monte Carlo simulation results for the environments with 10% obsta-
cle density are shown in Figures 9.4 and 9.5. Figures 9.4a and 9.4b show the
distributions of the number of DARP iterations as a function of the number
of UAVs for the smallest (2000 cell) and largest (8000 cell) environments, re-
spectively. Figures 9.5a and 9.5b show the corresponding distributions of the
total DARP execution times as a function of the number of UAVs.

(a) 40x50 Cell Environments (b) 80x100 Cell Environments

Figure 9.4: Box-and-whisker plots of DARP Iterations for simulations in envi-
ronments containing 10% obstacles and UAVs with random initial positions.

As before, the iterations and execution time increase with increasing envi-
ronment size and increasing number of UAVs. Once again, the mean values are
plotted in Figure 9.6, showing the general linear behaviour with respect to en-
vironment size. The most important observation here is that the total number
of iterations and the algorithm execution time are larger for the simulations

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 168

(a) 40x50 Cell Environments (b) 80x100 Cell Environments

Figure 9.5: Box-and-whisker plots of DARP Execution Time for simulations
in environments containing 10% obstacles and UAVs with random initial po-
sitions.

(a) Iterations (b) Execution Time

Figure 9.6: Mean values of DARP algorithm for simulations in environments
containing 10% obstacles and UAVs with random initial positions.

with 10% obstacle density compared to the simulations with no obstacles. The
mean values for the number of iterations and algorithm execution time have
increased for environments with 10% obstacle density relative to environments
with no obstacles, despite the fact that the effective number of free cells has
decreased by 10%.

It is clear that the algorithm takes longer to negotiate cell assignments
when there are obstacles. This can be expected since the environment com-
plexity has increased. UAVs may be forced to navigate narrow or isolated
regions, but the algorithm still needs to negotiate assignments so as to form
equal-sized, contiguous regions.

The variation in the resulting values also increases with respect to the no
obstacle simulation. The reason for this would be because the obstacle con-
figurations can vary greatly, causing more possible solutions. The no obstacle
environment is a constant shape, and therefore solutions do not vary as greatly.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 169

Effect of Central Deployment on DARP Execution Time

A final set of simulations was performed to look specifically at the effects of
central deployment. The method used in this project configures the UAV initial
positions around a central ground station which is viewed as an obstacle. The
goal is to investigate the effect of these configurations on the algorithm.

For each simulation run, the ground station was given a random location
in the environment. Aside from the ground station, no other obstacles were
added to the environment. The UAV initial positions were then arranged in
a perimeter configuration around the ground station. The simulations for the
2000 cell environment were performed assuming two UAVs. The simulations
for the 8000 cell environment were performed assuming eight UAVs.

Figures 9.7 and 9.8 show the simulation results for central deployment
compared to the simulation results for random UAV initial positions. The dis-
tributions for the central deployment are shown in grey, and the distributions
for the random UAV initial positions are shown in blue. (The results for the
random UAV initial positions were obtained from the first set of simulations.)

It is quite clear that the central deployment tends to lead to longer execu-
tion times and more iterations, even though the number of sub-regions do not
change. There is also a greater variation in the data when compared with the
random initial positions case. The closely clustered robot configuration and
the ground station as an obstacle appear to make generating the sub-regions
more challenging for the algorithm. This is a slight disadvantage of using the
central deployment strategy.

Figure 9.9 shows a comparison of the mean values for central deploy-
ment to the mean values for random initial positions. The bar graphs show
the average number of iterations and the average execution times for central
deployment compared to random deployment, for four different environment
size and number of UAV combinations. (The number of UAVs are increased
proportionally to the environment size.) It is clear here that the central deploy-
ment causes a general increase in the number of iterations and the execution
time for the divide areas algorithm.

The execution time of the divide areas algorithm is well under a minute for
all of the Monte Carlo simulations that were performed, even for the largest
environments with the largest number of UAVs. The execution time of the
divide areas algorithm is therefore negligible compared to the time scales of
a search and rescue operation. The maximum number of iterations is about
15000, which was observed for the largest environment with the largest number
of UAVs, with a 10% obstacle density.

The number of iterations generally increase with increasing environment
size, number of UAVs, and percentage obstacle density. Keeping this in mind,
as these values are increased, it is likely the algorithm will start failing to find
a solution within the maximum allowable iterations. The number of allowable
iterations can then be increased if necessary, or the weights of the random and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 170

(a) 40x50 Cell Environments (b) 80x100 Cell Environments

Figure 9.7: Box-and-whisker plots of DARP Iterations for simulations in no
obstacle environments comparing central deployment and random initial posi-
tions.

(a) 40x50 Cell Environments (b) 80x100 Cell Environments

Figure 9.8: Box-and-whisker plots of DARP Execution Time for simulations
in no obstacle environments comparing central deployment and random initial
positions.

(a) Iterations (b) Execution Time

Figure 9.9: Mean values of DARP algorithm for simulations in no obstacle
environments comparing central deployment and random initial positions.

connectivity component can be altered. However, the effects of these weights
will not be investigated in detail.

The low execution time is to be expected, since the divide areas algorithm
was written in Java, which is a compiled language. Compiled languages tend

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 171

to have better runtimes.

Discrepancy value for number of cells between sub-regions

To evaluate the effectiveness of the divide areas algorithm to allocate equal-
sized sub-regions to the individual UAVs, one can look at the discrepancy
value. The discrepancy value is the difference between the maximum and
minimum number of cells assigned to a sub-region. A discrepancy of one
or zero indicates an essentially perfect area division. Anything higher than
that indicates that the area division is imperfect. An imperfect division can
occur due to environment shape. Regions of one cell width wide can make it
impossible to get a perfect division with certain UAV initial positions. It is
also possible that a better division can be achieved by increasing the maximum
iterations or altering the weights of the random or connectivity components.
The effects of altering these are not investigated.

The trends in the discrepancy value were investigated using Monte Carlo
simulations performed using the first data set described in Section 9.1. The
first data set contains a wide range of environment sizes, with a large variation
in the environment shape, and a range of obstacle densities from 5% to 25%
in increments of 5%. The discrepancy limit for the algorithm was made a
percentage of the environment size. This is not because it is necessarily a
function of the environment size, but because larger discrepancies are deemed
more acceptable for larger environments for these simulations.

The Monte Carlo simulation results showed no correlation between the
discrepancy value and the environment size. The discrepancy value does how-
ever appear to be linked to the number of UAVs, the number of refuels, and
the obstacle density.

Figure 9.10 shows the the mean discrepancy value as a function of num-
ber of UAVs, as a function of obstacle density, and as a function of number of
refuels (for two UAVs). Each mean value represents the average of the discrep-
ancy values for environments ranging from 100 cells to 10000 cells. Since no
correlation was found between environment size and discrepancy, the trends
are clearly visible.

Figure 9.10a shows the results for environments with no obstacles and
random UAV initial positions. There is a notable increase in discrepancy with
the number of UAVs, but overall the divisions are still mostly perfect. The
mean value barely exceeds a discrepancy of one, even with eight robots.

Figure 9.10b shows the results for an increasing obstacle density in the
environment. The discrepancy value shows a clear, non-linear increase. The
introduction of more obstacles causes more complex environments, leading to
scenarios where perfect divisions are not possible. The more obstacles there
are, the more of these edge-case scenarios are possible.

Figure 9.10c shows the results for environments with a central ground
station, but no other obstacles. These simulation runs were performed using

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 172

(a) Discrepancy achieved in no obstacle environments with
changing numbers of robots.

(b) Discrepancy achieved in environments with four UAVs and
a changing obstacle density.

(c) Discrepancy achieved in environments with two UAVs and
a changing number of refuels.

Figure 9.10: Graphs showing the average discrepancy achieved by the DARP
algorithm in the simulations of the first data set.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 173

two UAVs that refuel. Therefore, zero refuels corresponds to two equivalent
UAVs. One refuels corresponds to four equivalent UAVs and so forth. There-
fore, as with Figure 9.10a there is an increase in discrepancy with the number
of UAVs/refuels.

It is interesting to note how the discrepancy reaches considerably higher
values with the refuelling scenario, particularly for the eight equivalent UAVs
case (three refuels per UAV). This is evidence that the perimeter configura-
tions used for the refuelling protocol cause less perfect area division. This is
likely because the UAVs are clustered closely together. With random UAV
initial positions, there are likely only a few scenarios where they are all closely
clustered together. With central deployment and the perimeter configuration,
the UAVs are all adjacent to the central ground station obstacle as well, which
may have an influence on the algorithm’s performance.

DARP Failure Rate

The last performance measure that will be evaluated is the DARP failure rate.
The simulations were set up to generate random environments. Therefore,
UAV configuration and obstacle complexity is not predictable. The algorithm
can occasionally not solve an environment before reaching the maximum iter-
ations.

If the algorithm fails, the simulation is set up to rerun. It runs an en-
vironment with the same number of UAVs and obstacles, but likely in a new
configuration. The graph in Figure 9.11 shows the percentage of reruns with
respect to the total number of runs in a simulation. These are for the four
UAV case in the first data set, which encompasses a large range of environment
sizes.

Obstacle density appears to be the main contributor to increased failures.
Therefore, the relationship of failures to the environment size and the number
of UAVs is not explored in detail for this project.

A rerun could be due to an unsolvable environment. The UAV and ob-
stacle configuration could make a solution impossible. For example if there is
a single cell width region that has a UAV initial position in it, this could cause
problems. If a UAV is placed in the middle of several UAVs, there may also
be no solution.

A rerun could also be because the maximum iterations are reached before
the solution could be found. Changing the maximum iterations or the weights
of the random and connectivity component would likely help find a solution.

Figure 9.11 clearly shows how the number of reruns increases with the ob-
stacle density. With a 25% obstacle density, the number of reruns is nearly half
the total runs. More obstacles cause reruns partially because there are more
scenarios of unsolvable environments. However, it could also likely be that
the environment complexity has increased and an increase in the maximum
iterations or a change in weights would lead to a solution.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 174

Figure 9.11: Graph showing the number of failures for increasing obstacle
densities.

9.2.2 Sub-region Coverage Technique Performance

The sub-region coverage technique encompasses all the steps required to gener-
ate the final UAV coverage path including spanning tree generation, spanning
tree circumnavigation, and path modification for dynamic constraints. This
section presents the Monte Carlo simulation tests that were performed to inves-
tigate the execution time of the sub-region coverage algorithm that generates
the sub-region coverage paths for each UAV. The execution time was measured
in terms of the total execution time of the algorithm. An analysis was also
performed to determine which components of the coverage path generation are
the most time-consuming.

Simulation experiments were performed to measured the execution time
for different sub-regions sizes, for different numbers of UAVs, for different
obstacle densities, and for central deployment with UAVs that refuel.

First, Monte Carlo simulations were performed using the first data set
described in Section 9.1, with the larger variety of environment sizes. The
simulations were performed for the environment with no obstacles, and for
random UAV initial positions.

Figure 9.12 shows the mean execution time of the sub-region coverage
algorithm as a function of the number of free cells in the environment. Three
graphs are shown to show the contribution of each step of the coverage path
generation to the overall execution time. Figure 9.12a shows the total time it
takes to generate the coverage path. This includes spanning tree generation,
tree circumnavigation, and the addition of dynamic constraints. Figure 9.12b
isolates only the time taken to generate the spanning tree. Figure 9.12c isolates
the time taken to generate the path that circumnavigates the spanning tree and
to add the dynamic constraints. This is also called the waypoint generation
time.

It is clear that generating the spanning tree takes the most time. This

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 175

(a) Execution time for coverage path generation

(b) Execution time for spanning tree generation

(c) Execution time for waypoint generation

Figure 9.12: Graph showing the time to generate coverage paths for no obstacle
environments and random robot initial positions.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 176

bottleneck was identified and is the reason that this portion of the code was
written in a compiled language, namely Java. The rest was written in Python.
With this in mind it is interesting to see that it still consumes the bulk of the
time.

According to to X. Zeng et al. [57], the single robot spanning tree coverage
solution runs in polynomial time. All three graphs here are non-linear in
nature. This aligns with the original algorithm’s behaviour, although here it
is extended to the multiple robot case.

An increasing environment size causes a non-linear increase in execution
time. However, even in the case of a 10000 cell environment, the path was
generated in just over one minute. Combined with the DARP algorithm,
the total algorithm runtime is in the order of a few minutes. This is a very
reasonable runtime and is feasible for use in a SAR operation.

For the scenario with obstacles, there is expected to be little difference in
the overall trends for execution time. This is provided the execution time is
plotted with respect to the number of free cells in the environment, and not
the full environment size.

The algorithm should be dependant on the number of cells per sub-region.
However, when there is a larger discrepancy between cell assignments by the
DARP algorithm, this would cause some variation.

Figure 9.10b in the previous section showed that the average discrepancy
increases with obstacle density. The discrepancy implies an imperfect subdi-
vision. The discrepancy for no-obstacle environments indicates a near perfect
division in most of these scenarios. Therefore the data from the no-obstacle
simulations can be used as a good baseline.

When the division is imperfect, the largest region will be slightly larger
than a sub-region would be in an equally divided area. Therefore, the spanning
tree will be larger and more waypoints would need to be generated. The overall
result is that the spanning tree coverage technique would take slightly longer
to execute for this region.

Figure 9.13 shows the mean execution time of the sub-region coverage
algorithm as a function of the number of free cells in the environment, for
different obstacle densities ranging from 0% to 25%. The dotted black line
shows the baseline, which is the results from the no-obstacle simulation for four
UAVs. The other data are from simulations with varying obstacle densities.
The data follows the no-obstacle case very closely, with a general tendency to
be slightly above the line.

Because some of the regions take slightly longer to execute, the over-
whelming result is that the algorithm takes slightly longer to execute. The
difference is very slight though.

Figure 9.14 shows the resulting execution times for path generation when
refuelling and central deployment are incorporated. The dotted lines show
the results for the no obstacle case, where the division is near perfect. The
rest of the data shows the execution times as the number of refuels change.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 177

Figure 9.13: Graph showing the execution time of the sub-region coverage
technique for four UAVs in environments of varying obstacle densities.

The simulations where refuelling was introduced were run with two available
UAVs. Therefore, no refuels corresponds with two equivalent UAVs, two refuels
correspond with four equivalent UAVs, and so forth.

Figure 9.14: Graph showing the execution time of the sub-region coverage
technique for two UAVs that refuel.

The blue dotted line is the results for two UAVs in no-obstacle environ-
ments, corresponding with two UAVs that do not refuel. The orange is for four
UAVs, corresponding with two UAVs that refuel once. The rest is intuitive.
The four refuel case is only one data point, and no simulation was run for ten
equivalent UAVs to compare it with.

The simulation with obstacles and this refuelling simulation have very
similar behaviour. The discrepancy for the refuelling case, as shown in Figure
9.10c, is also higher than the no-obstacle case on average. The data therefore
tends to either follow the line or be slightly above it.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 178

The data varies more as the number of refuels increase. This is to be
expected since the discrepancies get higher with the number of refuels/UAVs.
The data however follows the lines almost exactly and the effect discrepancy
has here is minuscule. The perimeter configuration therefore does not cause a
noticeable disadvantage for spanning tree execution time.

The divide-areas algorithm would behave the same for an environment
that has four available UAVs, or with two available UAVs that refuel once.
Either way the free cells need to be divided into four contiguous sub-regions.
Therefore, it is expected that the refuelling data closely resembles the no-
obstacle case with random UAV initial positions. Any variation would be due
to the central deployment and perimeter configuration of the UAV.

From the previous figures, it is clear to see that the execution time de-
creases as the number of UAVs increase. However, to see this trend explicitly,
the second data described in Section 9.1 set will be used.

Figure 9.15 shows the average execution times for different environment
sizes as the number of robots change. The execution time decreases non-
linearly as the number of robots increase. The reward of diminishing execution
time is less as the robots are increased.

Figure 9.15: Graph showing the execution time of the sub-region coverage
technique in no-obstacle environments as the number of robots increase.

Figure 9.16 shows the equivalent data for the case with 10% obstacles.
The times on this figure are generally lower, since the number of free cells
are effectively lower. The legend shows the overall environment size, not the
number of free cells.

The individual sub-region sizes for the same environment are smaller when
there are more robots. However, there are more total regions. The increase
in execution time as a result of there being more sub-regions is less than the
decrease in execution time as a result of the smaller sub-region sizes. This is

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 179

Figure 9.16: Graph showing the execution time of the sub-region coverage
technique in environments with 10% obstacles as the number of robots increase.

likely because the spanning tree generation time increases non-linearly with
sub-region size.

The effect of having more sub-regions seems to have more of an impact as
the robots are increased. The trend could possibly reverse with enough robots
in place, but this would likely be an impractical number of robots to use. The
non-linear decrease is therefore sufficient to describe the overall behaviour of
the algorithm.

9.3 Survivor Detection Performance
This section presents the Monte Carlo simulations that were performed to
determine the time that it takes to locate a survivor. The survivor detection
time was determined for different environment sizes, for different numbers of
UAVs, and for different obstacle densities.

Simulation tests were also performed to investigate the effect of the UAV
endurance on the survivor detection time. The survivor detection times for
different numbers of UAVs that have limited endurance (i.e. they need to
return to the central ground station to refuel) were compared to the detection
times for different numbers of UAVs that have unlimited endurance (i.e. they
do not need to refuel).

Section 9.3.1 presents the simulation tests that were performed to inves-
tigated the maximum time and the energy consumption to cover the entire
search area. The schedule completion time is used as the metric for maximum
search time, since it represents the maximum time it could take to locate a
survivor in the search area. Section 9.3.2 presents the simulation tests that
were performed to determine the distribution of survivor detection times for
a specific environment, for different numbers of UAVs, and with and without
refuelling. The Aberdeen environment was used as the test environment.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 180

9.3.1 Maximum Search Time and Energy Consumption

This section presents the simulation tests that were performed to investigate
the maximum time and the energy consumption to cover an entire search area.

The maximum time is representative of the maximum survivor detection
time since this is the time the UAVs take to completely cover the search area.
In an environment where the UAVs do not refuel, this is the maximum time
taken by a UAV to cover a single sub-region. In most cases this would be
the largest of the sub-regions. The maximum path completion time is equal
to the time it takes to detect a survivor in the last cell that is searched by
the UAVs. If the UAVs refuel, the maximum time becomes the duration of
the generated flight schedule. The flight schedule duration is equivalent to the
time the UAVs take to completely cover an environment. This, once again, is
also the longest survivor detection would take.

The energy values in this section are also represented as a time. It is the
time taken to search a sub-region, but with safety factors applied to account for
more energy consumption during certain manoeuvres such as rotations. The
maximum of these energy values should be below the predicted flight time of
the UAV for the planned path to be feasible.

Survivor Detection Time vs Environment Size and Number of
UAVs, with No Obstacles

The first set of simulations were performed for environments with no obsta-
cles and random UAV initial positions, with different environment sizes and
different numbers of UAVs. The endurance limits, flight scheduling, and cen-
tral deployment were not incorporated. The simulations were performed using
both the first and second data sets described in Section 9.1.

Figure 9.17 shows the simulation results for the first data set. Figures
9.17a and 9.17b show the maximum search time and energy consumption as
a function of environment size and the number of UAVs. The results are
intuitive and linear. Maximum survivor detection time increases linearly with
environment size, because more cells take longer to cover. This figure also
shows the results for different numbers of UAVs. More UAVs in general means
a shorter search time, because the sub-regions are smaller. The maximum
energy consumption result is practically identical to the maximum time result.
The values are slightly larger but it is not noticeable. The flight limit of the
Strix 400 is 9 hours, or 540 minutes. This limit is exceeded after a certain
environment size. When the area is searched with two UAVs this happens at
around 2500 cells.

The time results are important to consider in a search operation. The
maximum time should not be impractical. For example, if a search starts
in the morning, one would ideally want to complete it before dark. When
using two UAVs, the longest search time is over 2000 minutes. This equates

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 181

to roughly 35 hours, which is likely impractical. By adding two UAVs, the
maximum time halves to roughly 17 hours. It would be up to the search team
to choose an appropriate number of UAVs to complete a search. If survivors
are injured, the time constraint may be even shorter. Every time the number
of UAVs in the search double, the search time essentially halves.

(a) Maximum path completion time.

(b) Maximum energy consumption.

Figure 9.17: Graphs showing the maximum time and energy consumed to
completely cover environments of varying size with no obstacles.

Figure 9.18 shows the maximum search time as a function of the num-
ber of UAVs, for the four different environment sizes in the second data set.
The results clearly show how the maximum search time halves every time the
number of UAVs are doubled. The energy consumption is not shown here as
it does not differ significantly from the time data.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 182

Figure 9.18: Graph showing the the maximum time to completely cover envi-
ronments of varying size with no obstacles for an increasing number of UAVs.

Survivor Detection Time vs Environment Size and Obstacle
Density

The second set of simulations were performed to investigate the effect of in-
troducing obstacles into the environment. The simulations were performed
using only the first data set described in Section 9.1. The simulations were
performed with the same environment sizes and numbers of UAVs as in the
previous section, but with obstacle densities ranging from 0% to 25%.

In Figure 9.10b it was shown that adding obstacles increases the average
discrepancy in the divide areas algorithm. When taking only this into account,
the maximum path completion is expected to increase slightly compared to the
no-obstacles case. This is because a higher discrepancy means that the largest
sub-region gets larger and the smallest sub-region gets smaller. Therefore it
would take longer to finish covering the largest region.

Figure 9.19a shows the maximum search time as a function of environment
size for various obstacle densities. The results assume that four UAVs were
used to perform the search. The dotted black line represents the no obstacle
data from the first data set. Although some of the data is above the line, likely
due to the increased discrepancy, there is a significant portion of data below the
line. The reason for this is that the number of rotations have increased. In this
environment discretisation, rotations take less time to execute than straight-
line manoeuvres. The increase in the number of rotations is expected with an
increase in obstacle density. In more complex environments, the UAVs need
to turn more often to achieve coverage. The values are plotted with respect to
the number of free cells, so the environments are not decreasing in size with an
increase in obstacles. The environment complexity is the only factor increasing
the rotations.

In general, obstacle density does not have a large effect on the overall trend
of the search time versus environment size. However, the scale on the figure

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 183

is quite large, and there could actually be up to an hour difference between
the search time in an environment with obstacles compared to an environment
without obstacles. Depending on the scenario, this could be significant.

Figure 9.19b shows the energy consumption as a function of environment
size for various obstacle densities. The results again assume that four UAVs
were used to perform the search. Rotations take less time to execute, but a
safety factor of 30% is applied for energy consumption. This means that turn-
ing manoeuvres effectively consume more energy than straight-line manoeu-
vres. Therefore, the energy consumption in an environment with obstacles is
generally more than for an environment with no obstacles.

(a) Maximum path completion time.

(b) Maximum energy consumption.

Figure 9.19: Graphs showing the maximum time and energy consumed to
completely cover environments of varying size and obstacle density.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 184

Survivor Detection Time with Central Deployment and Refuelling

The third set of simulations were performed to investigate the effect of central
deployment and refuelling The simulations were performed using only the first
data set described in Section 9.1. These simulations are performed with two
UAVs, but with the number of sub-regions increasing with the environment
size, and assuming the UAVs will sequentially search the sub-regions with
refuels in between. A flight schedule is also generated, with the times taken
to take off, depart, search, arrive, land, and refuel all taken into account.

Figure 9.20a shows the maximum search time as a function of environment
size, when using two UAVs with limited endurance that refuel between flights.
The maximum search time now represents the total time to complete the flight
schedule, which represents the longest time it can take to detect survivors.
The maximum search time is plotted against the number of free cells in the
environment, for consistency.

The black dotted line is taken from the no-obstacle simulation for two
UAV where there is no refuelling and no central deployment and serves as a
baseline for comparison. For all the refuelling cases, the line is followed quite
closely. There is slightly more variation as the number of refuels increases, but
not noticeably so. The additional manoeuvres for refuelling therefore barely
affect the survivor detection time.

Figure 9.20b shows the corresponding energy consumption as a function
of environment size, when using two UAVs with limited endurance that refuel
between flights. The black line shows the 540 minute cutoff, equating to the
9 hour predicted flight time. The conservative approach for calculating the
number of refuels is effective since the energy consumption estimation generally
does not exceed 520 minutes.

When looking at the total data, and not the average values, there were
only two failure cases where the cutoff time was exceeded. The failure rate
in this data was therefore 0.1%. These were also the only edge cases where
the algorithm came close to reaching the 10% discrepancy limit. Changing the
algorithm parameters and rerunning these scenarios could be used to remedy
this. Decreasing the discrepancy limit may also be a good course of action,
based on how it increases the flight times.

The dotted lines on the figure show the data from the corresponding no-
obstacle simulation. The zero-refuels data follows the two UAV trend. The
one refuel case follows the four UAV trend and so on. This is intuitive since
one refuel with two UAVs leads to four equivalent robots. Therefore there are
four sub-regions, as with the no obstacle and no refuel case with four available
UAVs.

Generally, the energy consumption for the refuelling case is higher than
with the no-obstacle case. This is likely due to the safety factor that is applied
to the additional manoeuvres outside of the flight time. The ground station
size also increases for the six and eight robots case, compared to the two and

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 185

(a) Maximum path completion time.

(b) Maximum energy consumption.

Figure 9.20: Graphs showing the maximum time and energy consumed to
completely cover environments of varying size with no obstacles and UAVs
that refuel.

four robots case. The approach and landing manoeuvres consequently become
lengthier for these scenarios. This is why the increase in energy consumption
is more significant for the corresponding two and three refuels case, compared
to the zero and one refuels case.

The results from this section can be compared to the complete SAR so-
lution that was developed by DroneSAR [1]. They claim that a search team
took two hours to find a target in an area on 1 km2. Comparably, a single
quadrotor UAV took 20 min using back-and-forth manoeuvres.

The smallest area tested with the technique developed in this report was
about 3 km2 in size. A zoomed-in view of the data from Figure 9.20a is shown
in Figure 9.21. The maximum survivor detection time for an area of this size
was found to be roughly 30 min with two UAV. This is not a direct comparison,
but it is an acceptable result, especially when compared with the time it took

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 186

Figure 9.21: Zoomed in view of the maximum time to completely cover en-
vironments of varying size with two UAVs that are deployed from a central
ground station.

a SAR team to find the target manually in a smaller area.

9.3.2 Survivor Detection Time in a Specific
Environment

This section presents the simulation tests that were performed to determine
the distribution of survivor detection times for a specific environment, for
different numbers of UAVs, and with and without refuelling. The Aberdeen
environment was used as the test environment. Survivor detection in this
section is the time that has elapsed since the first UAV takes off until the
target is found.

The simulations were all performed using central deployment, with the
initial UAV positions arranged around the perimeter of the ground station.
Take-off and landing times were also taken into account for the survivor de-
tection time. The Strix 400 UAV was used, but its endurance was varied to
demonstrate the effects of refuelling.

Exactly 25 different simulation runs were performed. Each simulation
run used a different random ground station location and random unknown
survivor location. Both the ground station location and the actual survivor
location were drawn from a uniform probability distribution over the entire
environment. The survivor detection times are based on the actual target
location, and are not the maximum search times shown in the previous section.

The simulations were first performed for a changing number of UAVs that
do not refuel. They are assumed to have enough fuel to complete their search
without refuelling. Therefore, the endurance limit is different in each case.

Figure 9.22a shows the distribution of the survivor detection times as
a function of the number of UAVs, assuming that the UAVs have unlimited
endurance and do not need to refuel. The distribution is shown using box-and-
whiskers plots that represent the median time, the 25th and 75th percentiles,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 187

(a) Robots do not refuel.

(b) Robots refuel (eight equivalent robots).

Figure 9.22: Box-and-whisker plots of survivor detection time for 25 scenarios
in the Aberdeen environment with a changing number of available robots.

and the minimum and maximum times. The "X" marks the mean survivor
detection time. The simulation results clearly show that increasing the number
of UAVs reduces the survivor detection time. Therefore, a search team will
always benefit, in terms of survivor detection time, if they are able to utilise
more UAVs.

The same simulations were repeated, but this time assuming that the
UAVs have limited endurance, and need to refuel between covering sub-regions.
The endurance limit was chosen so that a single UAV could only cover an
eighth of the entire search area in a single coverage flight. This means that
a single UAV would have to perform eight flights with seven refuels, or two
UAVs would have to perform four flights each with three refuels each, or eight
UAVs would have to perform one flight each, with no refuels.

The results show that the survivor detection times for UAVs with limited
endurance are very similar to the survivor detection times for UAVs with
unlimited endurance, when the same number of physical UAVs are used to
perform the search. The survivor detection times are slightly higher for UAVs
with limited endurance, due to the additional time required to approach, land,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 188

refuel, take off, and depart. For eight UAVs, the survivor detection times are
identical with and without limited endurance, because the UAVs with limited
endurance each only perform one flight and do not need to refuel.

9.4 Key Findings
The execution time of the divide-areas algorithm was tested in simulation. The
mean execution time of the DARP algorithm was found to increase with an
increase in environment size and with an increase in UAVs. Introducing obsta-
cles into the environment also caused an increase in the average execution time
of the algorithm, due to an increase in environment complexity. When looking
at obstacle free environments, it was shown that adding central deployment
and perimeter configurations increased the average execution time compared
to environments with random UAV initial positions.

To quantify how well the divide-areas algorithm divides a search area into
equal-sized sub-regions, the discrepancy value was used. The area-division dis-
crepancy was higher for environments with higher obstacle densities. This can,
once again, be attributed to an increase in environment complexity with an
increase in obstacle density. When looking at environments with no obstacles,
those using perimeter configurations showed higher discrepancies than those
with random UAV initial positions, but the difference was slight. In general,
discrepancy also increased with an increase in the number of UAVs.

The failure rate of the DARP algorithm was briefly discussed. An increase
in environment obstacle density was found to increase the DARP failure rate.
The DARP algorithm cannot distinguish between a failure to find a solution
because a solution does not exist, and a failure to find a solution where one
exists, but the parameters of the algorithm simply need to be changed to
find the solution. A search team, however, may be able to visually identify
environments where a perfect area division is not possible.

The spanning tree coverage (STC) algorithm execution time was also
tested in simulation, and was found to increase with an increase in environ-
ment size, but decrease with an increase in the number of UAVs. Baseline
values were generated in environments with no obstacles and randomly gen-
erated UAV initial positions. Introducing obstacles into the environment had
little effect on this time. Central deployment and perimeter configurations also
had no noticeable impact on the results. Slight deviations from the baseline
were attributed to the discrepancy in area division as a result of introducing
obstacles or using perimeter configurations and central deployment.

The execution time of the DARP algorithm was generally well under a
minute. The execution time of the STC algorithm was also in the order of
minutes. For the maximum case tested, where two robots were used in a 10000
cell environment, the STC algorithm took just over a minute to execute. The

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 9. MONTE CARLO SIMULATIONS 189

execution time of both these algorithms is negligible when compared to the
time scales of a search and rescue operation.

According to Oregon Health and Science University [80], it was found that
99% of people who were found alive were found within the first 51 hours of
a SAR operation. The SAR operations that were used in this statistic were
conducted throughout the United States (US) state of Oregon, where there
is a varied landscape including mountains, deserts and rivers. This statistic
shows that survivor detection time is critical to increase survival rates.

Simulations were performed for maximum survivor detection times and
energy consumption during flight, for the automated SAR technique described
in this report. These results are specifically for a Strix 400 UAVs flying at a
constant speed of 14 m/s. The Strix 400 UAV has a 9 hour, or 540 minute,
predicted flight time. When looking at the energy consumption results, the
refuelling protocol had a near perfect success rate for keeping the maximum
energy consumption below this limit.

The maximum survivor detection times increased linearly with an increase
in environment size, and decreased with an increase in the number of available
UAVs. Doubling the UAVs effectively halves the maximum survivor detection
time for a specific environment size. For example, two robots searching a
10000 cell environment would take roughly 35 hours to cover the whole area,
representing an area of roughly 320 km2. Since this is more than a full day, this
would likely be impractical. Eight robots conducting the same search would
take less than 9 hours to cover the same area. The maximum times showed
almost no change with the introduction of refuelling and central deployment.
The perimeter configuration therefore keeps the departure and approach times
of the UAVs relatively short, and prevents them from having a large impact
on overall survivor detection times.

The simulations showed maximum search times that are feasible for use
in real-world SAR operations, but it would be up to the search coordination
team to decide best suites their needs. More UAVs generally improves the
chances of finding survivors sooner, which would be necessary for time-sensitive
operations.

The performance of the solution developed in this project was compared to
the complete SAR solution that was developed by DroneSAR [1]. The results
were comparable for when UAVs are utilized, and according to DroneSAR,
this far outperforms a manual search team.

Stellenbosch University https://scholar.sun.ac.za

Chapter 10

Conclusions and
Recommendations

This chapter summarises the research presented in this thesis, with reference
to aspects of the research that performed well and aspects that could use im-
provement. Section 10.1 summarises the work done and Section 10.2 provides
suggestions for potential future work related to this research.

10.1 Summary of Work Done
The main goal of this research was to develop an automated search and rescue
(SAR) approach with multiple UAVs. Existing literature was reviewed regard-
ing the SAR problem as well as existing implementations where UAVs were
used to assist in SAR.

The automated SAR problem was formulated as a distributed, offline,
multi-robot coverage path planning (MCPP) problem. Literature regarding
coverage path planning (CPP) was reviewed for the single and multiple robot
case. For MCPP, existing literature regarding the offline distributed, offline
non-distributed and online case was investigated. Using multiple UAVs has
the advantage of reducing the time to cover an environment. The distributed
case gives the added advantage of eliminating collisions between UAVs.

The search and rescue problem and its components were modelled and
conceptualised. These include the search area, the terrain, the UAVs, and
the survivor(s) within the environment. It was found that a systematic, auto-
mated UAV search would likely search a subset of a larger search area that is
demarcated by the search coordination team in the planning stage of a search.

For an aerial UAV search of a lowland, mountainous or marine environ-
ment, it was deemed reasonable to assume that the environment is known prior
to the search. Therefore, an offline approach was used with static obstacles.
The problem was also reduced to a two-dimensional one by assuming a con-
stant altitude search. The target, or survivor(s), were assumed static for the

190

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. CONCLUSIONS AND RECOMMENDATIONS 191

duration of the search and survivor detection was assumed to be implicit with
downward-facing onboard cameras.

Complete coverage was made a requirement for this implementation. To
achieve this in a grid-based environment, the dynamic constraints of the UAV
need to be considered. With the constant speed assumption, the dynamic
constraints are reduced to a minimum turning radius during flight. In order
to achieve complete coverage, a UAV must then fly high enough such that the
onboard camera FOV completely covers a cell while the UAV is executing a
turn manoeuvre at this radius. This results in a lower limit for the constant
search altitude.

A minimum ground sampling distance (GSD) to guarantee survivor detec-
tion was also imposed. This resulted in an upper limit on the search altitude,
based on the camera resolution. This, along with the lower limit imposed by
the UAV dynamic constraints, produced a range of feasible search altitudes.
Therefore, the UAV and camera combination requires careful consideration.

A drawback of this method is that a significant amount of overlap is intro-
duced, leading to considerable redundant coverage. The constant flying speed
or constant altitude assumptions could be altered to address this. However,
an advantage is that this overlap makes the coverage of the actual continuous
environment more exact.

Fixed-wing UAVs were chosen for the project, since they have longer
endurance, and SAR operations generally cover large environments. All the
parameters associated with the UAVs and cameras in this project are assumed
values based on literature, and would need to be confirmed using real-world
experiments in order to be used in practice.

The divide areas algorithm for optimal multi-robot coverage path planning
(DARP) was chosen to divide the grid-based search area into sub-regions for
the UAVs. The division of the search area into sub-regions is what makes the
approach a distributed approach. Based on the initial positions of the UAVs in
the known environment, the algorithm iteratively assigns cells to those UAVs
for searching. The algorithm seeks to optimise the area division by forming
contiguous, equal-sized sub-regions.

One UAV initial position resides within each sub-region, and from this
position, the UAV searches the associated region. A single robot coverage
technique referred to as spanning tree coverage (STC) was used to achieve
coverage of the individual regions. Dynamic constraints of the UAVs were
also incorporated into the paths to make the paths feasible for real-world
applications. The resulting closed-loop paths mean that once a UAV completes
the coverage of its region, it is once again at its initial position.

A central deployment strategy was developed so that all the UAVs take
off and land at the same location. This zone is referred to as the central ground
station. The UAV initial positions were arranged in a perimeter configuration
around this ground station and the area was assumed to be clear of obstacles
for the manoeuvres in this space.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. CONCLUSIONS AND RECOMMENDATIONS 192

Four manoeuvres were described. Take off and landing are the manoeuvres
to get from the ground to the search altitude, and vice versa. Departure
and approach are the manoeuvres to and from the the UAV initial positions
after take-off and before landing. The heading and dynamic constraints of the
vehicle were considered for these manoeuvres. The closed-loop nature of the
coverage paths mean that departure ends where approach begins, at the initial
position of the UAV for the search.

In order to avoid collisions around the ground station, a flight schedule
was created. The UAVs take off sequentially and land in the same order. Since
the sub-regions are close to equal in size, the flight paths are of similar length,
which eases this process. However, if necessary, an airborne wait cycle can be
used so that one UAV can wait for another to finish landing before it begins
its approach.

To take UAV endurance limitations into account, the sub-region sizes
created by the divide areas algorithm were limited by UAV predicted flying
time on one charge/refuel. A refuelling protocol was then developed that
assigns more than one sub-region to a single UAV for searching. The UAVs
would take off in sequence, complete searching respective sub-regions, and then
land in sequence. They then refuel at the ground station and take off again to
search the next unsearched sub-regions.

With the complete implementation developed, simulations were run to
evaluate the effects of increasing the number of UAVs, the environment size,
the obstacle density, and the number of refuels. Inputs such as the algorithm
weights, the maximum iterations, the search altitude, the flying speed, and
the type of UAV and camera used, were kept constant for these simulations.

The typical algorithm execution time and success rate was assessed. For
the DARP algorithm, it was found that an increase in environment size or
number of UAVs causes an increase in average algorithm execution time.

A slight disadvantage of the central deployment case is that this also
increased the execution time on average for the same number of UAVs. The
configurations were tested for up to eight UAVs, and in this case the increase
was very slight.

The ability of the divide-areas algorithm to produce equal-sized sub-
regions was evaluated by analysing the discrepancy value for different envi-
ronment sizes, numbers of UAVs, obstacle densities, and deployment strate-
gies. Obstacle density had the largest impact, causing more sub-optimal area
divisions as the obstacle density increases. A slight increase in discrepancy
was also found for the central deployment case when compared to the random
UAV initial positions case.

When generating the coverage paths, it was found that spanning tree
generation is the most time consuming portion of the process. In general, the
execution time for coverage path generation increases with increasing environ-
ment size, but decreases with an increasing number of UAVs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. CONCLUSIONS AND RECOMMENDATIONS 193

Algorithm failures were found to be directly related to the success of
the DARP algorithm. A failure would occur in the event that there is no
solution. There were, for example, more failures with higher obstacle densities.
Obstacles may cause unreachable regions or generate environments where an
even division of cells is impossible. A failure would also occur if the maximum
iterations of the algorithm are reached before the solution is found. In this
case, the algorithm weights or maximum iterations value could be altered to
find the solution.

A disadvantage of the DARP algorithm is that it cannot distinguish be-
tween an environment with no solution and an environment where a solution
exists, but the parameters need to be changed in order to find the solution.
There is also no clear framework for selecting the algorithm weights and max-
imum iterations. Therefore in some scenarios it could be necessary to rerun
the algorithm multiple times with different inputs. However, the overall time
to find a solution is in the range of a few minutes, making it feasible for usage
in the field, even if a few reruns are required. For an 8000 cell environment,
representing a roughly 260 km2 area, with eight UAVs and 10% obstacles, the
DARP algorithm executes in under two minutes. The individual path genera-
tion algorithm for the same case takes less than 15 seconds. Even if the UAVs
were decreased to two, the individual path generation takes under one minute
to execute.

The survivor detection performance of the full system was tested and
evaluated in simulation. Simulations were performed to determine the maxi-
mum time it would take to cover the search entire area using multiple UAVs.
As expected, the maximum search time increased with environment size, and
decreased with the number of UAVs.

For example, two UAVs searching 10000 cells (representing an area of
roughly 320 km2) would take roughly 35 hours to cover the entire search area,
which could be impractical since they would have to search through the night.
However, eight UAVs performing the same search would take less than 9 hours.
These results were obtained for a Strix 400 UAV flying at a constant speed
of 14 m/s. It would be up to the search coordination team to decide what
combination best suites their needs, but more UAVs generally improve the
chances of finding survivors sooner. The simulation results therefore showed
maximum search times that are feasible for real-world SAR operations.

The path completion times with the Strix 400 UAV showed almost no
change with the introduction of refuelling and central deployment. The perime-
ter configuration is therefore successful in keeping the departure and approach
time relatively short, and preventing it from having a large impact on overall
survivor detection times.

Four real-world environments were used as illustrative examples through-
out the project. Two mountainous environments, a ground environment, and
a marine environment were used. The Aberdeen example environment was
used to show the statistical distribution of survivor detection times one could

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. CONCLUSIONS AND RECOMMENDATIONS 194

expect for a ground SAR scenario. With one UAV it was found to take up to
17 hours. This time was halved as the UAVs are doubled. With eight UAVs
the maximum survivor detection time was below 2 hours and 30 minutes. In
search and rescue, most people that are found alive are located within the
first 51 hours of going missing [80]. Therefore, these are reasonable survivor
detection times in the context of a SAR operation.

The refuelling protocol was also evaluated in simulation by looking at the
maximum energy consumption for searching a single sub-region. Energy con-
sumption was represented by the time to complete a flight path, with safety
factors applied to manoeuvres like turns to account for increased energy con-
sumption with these motions. The Strix 400 UAV used for the simulations has
a 9 hour flight time and the refuelling protocol had a near perfect success rate
for keeping the energy consumption below this value.

As a whole the CPP strategy proposed to automate SAR with multiple
UAVs was shown to be feasible. Simulations for theoretical and real-world
examples show reasonable algorithm execution times, as well as favourable
survivor detection times. Using more UAVs significantly improves survivor
detection times and this could be invaluable for time sensitive SAR operations.

10.2 Recommendations for Future Work
This section lists possible improvements that can be made to the algorithms
presented in this thesis, and ways that this research could be taken further.
The following list briefly details potential future work:

• This implementation would benefit from a more rigorous investigation
into environment mapping. Having a series of offline maps ready to use,
or a system by which to map a new environment quickly would form a
more complete solution for real-world application in SAR.

• The development of a methodology for assigning the connectivity and
random component weights in the DARP algorithm is not currently
available. An in-depth study on what weights are most appropriate for
different environments would greatly simplify finding a solution.

• The assumption of a constant search altitude for this implementation lim-
its the topographical variation that can be accommodated with this ap-
proach. An implementation that utilises a constant height above ground
by following the topography would allow for a fairly constant GSD value,
allowing more flexibility.

• The constant speed in this implementation assumption leads to large
overlap values in order to accommodate dynamic constraints while also
achieving complete coverage. Allowing for variations in speed would
reduce redundant coverage. However, the advantage of this would have

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 10. CONCLUSIONS AND RECOMMENDATIONS 195

to be weighed against the change in path completion time which directly
impacts survivor detection time.

• Currently only static obstacles are accounted for. The addition of a
short-term collision avoidance technique to address dynamic obstacles
would make the implementation well suited for real-world application.

• Adapting the implementation for heterogeneous UAVs would make it eas-
ier for a search coordination team to utilize all their available resources.
In the case of the divide areas algorithm, sub-region sizes would need to
be adapted to represent the endurance limitations of different types of
robots. Environment mapping in the event that they fly at different al-
titudes would also need to be adapted. This could even be taken further
by incorporating unmanned ground vehicles (UGVs).

• Adapting the algorithms to accommodate a moving target would be use-
ful in certain SAR scenarios, for example, if someone in the ocean was
and being taken by a strong current. This may require the introduction
of backtracking and possible re-planning. A more incremental planner
may be necessary.

Stellenbosch University https://scholar.sun.ac.za

Appendices

196

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Discretisation Tables

This appendix shows the full discretisation tables for the examples shown in
Section 5.4. A summarised version for each scenario is shown in the section
itself, but these show the full process in more detail. For a detailed description
of the discretisation technique employed, see Section 5.2.

Important to note is that the flying height (Hf) represents height above
sea level. The heights used in calculation of the square discretisation (l) would
be relative to the highest topographic point in the environment (hgmax). Sim-
ilarly, the height used to calculate the achieved GSD and overlap percentage
would be relative to the lowest point in the environment (hgmin

).
Each table has values describing the environment, mainly ∆hg, which is

the actual topographic variation of the environment. Furthermore, there is the
overall environment dimensions, represented by Dx and Dy.

The first table, Table A.1, summarises the discretisation of Spitskop
Mountain in the Western Cape. It serves as an example of a low altitude
mountainous terrain. The result of this discretisation, as well as the reasoning
behind it, can be found in Section 5.4.1.

Similarly, Table A.2 summarises the discretisation of Champagne Castle
in KwaZulu-Natal. This is an example of a high altitude mountainous terrain.
Note how even though the overall topography of this application is steeper,
the narrow region that is being searched actually has less resulting topographic
variation than the low altitude example. The result of the discretisation can
be found in Section 5.4.2.

Table A.3 looks at the area surrounding Aberdeen in the Northern Cape.
It summarises the discretisation for a ground SAR scenario. Section 5.4.3
discusses this scenario and shows the final discretised environment.

Lastly, Table A.4 summarises the discretisation of a section of ocean off
the coast of Jeffreys Bay in the Eastern Cape. It is an example of a marine
SAR scenario and the resulting discretisation is detailed in Section 5.4.4.

197

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. DISCRETISATION TABLES 198

Variable Name Value Units Equation
GSDmax 4.7 cm/px
φmax 25.0 degrees
Hmax 366.6 m 5.5
Vmax(∆hg = 0) 21.7 m/s 5.12
Vf 14.0 m/s
Hmin 152.8 m 5.7
(∆hg)max 213.8 m 5.17
∆hg 200.0 m
hgmin

300.0 m
hgmax 500.0 m
Hfmin

652.8 m 5.9
Hfmax 666.6 m 5.9
Hf 660.0 m 5.9
FOVx 164.1 m 5.2
FOVy 109.7 m 5.3
rmin 42.8 m 3.7
l 89.8 m 5.14
Dx 15312 m
Dy 7606 m
GSD 4.6 cm/px 5.4
%Overlap 311 % 5.16

Table A.1: Table summarising the calculations and values necessary to discre-
tise the Spitskop environment.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. DISCRETISATION TABLES 199

Variable Name Value Units Equation
GSDmax 4.7 cm/px
φmax 25.0 degrees
Hmax 366.6 m 5.5
Vmax(∆hg = 0) 21.7 m/s 5.12
Vf 14.0 m/s
Hmin 152.8 m 5.7
(∆hg)max 213.8 m 5.17
∆hg 177.0 m
hgmin

3200.0 m
hgmax 3377.0 m
Hfmin

3529.8 m 5.9
Hfmax 3566.6 m 5.9
Hf 3535.0 m 5.9
FOVx 162.1 m 5.2
FOVy 108.3 m 5.3
rmin 42.8 m 3.7
l 88.6 m 5.14
Dx 11496 m
Dy 5468 m
GSD 4.3 cm/px 5.4
%Overlap 288 % 5.16

Table A.2: Table summarising the calculations and values necessary to discre-
tise the Champagne Castle environment.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. DISCRETISATION TABLES 200

Variable Name Value Units Equation
GSDmax 4.7 cm/px
φmax 25.0 degrees
Hmax 366.6 m 5.5
Vmax(∆hg = 0) 21.7 m/s 5.12
Vf 16.0 m/s
Hmin 199.5 m 5.7
(∆hg)max 167.1 m 5.17
∆hg 144.0 m
hgmin

706.0 m
hgmax 850.0 m
Hfmin

1049.5 m 5.9
Hfmax 1072.6 m 5.9
Hf 1060.0 m 5.9
FOVx 215.4 m 5.2
FOVy 144.0 m 5.3
rmin 56.0 m 3.7
l 117.8 m 5.14
Dx 15849 m
Dy 7555 m
GSD 4.5 cm/px 5.4
%Overlap 208 % 5.16

Table A.3: Table summarising the calculations and values necessary to discre-
tise the Aberdeen environment.

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. DISCRETISATION TABLES 201

Variable Name Value Units Equation
GSDmax 4.7 cm/px
φmax 35.0 degrees
Hmax 366.6 m 5.5
Vmax(∆hg = 0) 21.7 m/s 5.12
Vf 19.0 m/s
Hmin 187.4 m 5.7
(∆hg)max 179.2 m 5.17
∆hg 10.0 m
hgmin

0.0 m
hgmax 10.0 m
Hfmin

197.4 m 5.9
Hfmax 366.6 m 5.9
Hf 215.0 m 5.9
FOVx 210.3 m 5.2
FOVy 140.6 m 5.3
rmin 52.6 m 3.7
l 115.0 m 5.14
Dx 3347 m
Dy 1594 m
GSD 2.8 cm/px 5.4
%Overlap 92 % 5.16

Table A.4: Table summarising the calculations and values necessary to discre-
tise the Jeffreys Bay environment.

Stellenbosch University https://scholar.sun.ac.za

List of References

[1] “DJI And DroneSAR Bring Search And Rescue App To First Responders,”
nov 2016. [Online]. Available: https://www.dji.com/ie/newsroom/news/
dji-and-dronesar-bring-search-and-rescue-app-to-first-responders

[2] H. Azpúrua, G. M. Freitas, G. Douglas, and M. F. M. Campos, “Multi-robot
coverage path planning using hexagonal segmentation for geophysical surveys,”
Robotica, vol. 36, no. 2018, pp. 1144–1166, 2018.

[3] V. G. Nair and K. R. Guruprasad, “GM-VPC: An Algorithm for Multi-robot
Coverage of Known Spaces Using Generalized Voronoi Partition,” Robotica,
vol. 38, no. 5, pp. 845–860, 2020.

[4] C. Rossi, L. Aldama, and A. ententos, “Simultaneous task subdivision and al-
location for teams of heterogeneous robots,” Proceedings - IEEE International
Conference on Robotics and Automation, no. May, pp. 946–951, 2009.

[5] N. Hazon and G. A. Kaminka, “Redundancy, efficiency and robustness in multi-
robot coverage,” Proceedings - IEEE International Conference on Robotics and
Automation, no. April, pp. 735–741, 2005.

[6] A. C. Kapoutsis, S. A. Chatzichristofis, and E. B. Kosmatopoulos,
“DARP: Divide Areas Algorithm for Optimal Multi-Robot Coverage Path
Planning,” Journal of Intelligent and Robotic Systems: Theory and
Applications, vol. 86, no. 3-4, pp. 663–680, 2017. [Online]. Available:
http://dx.doi.org/10.1007/s10846-016-0461-x

[7] “Google maps.” [Online]. Available: https://www.google.com/maps

[8] “Topographic maps.” [Online]. Available: https://en-za.topographic-map.com/

[9] “Mapcarta.” [Online]. Available: https://mapcarta.com/

[10] J. A. Guerrero and Y. Bestaoui, “UAV path planning for structure inspection in
windy environments,” Journal of Intelligent and Robotic Systems: Theory and
Applications, 2013.

[11] P. Lottes, R. Khanna, J. Pfeifer, R. Siegwart, and C. Stachniss, “UAV-based
crop and weed classification for smart farming,” Proceedings - IEEE Interna-
tional Conference on Robotics and Automation, 2017.

202

Stellenbosch University https://scholar.sun.ac.za

https://www.dji.com/ie/newsroom/news/dji-and-dronesar-bring-search-and-rescue-app-to-first-responders
https://www.dji.com/ie/newsroom/news/dji-and-dronesar-bring-search-and-rescue-app-to-first-responders
http://dx.doi.org/10.1007/s10846-016-0461-x
https://www.google.com/maps
https://en-za.topographic-map.com/
https://mapcarta.com/

LIST OF REFERENCES 203

[12] I. Maza, F. Caballero, J. Capitán, J. R. Martínez-De-Dios, and A. Ollero, “Ex-
perimental results in multi-UAV coordination for disaster management and civil
security applications,” Journal of Intelligent and Robotic Systems: Theory and
Applications, 2011.

[13] W. Chang, G. Yang, J. Yu, Z. Liang, L. Cheng, and C. Zhou, “Development of a
power line inspection robot with hybrid operation modes,” IEEE International
Conference on Intelligent Robots and Systems, 2017.

[14] N. Basilico and S. Carpin, “Deploying teams of heterogeneous UAVs in co-
operative two-level surveillance missions,” IEEE International Conference on
Intelligent Robots and Systems, 2015.

[15] H. X. Pham, H. M. La, D. Feil-Seifer, and M. Deans, “A distributed control
framework for a team of unmanned aerial vehicles for dynamic wildfire tracking,”
IEEE International Conference on Intelligent Robots and Systems, 2017.

[16] L. Meiring and J. Engelbrecht, “Cooperative collision avoidance strategies for
unmanned aerial vehicles,” 2021. [Online]. Available: https://scholar.sun.ac.za

[17] H. Choset, “Coverage for robotics - A survey of recent results,” Annals of Math-
ematics and Artificial Intelligence, 2001.

[18] “Iamsar manual volume i organization and management, international aeronau-
tical and maritime search and rescue manual,” 2016.

[19] “Iamsar manual volume ii mission co-ordination, international aeronautical and
maritime search and rescue manual,” 2016.

[20] “Virtual workshop on the establishment of an effective search and rescue (sar)
organization.”

[21] T. Leis, “The different types of search and rescue,” 2021. [Online]. Available:
https://sregear.com/blogs/news/the-different-types-of-search-and-rescue

[22] R. R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset, and
A. M. Erkmen, Search and Rescue Robotics. Springer Berlin Heidelberg, 2008.

[23] R. Sisk, “Meet the us navy’s robotic lifeguard named ’emily’,”
2016. [Online]. Available: https://www.military.com/daily-news/2016/05/
18/meet-the-us-navys-robotic-lifeguard-named-emily.html

[24] DroneSAR. (2019) DroneSAR NEW Features. [Online]. Available: https:
//fb.watch/8O5OMVjb45/

[25] V. S. Juan, M. Santos, and J. M. Andújar, “Intelligent UAV Map Generation
and Discrete Path Planning for Search and Rescue Operations,” Hindawi,
vol. 2018, 2018. [Online]. Available: https://www.hindawi.com/journals/
complexity/2018/6879419/

Stellenbosch University https://scholar.sun.ac.za

https://scholar.sun.ac.za
https://sregear.com/blogs/news/the-different-types-of-search-and-rescue
https://www.military.com/daily-news/2016/05/18/meet-the-us-navys-robotic-lifeguard-named-emily.html
https://www.military.com/daily-news/2016/05/18/meet-the-us-navys-robotic-lifeguard-named-emily.html
https://fb.watch/8O5OMVjb45/
https://fb.watch/8O5OMVjb45/
https://www.hindawi.com/journals/complexity/2018/6879419/
https://www.hindawi.com/journals/complexity/2018/6879419/

LIST OF REFERENCES 204

[26] S. Waharte, N. Trigoni, and S. J. Julier, “Coordinated search with a swarm of
UAVs,” 2009 6th IEEE Annual Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks Workshops, SECON Work-
shops 2009, no. July, 2009.

[27] S. Waharte, A. Symington, and N. Trigoni, “Probabilistic search with agile
UAVs,” Proceedings - IEEE International Conference on Robotics and Automa-
tion, no. February 2014, pp. 2840–2845, 2010.

[28] A. Symington, S. Waharte, S. Julier, and N. Trigoni, “Probabilistic target detec-
tion by camera-equipped UAVs,” Proceedings - IEEE International Conference
on Robotics and Automation, no. February 2014, pp. 4076–4081, 2010.

[29] S. Waharte and N. Trigoni, “Supporting search and rescue operations with
UAVs,” Proceedings - EST 2010 - 2010 International Conference on Emerging
Security Technologies, ROBOSEC 2010 - Robots and Security, LAB-RS 2010
- Learning and Adaptive Behavior in Robotic Systems, no. June, pp. 142–147,
2010.

[30] P. Rudol and P. Doherty, “Human body detection and geolocalization for UAV
search and rescue missions using color and thermal imagery,” IEEE Aerospace
Conference Proceedings, pp. 1–8, 2008.

[31] M. Wzorek, G. Conte, P. Rudol, S. Duranti, and P. Doherty, “From
Motion Planning to Control - A Navigation Framework for an Autonomous
Unmanned Aerial Vehicle,” The 21st Bristol UAV Systems Conference (UAVS),
no. April, pp. 1–15, 2006. [Online]. Available: papers2://publication/uuid/
45F9D4FA-ADE3-4D11-91EC-597F64909440

[32] S. Hayat, C. Bettstetter, and T. X. Brown, “Multi-objective drone path planning
for search and rescue with quality-of-service requirements,” 2020.

[33] S. Hayat, E. Yanmaz, T. X. Brown, and C. Bettstetter, “Multi-objective uav
path planning for search and rescue,” 2017.

[34] S. M. Lavalle, Planning Algorithms. Cambridge University Press, 2006.

[35] S. Russell and P. Norvig, Artificial Intelligence: A modern approach, 3rd ed.
Pearson, 2016, vol. 48.

[36] H. Zhang, B. Xin, L. hua Dou, J. Chen, and K. Hirota, “A review of cooperative
path planning of an unmanned aerial vehicle group,” Frontiers of Information
Technology and Electronic Engineering, vol. 21, no. 12, pp. 1671–1694, 2020.

[37] P. N. Atkar, A. Greenfield, D. C. Conner, H. Choset, and A. A. Rizzi, “Uni-
form coverage of automotive surface patches,” International Journal of Robotics
Research, 2005.

[38] N. Mir-Nasiri, J. Hudyjaya Siswoyo, and M. H. Ali, “Portable Autonomous
Window Cleaning Robot,” Procedia Computer Science, 2018. [Online].
Available: https://doi.org/10.1016/j.procs.2018.07.024

Stellenbosch University https://scholar.sun.ac.za

papers2://publication/uuid/45F9D4FA-ADE3-4D11-91EC-597F64909440
papers2://publication/uuid/45F9D4FA-ADE3-4D11-91EC-597F64909440
https://doi.org/10.1016/j.procs.2018.07.024

LIST OF REFERENCES 205

[39] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation algorithms for
lawn mowing and milling,” Computational Geometry: Theory and Applications,
1999.

[40] B. Englot and F. S. Hover, “Sampling-based coverage path planning for inspec-
tion of complex structures,” ICAPS 2012 - Proceedings of the 22nd International
Conference on Automated Planning and Scheduling, pp. 29–37, 2012.

[41] I. A. Hameed, “Intelligent coverage path planning for agricultural robots and
autonomous machines on three-dimensional terrain,” Journal of Intelligent and
Robotic Systems: Theory and Applications, 2013.

[42] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous Systems, 2013.

[43] T. M. Cabreira, L. B. Brisolara, and R. Ferreira Paulo, “Survey on coverage
path planning with unmanned aerial vehicles,” MDPI, 2019.

[44] H. Choset and P. Pignon, “Coverage Path Planning: The Boustrophedon Cellu-
lar Decomposition,” Proceedings of International Conference on Field and Ser-
vice Robotics, pp. 203–209, 1997.

[45] H. Choset, E. Acar, A. A. Rizzi, and J. Luntz, “Exact cellular decompositions
in terms of critical points of Morse functions,” Proceedings - IEEE International
Conference on Robotics and Automation, vol. 3, no. April, pp. 2270–2277, 2000.

[46] N. Nourani-Vatani, M. Bosse, J. Roberts, and M. Dunbabin, “Practical path
planning and obstacle avoidance for autonomous mowing,” no. January, 2006.

[47] B. Englot and F. Hover, “Planning complex inspection tasks using redundant
roadmaps,” Proc. of the International Symposium of Robotics Research (ISRR),
vol. 100, no. January, 2011.

[48] T. Danner and L. E. Kavraki, “Randomized planning for short inspection
paths,” Proceedings - IEEE International Conference on Robotics and Automa-
tion, vol. 2, no. April, pp. 971–976, 2000.

[49] A. Barrientos, J. Colorado, J. D. Cerro, A. Martinez, C. Rossi, D. Sanz, and
J. Valente, “Aerial remote sensing in agriculture: A practical approach to area
coverage and path planning for fleets of mini aerial robots,” Journal of Field
Robotics, vol. 28, no. 5, pp. 667–689, sep 2011.

[50] H. H. Viet, V. H. Dang, M. N. U. Laskar, and T. Chung, “BA: An online
complete coverage algorithm for cleaning robots,” Applied Intelligence, vol. 39,
pp. 217–235, 2012.

[51] A. V. Le, V. Prabakaran, V. Sivanantham, and R. E. Mohan, “Modified a-star al-
gorithm for efficient coverage path planning in tetris inspired self-reconfigurable
robot with integrated laser sensor,” Sensors (Switzerland), vol. 18, no. 8, aug
2018.

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 206

[52] S. Dogru and L. Marques, “A*-Based Solution to the Coverage Path Planning
Problem Robot 2017,” Advances in Intelligent Systems and Computing, no. Jan-
uary, 2018.

[53] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of continuous areas
by a mobile robot,” Proceedings - IEEE International Conference on Robotics
and Automation, 1999.

[54] R. Nandakumar and N. Ramana Rao, “Fair partitions of polygons: An elemen-
tary introduction,” Proceedings of the Indian Academy of Sciences: Mathemat-
ical Sciences, vol. 122, no. 3, pp. 459–467, 2012.

[55] C. Gao, Y. Kou, Z. Li, A. Xu, Y. Li, and Y. Chang, “Optimal Multirobot
Coverage Path Planning: Ideal-Shaped Spanning Tree,” Mathematical Problems
in Engineering, vol. 2018, 2018.

[56] N. Baras, M. Dasygenis, and N. Ploskas, “Multi-Robot Coverage Path Planning
in 3-Dimensional Environments,” 2019 8th International Conference on Modern
Circuits and Systems Technologies, MOCAST 2019, pp. 0–3, 2019.

[57] X. Zheng, S. Jain, S. Koenig, and D. Kempe, “Multi-Robot Forest Coverage *,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.

[58] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha, “Min-max tree covers
of graphs,” International Conference on Approximation Algorithms for Combi-
natorial Optimization, 2003.

[59] G. S. C. Avellar, G. A. S. Pereira, L. C. A. Pimenta, and P. Iscold, “Multi-
UAV Routing for Area Coverage and Remote Sensing with Minimum Time,”
no. November, 2015.

[60] C. Luo and S. X. Yang, “A real-time cooperative sweeping strategy for mul-
tiple cleaning robots,” IEEE International Symposium on Intelligent Control -
Proceedings, pp. 660–665, 2002.

[61] “How weather affects flight: Weather knowledge droneinfo,” 3
2022. [Online]. Available: https://www.droneinfo.fi/en/study-material/
how-weather-affects-flight-weather-knowledge

[62] Propeller Aero, “What is Ground Sample Distance (GSD) and How Does
it Affect Your Drone Data ?” 2021. [Online]. Available: https://www.
propelleraero.com/blog/ground-sample-distance-gsd-calculate-drone-data/

[63] R. C. Prim, “Shortest connection networks and some generalizations,” 1957.

[64] N. Marwaha and E. Duffy, “Everything you need to know about digital
elevation models (dems), digital surface models (dsms), and digital terrain
models (dtms),” 2021. [Online]. Available: https://up42.com/blog/tech/
everything-you-need-to-know-about-digital-elevation-models-dem-digital

Stellenbosch University https://scholar.sun.ac.za

https://www.droneinfo.fi/en/study-material/how-weather-affects-flight-weather-knowledge
https://www.droneinfo.fi/en/study-material/how-weather-affects-flight-weather-knowledge
https://www.propelleraero.com/blog/ground-sample-distance-gsd-calculate-drone-data/
https://www.propelleraero.com/blog/ground-sample-distance-gsd-calculate-drone-data/
https://up42.com/blog/tech/everything-you-need-to-know-about-digital-elevation-models-dem-digital
https://up42.com/blog/tech/everything-you-need-to-know-about-digital-elevation-models-dem-digital

LIST OF REFERENCES 207

[65] “U.s. releases enhanced shuttle land elavation data,” 2022. [Online]. Available:
https://www2.jpl.nasa.gov/srtm/

[66] H. W. Jurgens, I. Matzdorff, and J. Windberg, “International Anthropometric
Data for Wok-Place and Machinary Design,” vol. 108, pp. 8–9, 1998.

[67] “Wingtraone gen ii drone.” [Online]. Available: https://wingtra.com/
wp-content/uploads/Wingtra-Technical-Specifications.pdf

[68] “Warrior aero: Ocean seaplanes and gull uav specifications,” 2021. [Online].
Available: https://www.warrioraero.com/gull-uav/specifications.html

[69] M. Speed, “Meet the albatross uav.”

[70] “Sea cavalry sd 40.” [Online]. Available: https://pdf.aeroexpo.online/
pdf/xiamen-han-s-eagle-aviation-technology-co-ltd/sd-40/186008-8819.html#
open35681

[71] “Meet the avem.” [Online]. Available: https://www.aeromapper.com/avem-2-2/

[72] “D-sentry up caeli via.” [Online]. Available: https://www.up-caelivia.it/d-sentry

[73] “Strix400.” [Online]. Available: https://pdf.aeroexpo.online/pdf/
eos-technologie/strix-400/187591-21258.html#open66821

[74] “Flir vue pro.” [Online]. Available: https://www.flir.com/products/vue-pro/

[75] “Mavic air 2 - specifications,” 2022. [Online]. Available: https://www.dji.com/
mavic-air-2/specs

[76] W. Kocay and D. L. Kreher, Graphs, Algorithms and Optimization. CRC Press,
2004,.

[77] H. Huang, A. V. Savkin, and W. Ni, “Energy-efficient 3d navigation of a solar-
powered uav for secure communication in the presence of eavesdroppers and
no-fly zones,” Energies, vol. 13, 2020.

[78] Y. Li, H. Chen, M. Joo Er, and X. Wang, “Coverage path planning
for UAVs based on enhanced exact cellular decomposition method,”
Mechatronics, vol. 21, no. 5, pp. 876–885, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.mechatronics.2010.10.009

[79] G. W. Milne, Navigation Work Package. University of Stellenbosch, 2003.

[80] “Ohsu researchers find time is best predictor of survival in search and
rescue missions,” 2007. [Online]. Available: https://news.ohsu.edu/2007/07/17/
ohsu-researchers-find-time-is-best-predictor-of-survival-in-search-and-rescue-missions

Stellenbosch University https://scholar.sun.ac.za

https://www2.jpl.nasa.gov/srtm/
https://wingtra.com/wp-content/uploads/Wingtra-Technical-Specifications.pdf
https://wingtra.com/wp-content/uploads/Wingtra-Technical-Specifications.pdf
https://www.warrioraero.com/gull-uav/specifications.html
https://pdf.aeroexpo.online/pdf/xiamen-han-s-eagle-aviation-technology-co-ltd/sd-40/186008-8819.html#open35681
https://pdf.aeroexpo.online/pdf/xiamen-han-s-eagle-aviation-technology-co-ltd/sd-40/186008-8819.html#open35681
https://pdf.aeroexpo.online/pdf/xiamen-han-s-eagle-aviation-technology-co-ltd/sd-40/186008-8819.html#open35681
https://www.aeromapper.com/avem-2-2/
https://www.up-caelivia.it/d-sentry
https://pdf.aeroexpo.online/pdf/eos-technologie/strix-400/187591-21258.html#open66821
https://pdf.aeroexpo.online/pdf/eos-technologie/strix-400/187591-21258.html#open66821
https://www.flir.com/products/vue-pro/
https://www.dji.com/mavic-air-2/specs
https://www.dji.com/mavic-air-2/specs
http://dx.doi.org/10.1016/j.mechatronics.2010.10.009
https://news.ohsu.edu/2007/07/17/ohsu-researchers-find-time-is-best-predictor-of-survival-in-search-and-rescue-missions
https://news.ohsu.edu/2007/07/17/ohsu-researchers-find-time-is-best-predictor-of-survival-in-search-and-rescue-missions

	Declaration
	Abstract
	Opsomming
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acronyms
	Introduction
	Background
	Research Goal
	Research Objectives
	Proposed Solution and Contributions
	Scope of Project
	Limitations
	Thesis Outline

	Literature Review
	Search and Rescue
	Robotics in Search and Rescue
	Motion Planning
	Coverage Path Planning
	Single Robot Coverage Path Planning
	Multiple Robot Coverage Path Planning
	Key Findings and Design Decisions

	Conceptualization and Modelling
	The SAR Problem
	Search Environment
	Environment Obstacles
	UAV Model
	Collisions Model
	Target Model
	Target Detection Model

	System Overview
	System Summary and Scope
	Environment Representation
	Divide Areas Algorithm
	Sub-Region Coverage Technique
	Central Deployment and Scheduling

	Environment Representation
	Background
	Discretisation Methodology
	UAV and Camera Payload
	Discretisation Examples

	Divide Areas Algorithm
	DARP Algorithm
	DARP Advantages and Disadvantages
	Algorithm Modifications
	Illustrative Examples with Different Environments

	Sub-Region Coverage Technique
	Sub-Region Coverage Overview
	Spanning Tree Generation
	Path Generation
	Spanning Tree Coverage for SAR
	Illustrative Examples with Different Environments

	Central Deployment and Flight Scheduling
	Central Deployment Concept
	Time Calculations for UAV Manoeuvres
	Endurance Estimation
	Flight Schedule and Survivor Detection
	Illustrative Examples with Different Environments

	Monte Carlo Simulations
	Experimental Setup, Procedure, and Results
	Algorithm Execution Time
	Survivor Detection Performance
	Key Findings

	Conclusions and Recommendations
	Summary of Work Done
	Recommendations for Future Work

	Appendices
	Discretisation Tables
	List of References

